Metallogenic Model of Carbonate-Hosted Pb-Zn Deposits in West Hunan and East Guizhou Provinces, South China
-
摘要: 湘西-黔东地区位于扬子陆块东南缘,在该地区碳酸盐岩地层中,目前已发现大、中、小型铅锌矿床及矿点200余处.为了解湘西-黔东地区铅锌矿床成矿作用过程,系统总结了区内主要铅锌矿床地质与地球化学特征,并对成矿机制进行探讨,建立成矿模式.区内铅锌矿床主要赋存于下寒武统碳酸盐岩中,分布明显受断裂及褶皱构造控制,矿体主要为层状、似层状或透镜状,矿物组成主要为闪锌矿、方铅矿、黄铁矿、方解石及少量萤石、重晶石和沥青,并伴随着广泛的以方解石化为主的热液蚀变.闪锌矿与方解石中的流体包裹体均一温度集中在120~200℃之间,盐度集中在8%~20%(NaCleqv)之间;成矿期方解石的δ13CPDB值范围为-4.89‰~1.50‰,δ18OSMOW值范围为13.37‰~25.09‰,略低于碳酸盐围岩;矿石硫化物δ34S值变化范围为22.3‰~36.1‰,以富含重硫为主;矿石硫化物铅同位素组成较为均一,变化范围较小,206Pb/204Pb在17.952~18.678之间,207Pb/204Pb在15.635~15.832之间,208Pb/204Pb在38.015~39.255之间.对地质和地球化学资料的综合分析表明,湘西-黔东地区铅锌矿床成矿流体为低温、中高盐度热卤水,主要来源于建造水和大气降水,成矿流体中的碳主要来源于碳酸盐围岩的溶解作用,硫来源于碳酸盐岩地层中硫酸盐热化学还原作用(TSR),铅锌主要来源于下伏地层,成矿时代为晚志留世-早泥盆世,属于比较典型的密西西比河谷型(MVT)铅锌矿床.综合以上分析建立了该地区铅锌矿床有机质参与下的多源流体混合成矿模式.Abstract: The West Hunan and East Guizhou district is located in the southeast margin of the Yangtze craton and developed with more than 200 Pb-Zn deposits/occurrences in carbonate rocks. In order to understand the metallogenic process of Pb-Zn deposits in West Hunan and East Guizhou district, in the paper it systematically summarizes the geological and geochemical characteristics of the typical Pb-Zn deposits, discusses the metallogenic mechanism, and establishes the metallogenic model. The Pb-Zn deposits are dominantly hosted in carbonate rocks of the Lower Cambrian, and the distribution is obviously controlled by fault and fold structure. The ore bodies are mainly stratiform, stratoid and lentoid. The minerals mainly consist of sphalerite, galena, pyrite and calcite, with less fluorite, barite, and bitumen. The Pb-Zn deposits are accompanied by extensive hydrothermal alteration dominated by calcilization. Fluid inclusions hosted in sphalerite and calcite have total homogenization temperatures concentrated of 120 to 200℃ and calculated salinities concentrated of 8% to 20% NaCleqv. Compared with the wall rocks, the hydrothermal calcite is characterized by relatively lower δ13CPDB value (range from -4.89‰ to 1.50‰) and significantly lower δ18OSMOW values (from 13.37‰ to 25.09‰). The sulfides from these Pb-Zn deposits yield narrow δ34S values (from 22.3‰ to 36.1‰). The lead isotope compositions of sulfides, with the 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios ranging from 17.952 to 18.678, 15.635 to 15.832, 38.015 to 39.255, respectively, are relatively homogeneous. Integrating geological and geochemical data of the Pb-Zn deposits in West Hunan and East Guizhou district, it is suggested that low temperature and medium-high salinity ore-forming fluids were mostly derived from formation water with variable amounts of meteoric water; carbon in the ore-forming fluids was mainly sourced from carbonate wall rocks through water-rock reactions; sulfur was derived from the carbonate wall rocks by thermochemical sulfate reduction, and underlying strata supplied the metals for the Pb-Zn mineralization. The Pb-Zn deposits in West Hunan and East Guizhou district, formed in Late Silurian to Early Devonian, can be best classified as the MVT Pb-Zn deposit, and fluid mixing metallogenic model with the participation of organic matter was established in this district.
