Carbon and Oxygen Isotopic Characteristics of Devonian in Central Hunan Depression and Its Paleoenvironmental Significance
-
摘要: 基于系统碳氧同位素和有机碳测试,在充分论证样品测试数据有效性的基础上,对湘中坳陷地区泥盆系碳氧同位素特征展开分析,探讨了研究区地层对比、古海洋环境发育特征及其对富有机质页岩形成的影响.结果表明,湘中地区泥盆系δ13C受后期蚀变成岩作用影响较小.区内泥盆系δ13C表现出自下而上逐渐变轻,并在欧家冲组底部发生显著的负偏、之后向上逐渐增大的发育趋势.以上曲线与全球泥盆系碳氧同位素曲线相似,具有较为一致的变化趋势.区内泥盆系δ13C曲线形态及偏移程度与四川龙门山剖面、独山其林寨剖面、广西拉利剖面及欧美地台剖面可对比性强,可作为区内地层划分与对比、古海洋环境演化分析的依据.对比结果显示,区内棋梓桥组顶部-佘田桥组底部δ13C曲线与海平面变化存在差异,指示区域性地壳构造升降与全球海平面变化综合主导了区域的古水深变化.区内泥盆系δ13C正漂移与高TOC页岩具有良好对应关系,表明佘田桥组下部、孟公坳组上部富有机质页岩发育层段是大范围海侵阶段的产物,也是构成区内泥盆系页岩气勘探的主要目的层系.Abstract: Based on the systematic carbon and oxygen isotope and organic carbon testing, the carbon and oxygen isotope characteristics of the Devonian in the Central Hunan depression were analyzed by fully proving the validity of the testing data. Results show that the δ13C values of Devonian are less affected by later alteration in the Central Hunan area. The δ13C of Devonian gradually decreases from the bottom to the top and shows a significant negative shift at the bottom of the Oujiachong Formation, and then gradually increases upward. The δ18O curve shows a slowly increasing trend from Middle Devonian to Upper Devonian. The above curves are similar to the carbon and oxygen isotopic curves of the global Devonian strata, and have a relatively consistent trend of change. The shape and migration degree of δ13C curve of Devonian strata in the area are highly comparable with Longmenshan Section in Sichuan Province, Qilinzhai Section in Dushan, Lali Section in Guangxi, and Euramerican platform section, which can be used as the basis for stratigraphic division and correlation in the area and analysis of paleo-marine environment evolution. Results show that there are differences between the δ13C curve and the sea level change from the top of Qiziqiao Formation to the bottom part of Shetianqiao Formation, indicating that the regional paleowater depth change is comprehensively dominated by the regional tectonic activities and the global sea level changes. There is a significant correlation between the δ13C positive drift and the high TOC in the shale of this area, which indicates that the organic-rich shale intervals at the lower part of Shetianqiao Formation and the upper part of Menggongao Formation are the products of large-scale transgression. The intervals consist of the main shale gas exploration target strata of Devonian in the study area.
-
图 3 湘双地1井碳氧同位素及有机碳综合柱状图
海平面变化曲线据Ma et al.(2009)修改
Fig. 3. Composite chart of carbon and oxygen isotopes and organic carbon of Xiangshuangdi-1 well
图 4 湘双地1井泥盆系生物地层划分(剖面位置①②③见图 1)
Fig. 4. Biostratigraphic division of Devonian in Xiangshuagndi-1 well
图 5 湘双地1井与其他泥盆系剖面碳同位素地层对比
a.华南泥盆纪碳同位素地层综合柱状图,据Qie et al.(2019), 图a中1据独山其林寨(Qie et al., 2015),2据桂林铁山(Qie et al., 2015),3据桂林付合(Chen et al., 2013),4据桂林龙门(Ma et al., 2008),5据象州马鞍山(王大锐和白志强,2002),6据横县六景(刘疆和白志强,2009),7据四川龙门山(Qie et al., 2019),8据四川龙门山(崔秉荃等,1993), 9据欧美地区泥盆纪碳同位素值平均曲线(Buggisch and Joachimski, 2006),10据湖南锡矿山(宗普等,2017);b. 湘双地1井碳同位素地层综合柱状图;c.全球泥盆纪碳同位素地层综合柱状图,据Zhang et al.(2019)
Fig. 5. Carbon isotope stratigraphic comparison of Xiangshuangdi-1 well and other Devonian section
-