-
图 1 湘西-黔东地区大地构造位置(a)和地质简图(b)
图a据胡召齐(2011)修改;图b据李堃等(2014)修改
Fig. 1. Geotectonic location (a) and geological sketch (b) of West Hunan and East Guizhou
图 2 湘西-黔东地区下寒武统地层柱状图
据李堃等(2014)修改
Fig. 2. Stratigraphic sequence of Lower Cambrian in West Hunan and East Guizhou
图 5 湘西-黔东地区主要铅锌矿床成矿流体均一温度盐度散点
MVT. 密西西比河谷型; SEDEX. 喷流-沉积型; VMS. 块状硫化物型. 底图据Kesler(2005)修改. 图中数据来源见表 2
Fig. 5. Scatter diagram of homogenization temperatures and salinities of ore-forming fluid of the Pb-Zn deposits in West Hunan and East Guizhou
图 6 湘西-黔东地区主要铅锌矿床围岩与方解石δ13CPDB-δ18OSMOW图
底图据刘建明和刘家军(1997)修改, 图中数据来源见表 3
Fig. 6. δ13CPDB-δ18OSMOW diagram of the carbonate rocks and calcite of Pb-Zn ore deposits in West Hunan and East Guizhou
图 7 湘西-黔东地区主要铅锌矿床中硫化物硫同位素直方图
图中数据来源见表 4
Fig. 7. Sulfur isotope histogram for sulfides of Pb-Zn ore deposits in West Hunan and East Guizhou
图 8 湘西-黔东地区主要铅锌矿床硫化物及围岩207Pb/204Pb-206Pb/204Pb构造环境演化图解
底图据Zartman and Doe(1981)修改, 图中数据来源见表 5
Fig. 8. 207Pb/204Pb vs. 206Pb/204Pb diagram for sulfides and wall rock of the Pb-Zn ore deposits in West Hunan and East Guizhou
图 9 湘西-黔东地区铅锌汞矿化与古油藏分布简图
据刘劲松等(2012)修改
Fig. 9. Sketch map showing the distribution of Pb, Zn and Hg mineralization and paleo-oil reservoir in West Hunan and East Guizhou
图 10 湘西-黔东地区赋存于下寒武统碳酸盐岩中铅锌矿床成矿模式
Pt.元古界; Nh-Z.南华系-震旦系; $ {\rm{\rlap{--} C}}$ 1n.下寒武统牛蹄塘组; $ {\rm{\rlap{--} C}}$1s.下寒武统石牌组; $ {\rm{\rlap{--} C}}$1q1-2.下寒武统清虚洞组第一、二段; $ {\rm{\rlap{--} C}}$1q3-4.下寒武统清虚洞组第3、4段; $ {\rm{\rlap{--} C}}$1q5.下寒武统清虚洞组第5段
Fig. 10. Metallogenic model of the Lower Cambrian carbonate-hosted Pb-Zn deposit in West Hunan and East Guizhou
表 1 湘西-黔东地区赋存于下寒武统中的主要铅锌矿床地质特征
Table 1. Geological characteristics of the Pb-Zn deposits in West Hunan and East Guizhou
矿床名称 规模 地理位置 构造位置 矿体特征 矿物组成 围岩蚀变 矿石品位 资料来源 大脑坡 大型 距花垣县南西约2 km 位于花垣-张家界断裂西段南侧 呈层状、似层状、透镜状产出,与岩层接近整合状,总体产状平缓,倾向南东,倾角3°~10°.单矿体厚1~10 m,间距3~15 m 闪锌矿为主,次为方铅矿、黄铁矿;方解石为主,次为白云石,少量重晶石、石英及微量萤石、沥青 方解石化、重晶石化、硅化 锌1%~4%,铅0.1%~0.8% 毛党龙(2016) 李梅 大型 距花垣县南西约10 km 位于北东向吉硐坪背斜南东翼,北东向花垣-石耶司正-平错断层南东侧 呈层状、似层状、透镜状、扁豆状与围岩整合产出,长一般200 m,宽几m至40 m 闪锌矿、方铅矿为主,黄铁矿少量;方解石、重晶石为主,萤石、石英、沥青次之 方解石化、重晶石化、黄铁矿化、硅化、褪色化 锌3.48%,铅0.22% ① 渔塘(狮子山) 大型 距花垣县南西约21 km 位于竹子寨-大雅堡背斜北西西翼,北北东向熬溪-平头司逆断层北西侧 呈似层状、层状,长400~700 m,宽50~380 m 闪锌矿、方铅矿为主,次有黄铁矿及次生褐铁矿、白铅矿;方解石为主,重晶石、白云石次之 方解石化、黄铁矿化、硅化、褪色重结晶化 锌3.18%,铅1.50% ① 土地坪 大型 距花垣县南西约18 km,南距渔塘矿区4 km 位于竹子寨-大雅堡背斜北西西翼,北北东向熬溪-平头司逆断层北西侧 呈透镜状、扁豆状产出,长250 m,厚4 m,延伸100 m 闪锌矿、方铅矿为主,黄铁矿次之;方解石、重晶石为主,萤石、沥青次之 方解石化、黄铁矿化、白云石化、褪色重结晶化 锌3.0%,铅0.1%~1.5% ① 大石沟 大型 距花垣县南西约20 km 位于竹子寨-大雅堡背斜北西西翼 呈层状、似层状顺层产出,局部呈透镜状 闪锌矿、方铅矿为主;方解石为主 方解石化、黄铁矿化褪色化 锌2%~3%,铅1% ① 杉木冲 小型 距花垣县南西约34 km 位于竹子寨-大雅堡背斜南东东翼 呈似层状、马鞍状,呈北东-南西向出露长达900 m,厚度为1~10 m 方铅矿、闪锌矿为主,黄铁矿次之;方解石、白云石为主,石英少量 白云石化、方解石化、硅化 铅1%~5%,锌0.5%~3.0% ① 水源寨 小型 距松桃县南西约15 km 位于竹子寨-大雅堡背斜南东东侧,熬溪-平头司逆断层南东东侧 呈似层状、豆荚状,长200 m,厚4 m,延伸100 m左右 方铅矿为主,闪锌矿次之;方解石为主,重晶石次之 常见褪色化,次有方解石化、白云石化、黄铁矿化 铅0.60%,锌0.12% ① 嗅脑 小型 距松桃县南西约11 km,嗅脑巴巴寨一带 位于竹子寨-大雅堡背斜南东东侧,熬溪-平头司逆断层南东东侧 呈巢状、囊状、扁豆状产于矿化带内 方铅矿为主,闪锌矿次之,偶见黄铁矿;方解石为主,次为重晶石、白云石,偶见萤石 以方解石化、白云石化为主,次为萤石化、沥青化及褪色化 铅0.58%~1.95%,锌0.51%~5.71% 李堃等(2018b) 塘边坡 中型 距铜仁市南西约10 km 位于北东向的黄家院断裂以及北北东向的文笔峰、铜仁断裂北西侧 呈层状、似层状或透镜状,走向长约380~470 m,倾向延伸200~330 m,矿体一般厚度为1.70~3.20 m 闪锌矿、方铅矿为主,黄铁矿次之;方解石为主,次为萤石、重晶石和沥青 重结晶作用、方解石化、重晶石化、黄铁矿化,偶见萤石化 铅1.02%、锌1.96% 于玉帅等(2017a) 卜口场 中型 距铜仁市南西约12 km 位于北东向的黄家院断裂以及北北东向的文笔峰、铜仁断裂南东侧 呈层状、似层状或透镜状,中部矿体厚度较大,往两侧逐渐变薄,平均厚8.1 m 闪锌矿、方铅矿为主,黄铁矿次之;方解石为主,次为萤石、重晶石和沥青 重结晶作用、方解石化、重晶石化、黄铁矿化,偶见萤石化 铅0.50%、锌2.31% 于玉帅等(2017a) 都坪 小型 距镇远县北北东约30 km 位于龙田背斜之北西翼,大坪及乱洞溪断层之间 呈层状、似层状,可分为7个矿体,长200~1 100 m,一般500~600 m,各矿体厚度为0.65~1.13 m 方铅矿、闪锌矿为主,黄铁矿次之;方解石、白云石为主,重晶石次之 方解石化、白云石化及轻微的黄铁矿化、硅化 铅0.88%~2.34%、锌0.59%~6.88% ② 牛角塘 中型 距都匀市以东约12 km 位于王司复背斜的南段,曼洞断裂的北西侧 呈似层状和透镜状产出,平均长300 m、宽200 m,厚度变化范围为0.31~3.90 m,平均厚1.43 m 闪锌矿为主,次为黄铁矿、菱锌矿、方铅矿、白铁矿,偶见硫镉矿、菱镉矿、方镉矿;白云石为主,次为方解石、重晶石 白云石化和黄铁矿化,以及少量的硅化 锌3.75%~6.62% ③ 注:①湖南省地质局区域地质测量队, 1964, 中华人民共和国矿产图说明书(1∶20万吉首幅); ②贵州省地质局一〇八队, 1965, 中华人民共和国区域矿产调查报告(1∶20万镇远幅); ③贵州省地质局区域地质队, 1965, 中华人民共和国矿产图说明书(1∶20万都匀幅). 表 2 湘西-黔东地区主要铅锌矿床流体包裹体特征及参数
Table 2. Microthermometric data and characteristics of fluid inclusions of the Pb-Zn deposits of West Hunan and East Guizhou