[1] An, X.Y., Zhang, Y.J., Zhu, T.X., et al., 2018. Stable Carbon Isotope Characteristics of Permian-Triassic Boundary at the Selong Xishan Section. Earth Science, 43(8): 326-335(in Chinese with English abstract). [2] Belka, Z., Wendt, J., 1992. Conodont Biofacies Patterns in the Kellwasser Facies (Upper Frasnian/Lower Famennian) of the Eastern Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 91(1-2): 143-173. https://doi.org/10.1016/0031-0182(92)90037-6 [3] Bond, D. P. G., Wignall, P. B., 2008. The Role of Sea-Level Change and Marine Anoxia in the Frasnian-Famennian (Late Devonian) Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 263(3-4): 107-118. https://doi.org/10.1016/j.palaeo.2008.02.015 [4] Brett, C.E., Zambito, IV, J.J., McLaughlin, P.I., et al., 2020. Revised Perspectives on Devonian Biozonation and Environmental Volatility in the Wake of Recent Time-Scale Revisions. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 108843. https://doi.org/10.1016/j.palaeo.2018.06.037 [5] Buggisch, W., Joachimski, M. M., 2006. Carbon Isotope Stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 68-88. https://doi.org/10.1016/j.palaeo.2006.03.046 [6] Cao, Q.G., Wei, Q.L., Xiao, Q.G., et al., 2015. Gas Accumulation and Exploration Prospect of Lower Carboniferous Menggongao Shale in Xiangzhong Depression. Marine Origin Petroleum Geology, 20(3): 43-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201503011.htm [7] Carmichael, S. K., Waters, J. A., Koenigshof, P., et al., 2019. Paleogeography and Paleoenvironments of the Late Devonian Kellwasser Event: A Review of Its Sedimentological and Geochemical Expression. Global and Planetary Change, 183: 102984. https://doi.org/10.1016/j.gloplacha.2019.102984 [8] Chen, D., Wang, J., Racki, G., et al., 2013. Large Sulphur Isotopic Perturbations and Oceanic Changes during the Frasnian-Famennian Transition of the Late Devonian. Journal of the Geological Society, 170(3): 465-476. http://dx.doi.org/10.1144/jgs2012-037 [9] Chen, J.S., Chen, W.Z., 1983. Introduction to Carbon Isotope Geology. Geological Publishing House, Beijing, 25-40 (in Chinese). [10] Chen, L., Zhang, B.M., Chen, X. H., et al., 2019. Sedimentary Characteristics and Depositional Environment of the Shetianqiao Formation in the Shaoyang Sag, Xiangzhong Depression. Journal of Stratigraphy, 43(2): 171-180 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201902006.htm [11] Chen, Q., Zhang, H.Y., Li, W.H., et al., 2012. Characteristics of Carbon and Oxygen Isotopes of the Ordovician Carbonate Rocks in Ordos and Their Implication. Journal of Palaeogeography, 14(1): 117-124(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201201016.htm [12] Chu, X.L., Zhang, T.G., Zhang, Q.R., et al., 2003. Carbon Isotope Changes of the Proterozoic Carbonate Rocks in Jixian County. Science in China (Series D), 33(10): 951-959(in Chinese). [13] Cui, B.Q., Lu, W.C., Yang, S.Q., 1993. Strontium and Carbon Isotopes and Sea Level Fluctuation of Devonian in Longmen Mountain Region. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 20(2): 1-8(in Chinese with English abstract). [14] Glumac, B., Spivak-Birndorf, M.L., 2002. Stable Isotopes of Carbon as an Invaluable Stratigraphic Tool: an Example from the Cambrian of the Northern Appalachians, USA. Geology, 30(6): 563-566. https://doi.org/10.1130/0091-7613(2002)030 < 0563:siocaa > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0563:siocaa>2.0.co;2 [15] Hatch, J. R., Jacobson, S. R., Witzke, B. J., et al., 1987. Possible Late Middle Ordovician Organic Carbon Isotope Excursion: Evidence from Ordovician Oils and Hydrocarbon Source