地点 矿床名称 寄主矿物 包裹体个数 大小(μm) 气液比(%) 均一温度(℃) 冰点温度(℃) 盐度(%) 密度(g/cm3) 数据来源 花垣 李梅 闪锌矿 38 2 ~ 10 5 ~ 15 93 ~ 222 -18.5~-19.7 13.62 ~ 21.33 1.02 ~ 1.07 李堃等, 2018a 方解石 75 3 ~ 15 5 ~ 25 111 ~ 228 -19.6~-3.0 4.96 ~ 22.44 0.90 ~ 1.11 土地坪 闪锌矿 9 3 ~ 10 5 ~ 10 92 ~ 170 -16.1~-12.1 16.14 ~ 19.71 1.03 ~ 1.10 方解石 46 4 ~ 12 10 ~ 20 92 ~ 214 -19.2~-2.2 3.69 ~ 22.09 0.90 ~ 1.12 大石沟 闪锌矿 4 2 ~ 8 5 ~ 10 115 ~ 152 -15.7~-9.7 13.72 ~ 19.40 1.04 ~ 1.07 方解石 99 3 ~ 18 5 ~ 25 94 ~ 232 -19.6~-3.4 5.56 ~ 22.44 0.91 ~ 1.11 松桃 嗅脑 闪锌矿 8 2 ~ 10 5 ~ 10 93 ~ 198 -18.2~-6.3 9.60 ~ 21.11 0.98 ~ 1.17 李堃, 2018 方解石 14 3 ~ 10 5 ~ 15 99 ~ 202 -17.5~-3.6 5.86 ~ 20.82 0.98 ~ 1.08 铜仁 卜口场 闪锌矿 9 3 ~ 12 5 ~ 10 89 ~ 177 -19.5~-10.6 14.63 ~ 22.31 1.02 ~ 1.13 李堃, 2018 方解石 25 3 ~ 15 5 ~ 20 88 ~ 184 -18.0~-5.5 8.28 ~ 21.20 1.01 ~ 1.13 塘边坡 闪锌矿 36 4 ~ 16 5 ~ 20 98 ~ 193 -18.3~-5.9 9.1 ~ 21.2 0.98 ~ 1.10 于玉帅等, 2017a 方解石 63 4 ~ 25 5 ~ 20 92 ~ 190 -18.0~-5.8 8.9 ~ 21.1 0.98 ~ 1.10 都匀 牛角塘 浅色闪锌矿 11 2 ~ 6 1 ~ 30 117 ~ 172 -12.7~-5.9 9.10 ~16.70 0.99 ~ 1.05 叶霖等, 2000 深色闪锌矿 15 1 ~ 5 1 ~ 10 101 ~ 143 -11.9~-7.4 11.00 ~ 15.90 1.00 ~ 1.06 方解石 12 2 ~ 5 5 ~ 10 90 ~ 128 -3.7~-1.5 2.50 ~ 6.00 0.96 ~ 0.99 白云石 5 3 ~ 12 5 ~ 8 110 ~ 120 -2.9~-2.3 3.80 ~ 4.80 0.97 ~ 0.98 表 3 湘西-黔东地区主要铅锌矿床碳、氧同位素组成
Table 3. Carbon and oxygen isotope analysis results of the Pb-Zn deposits of West Hunan and East Guizhou
地点 矿床名称 测试对象 δ13CPDB δ18OPDB δ18OSMOW 数据来源 范围(‰) 均值(‰) 范围(‰) 均值(‰) 范围(‰) 均值(‰) 花垣 李梅 方解石 -4.89~0.64 -0.72 -16.97~-8.86 -10.75 13.37~21.73 19.78 李堃等,2018a 花垣 大石沟 方解石 -2.95~0.18 -1.33 -13.62~-8.68 -11.93 16.82~21.91 18.56 李堃等,2018a 花垣 土地坪 方解石 -1.64~0.17 -0.67 -14.06~-8.33 -11.10 16.37~22.27 19.42 李堃等,2018a 花垣 渔塘 方解石 -2.98~-0.18 -1.81 -13.73~-10.80 -12.67 16.71~19.73 17.80 李堃等,2014 松桃 嗅脑 方解石 -1.23~0.42 -0.58 -15.05~-12.23 -14.22 15.35~18.25 16.20 李堃等,2014 铜仁 塘边坡 方解石 0.50~1.50 0.98 -9.50~-5.60 -8.25 21.07~25.09 22.36 于玉帅等, 2017a 花垣 李梅 灰岩 0.29~1.17 0.67 -9.80~-8.83 -9.28 20.76~22.06 21.43 夏新阶和舒见闻, 1995; 蔡应雄等, 2014; 周云等, 2016 花垣 大石沟 灰岩 -0.79~2.39 0.96 -11.69~-4.23 -9.61 18.81~22.13 20.40 周云等, 2016 松桃 嗅脑 灰岩 0.33~1.45 0.76 -10.89~-8.19 -9.52 19.63~22.42 21.05 李堃等, 2014 铜仁 塘边坡 灰岩 1.07~1.70 1.33 -9.98~-8.09 -8.93 20.57~22.52 21.65 李堃等, 2014 都匀 牛角塘 白云岩 0.43~0.87 0.65 / / 20.19~20.72 20.51 王华云, 1993 表 4 湘西-黔东地区主要铅锌矿床硫同位素组成