Rocks, Mid-Continent and East-Central United States. AAPG Bulletin, 7(11): 1342-1354. https://doi.org/10.1306/703c8074-1707-11d7-8645000102c1865d [16] Hao, S.L., Li, W.H., Liu, J.P., et al., 2011. Characteristics of Carbon and Oxygen Isotopes Geochemistry of Organic Reef Facies Carbonates of Ordovician in Southern Margin of Ordos. Geological Science and Technology Information, 30(2): 52-56(in Chinese with English abstract). [17] Hou, H.F., Ma, X.P., 2005. Devonian GSSPs and Division of the Devonian System in South China. Journal of Stratigraphy, 29(2): 154-159, 164(in Chinese with English abstract). [18] House, M.R., 2002. Strength, Timing, Setting and Causes of Mid-Palaeozoic Extinctions. Palaeogeography, Paleoclimatology, Palaeoecology, 181(1-3): 5-25. https://doi.org/10.1016/S0031-0182(01)00471-0 [19] Jing, L., Pan, J.P., Xu, G.S., et al., 2012. Lithofacies-Paleogeography Characteristics of the Marine Shale Series of Strata in the Xiangzhong Depression, Hunan, China. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 39(2): 215-222(in Chinese with English abstract). [20] Kaufman, A.J., Knoll, A.H., 1995. Neoproterozoie Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301-9268(94)00070-8 [21] Lash, G. G., 2019. A Global Biogeochemical Perturbation during the Middle Frasnian Punctata Event: Evidence from Muted Carbon Isotope Signature in the Appalachian Basin, New York State (USA). Global and Planetary Change, 177: 239-254. https://doi.org/10.1016/j.gloplacha.2019.01.006 [22] Li, H.J., Xie, X.N., Huang, J.H., et al., 2012. Main Factors Controlling the Formation of Excellent Marine Source Rocks in Permian Maokou Formation of Northwest Sichuan, China. Earth Science, 37(1): 171-180(in Chinese with English abstract). [23] Liu, X.S., 2008. Characteristics and Hydrocarbon Generation Model of Upper Paleozoic Carbonate Source Rocks in Xiangzhong Depression. Marine Origin Petroleum Geology, 13(1): 13-17(in Chinese with English abstract). [24] Liu, J., Bai, Z.Q., 2009. Chemostratigraphy of Mg, Ca, Na, Sr, δ13C, δ18O in Middle Devonian Strata of Liujing Section, Guangxi. Geophysical and Geochemical Exploration, 33(4): 417-423(in Chinese with English abstract). [25] Liu, W.J., 1987. Compositional Characteristics of Oxygen and Carbon Isotopes in Devonian Carbonate Formations in Southern Hunan Province. Geochimica, 16(3): 243-248(in Chinese with English abstract). [26] Lüning, S., Wendt, J., Belka, Z., Kaufmann, B., 2004. Temporal–Spatial Reconstruction of the Early Frasnian (Late Devonian) Anoxia in NW Africa: New Field Data from the Ahnet Basin (Algeria). Sedimentary Geology, 163: 237-264. https://doi.org/10.1016/s0037-0738(03)00210-0 [27] Ma, X. P., Liao, W. H., Wang, D. M., 2009. The Devonian System of China, with a Discussion on Sea-Level Change in South China. In: Königshof, P., ed., Devonian Change: Case Studies in Palaeogeography and Palaeoecology. Geological Society, London, Special Publications, 314(1), 241-262. https://doi.org/10.1144/sp314.13 [28] Ma, X.P., Sun, Y.L., Bai, Z.Q., et al., 2004. New Advances in the Study of the Upper Devonian Frasnian Strata of the Shetianqiao Section, Central Hunan. Journal of Stratigraphy, 28(4): 369-374 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200404016.htm [29] Ma, X. P., Wang, C. Y., Racki, G., et al., 2008. Facies and Geochemistry across the Early-Middle Frasnian Transition (Late Devonian) on South China Carbonate Shelf: Comparison with the Polish Reference Succession. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(3/4): 130-151. https://doi.org/10.1016/j.palaeo.2008.04.034 [30] Ma, X.P., Zong, P., 2010. Middle-Late Devonian Brachiopods, Sea Level Rise and Fall, and Paleogeography in Hunan. Scientia Sinica Terrae, 40(9): 1204-1218(in Chinese). doi: 10.1360/zd-2010-40-9-1204 [31] Mu, C.L., 1994. Exposure Sequence Stratigraphy of the Devonian Strata in Hunan. Sedimentary Facies and Palaeogeography, 14 (2): 1-9(in Chinese with English abstract). [32] Qie, W., Liu, J., Chen, J., et al., 2015. Local Overprints on the Global Carbonate δ13C Signal in Devonian-Carboniferous Boundary Successions of South China. Palaeogeography, Paleoclimatology, Palaeoecology, 418: 290-303. https://doi.org/10.1016/j.palaeo.2014.11.022 [33] Qie, W. K., Ma, X. P., Xu, H. H., et al., 2019. Devonian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 112-134. https://doi.org/10.1007/s11430-017-9259-9 [34] Teng, G. E., Liu, W. H., Xu, Y. C., et al., 2005. Influence of Relative Sea Level Variation on Hydrocarbon Source Rock Development—Taking E'erduosi Basin as an Example. Natural Gas Industry, 25(5): 9-13 (in Chinese with English abstract). http://www.researchgate.net/publication/289633090_Influence_of_relative_sea_level_variation_on_hydrocarbon_source_rock_development_-_Taking_E'_erduosi_Basin_as_an_example [35] Tian, W., Wang, C. S., Bai, Y. S., et al., 2019. Shale Geochemical Characteristics and Enrichment Mechanism of Organic Matter of the Upper Devonian Shetianqiao Formation Shale in Lianyuan Sag, Central Hunan. Earth Science, 4(11): 3794-3811(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911019.htm [36] Walliser, O.H., 1996. Global Events and Event Stratigraphy in the Phanerozoic. Springer Verlag, Heidelberg, 333. [37] Wang, D.R., Bai, Z.Q., 2002. Chemostratigraphic Characters of the Middle-Upper Devonian Boundary in Guangxi, South China. Journal of Stratigraphy, 26(1): 50-54(in Chinese with English abstract). [38] Wang, W., Zhou, C.M., Yuan, X.L., et al., 2011. Variations of the Carbonate Carbon Isotope in Ediacaran Doushantuo Ocean of South China. Journal of Stratigraphy, 35(4): 349-360(in Chinese with English abstract). [39] Yang, H.Y., 2014. Reconstruction of Devonian Lithofacies Palaeogeography in Hunan and Guangxi Provinces. Journal of Southwest Petroleum Institute, 36(1): 1-8(in Chinese with English abstract). [40] Zhang, C. C., Tan, Z. X., Zhu, L. J., 1997. Comparative Study of Stratigraphic Divisions in Hunan, in China. China University of Geosciences Press, Wuhan (in Chinese). [41] Zhang, S.C., Wang, R.L., Jin, Z.J., et al., 2006. The Relationship between the Cambrian-Ordovician High-TOC Source Rock Development and Paleoenvironment Variations in the Tarim Basin, Western China: Carbon and Oxygen Isotope Evidence. Acta Geologica Sinica, 80(3): 459-466 (in Chinese with English abstract). [42] Zhang, X.S., Michael, M.J., Jeffrey, D.O., et al., 2019. Late Devonian Carbon Isotope Chemostratigraphy: A New Record from the Offshore Facies of South China. Global and Planetary Change, 182: 103024. https://doi.org/10.1016/j.gloplacha.2019.103024 [43] Zhao, Z.J., 2015. Indicators of Global Sea-Level Change and Research Methods of Marine Tectonic Sequences: Take Ordovician of Tarim Basin as an Example. Acta Petrolei Sinica, 36(3): 262-273(in Chinese with English abstract). [44] Zong, P., Ma, X.P., Zhang, M.Q., et al., 2017. Comparative Study of Famennian Carbon Isotope Characteristics of Junggar, Xinjiang and Central Hunan, South China. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(5): 843-861(in Chinese with English abstract). [45] 安显银, 张予杰, 朱同兴, 等, 2018. 西藏色龙西山二叠系-三叠系界线剖面稳定碳同位素特征. 地球科学, 43(8): 326-335. doi: 10.3799/dqkx.2018.103 [46] 曹清古, 韦庆亮, 肖秋苟, 等, 2015. 湘中坳陷下石炭统孟公坳段页岩气成藏条件及勘探前景. 海相油气地质, 20(3): 43-49. doi: 10.3969/j.issn.1672-9854.2015.03.007 [47] 陈锦石, 陈文正, 1983. 碳同位素地质学概论. 北京: 地质出版社, 25-40. [48] 陈林, 张保民, 陈孝红, 等, 2019. 湘中坳陷邵阳凹陷佘田桥组沉积特征及沉积环境分析. 地层学杂志, 43(2): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201902006.htm [49] 陈强, 张慧元, 李文厚, 等, 2012. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义. 古地理学报, 14(1): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201016.htm [50] 储雪蕾, 张同钢, 张启锐, 等, 2003. 蓟县元古界碳酸盐岩的碳同位素变化. 中国科学(D辑), 33(10): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310004.htm [51] 崔秉荃, 卢武长, 杨绍全, 1993. 龙门山地区泥盆纪锶, 碳同位素与海平面变化. 成都地质学院学报, 20(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199302000.htm [52] 郝松立, 李文厚, 刘建平, 等, 2011. 鄂尔多斯南缘奥陶系生物礁相碳酸盐岩碳氧同位素地球化学特征. 地质科技情报, 30(2): 52-56. doi: 10.3969/j.issn.1000-7849.2011.02.009 [53] 侯鸿飞, 马学平, 2005. 国际泥盆系GSSP与华南泥盆系划分. 地层学杂志, 29(2): 154-159, 164. doi: 10.3969/j.issn.0253-4959.2005.02.011 [54] 敬乐, 潘继平, 徐国盛, 等, 2012. 湘中拗陷海相页岩层系岩相古地理特征. 成都理工大学学报(自然科学版), 39(2): 215-222. doi: 10.3969/j.issn.1671-9727.2012.02.015 [55] 李红敬, 解习农, 黄俊华, 等, 2012. 川西北二叠系茅口组海相优质烃源岩发育控制因素. 地球科学, 37(1): 171-180. doi: 10.3799/dqkx.2012.017 [56] 刘疆, 白志强, 2009. 广西横县六景中泥盆统Mg、Ca、Na、Sr、δ13C和δ18O化学地层学特征. 物探与化探, 33(4): 417-423. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200904010.htm [57] 刘文均, 1987. 湘南泥盆系碳酸盐岩中氧、碳同位素组成特点. 地球化学, 16(3): 243-248. doi: 10.3321/j.issn:0379-1726.1987.03.006 [58] 刘喜顺, 2008. 湘中坳陷上古生界碳酸盐岩烃源岩特征及生烃模式. 海相油气地质, 13(1): 13-17. doi: 10.3969/j.issn.1672-9854.2008.01.003 [59] 马学平, 孙元林, 白志强, 等, 2004. 湘中佘田桥剖面上泥盆统弗拉斯阶地层研究新进展. 地层学杂志, 28(4): 369-374. doi: 10.3969/j.issn.0253-4959.2004.04.014 [60] 马学平, 宗普, 2010. 湖南中-晚泥盆世腕足动物组合、海平面升降及古地理演变. 中国科学(地球科学), 40(9): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201009011.htm [61] 牟传龙, 1994. 湖南泥盆纪露头层序地层研究. 岩相古地理, 14(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD402.000.htm [62] 腾格尔, 刘文汇, 徐永昌, 等, 2005. 相对海平面变化对烃源岩发育的影响: 以鄂尔多斯盆地为例. 天然气工业, ,25(5): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200505002.htm [63] 田巍, 王传尚, 白云山, 等, 2019. 湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理. 地球科学, 4(11): 3794-3811. doi: 10.3799/dqkx.2019.156 [64] 王大锐, 白志强, 2002. 广西中-上泥盆统界线附近的化学地层学特征. 地层学杂志, 26(1): 50-54. doi: 10.3969/j.issn.0253-4959.2002.01.008 [65] 王伟, 周传明, 袁训来, 等, 2011. 华南埃迪卡拉纪陡山沱海洋中无机碳同位素组成变化. 地层学杂志, 35(4): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201104002.htm [66] 杨怀宇, 2014. 湘桂地区泥盆纪岩相古地理重建. 西南石油大学学报, 36(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201401001.htm [67] 张纯臣, 谭正修, 朱伦杰, 1997. 全国地层多重划分对比研究(43)湖南省岩石地层. 武汉: 中国地质大学出版社. [68] 张水昌, Wang, R. L., 金之钧, 等, 2006. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳同位素新证据. 地质学报, 80(3): 459-466. doi: 10.3321/j.issn:0001-5717.2006.03.020 [69] 赵宗举, 2015. 全球海平面变化指标及海相构造层序研究方法: 以塔里木盆地奥陶系为例. 石油学报, 36(3): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201503003.htm [70] 宗普, 马学平, 张美琼, 等, 2017. 新疆准噶尔与华南湘中法门期碳同位素特征的对比研究. 北京大学学报(自然科学版), 53(5): 843-861. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201705007.htm