Table 4. Sulfur isotopic compositions of Pb-Zn deposits in West Hunan and East Guizhou
地点 矿床名称 δ34S(‰) 数据来源 范围(‰) 均值(‰) 花垣 李梅 27.0~34.7 30.7 蔡应雄等, 2014;李堃等,2017 大石沟 24.5~33.1 29.9 土地坪 25.2~32.2 30.0 狮子山 24.9~34.1 30.2 松桃 嗅脑 26.3~34.9 31.4 李堃等, 2018b; 蔡应雄等, 2014 铜仁 卜口场 22.8~35.8 29.2 蔡应雄等, 2014 塘边坡 25.2~36.1 30.1 于玉帅等, 2017b 都匀 牛角塘 22.3~28.6 25.8 叶霖等, 2005 表 5 湘西-黔东地区主要铅锌矿床铅同位素组成
Table 5. Lead isotopic compositions of Pb-Zn ore deposits in West Hunan and East Guizhou
地点 矿床名称 测试对象 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 数据来源 范围(‰) 均值(‰) 范围(‰) 均值(‰) 范围(‰) 均值(‰) 花垣 李梅 闪锌矿、方铅矿 18.153~18.214 18.186 15.699~15.746 15.720 38.305~38.489 38.392 李堃等,2017 大石沟 闪锌矿、方铅矿 18.139~18.678 18.307 15.691~15.832 15.761 38.300~39.255 38.693 松桃 嗅脑 闪锌矿、方铅矿 17.952~18.262 18.134 15.641~15.811 15.720 38.015~38.663 38.331 蔡应雄等, 2014; 李堃等, 2018b 铜仁 塘边坡 闪锌矿、方铅矿 18.181~18.230 18.207 15.729~15.790 15.764 38.389~38.584 38.506 于玉帅等, 2017b 花垣 / 清虚洞组白云岩 18.878~19.064 18.971 15.751~15.783 15.767 38.520~38.687 38.604 Schneider et al., 2002 清虚洞组灰岩 18.181~18.391 18.286 15.748~15.758 15.753 38.446~38.463 38.455 石牌组页岩 19.265 / 15.858 / 40.357 / 牛蹄塘组黑色页岩 21.863 / 15.914 / 38.754 / 表 6 湘西花垣-黔东松桃地区地层中Pb、Zn元素含量
Table 6. Pb and Zn value (10-6) of the strata of Huayuan-Songtao district in West Hunan and East Guizhou
地层 Pb含量范围 平均值 Zn含量范围 平均值 样品数(个) 寒武系高台组 5.49~17.60 12.10 22.30~130.00 48.13 8 寒武系清虚洞组白云岩段 3.61~12.00 7.55 10.10~56.20 26.35 16 寒武系清虚洞组灰岩段 1.85~28.60 14.32 12.80~82.90 34.45 18 寒武系石牌组 1.84~62.00 32.26 82.50~134.00 108.40 8 寒武系牛蹄塘组 15.30~89.10 36.32 30.00~159.00 71.90 20 震旦系灯影组 4.46~7.43 5.95 53.80~73.60 63.70 2 震旦系陡山沱组(底部) 11.40 11.40 52.50 52.50 1 南华系南沱组 9.99~30.30 17.94 56.70~138.00 97.24 5 南华系大塘坡组 13.60~28.60 22.87 79.40~144.00 109.53 4 南华系古城组 36.00~39.60 37.80 27.70~69.50 48.60 2 青白口系五强溪组 7.58~57.70 18.87 65.50~137.00 103.85 11 青白口系马底驿组 8.04~35.60 20.00 80.50~156.00 113.15 11 克拉克值 12.00 94.00 注:表中数据来源于刘劲松等(2012). -
[1] Barrett, T.J., Anderson, G.M., 1982. The Solubility of Sphalerite and Galena in NaCl Brines. Economic Geology, 77(8): 1923-1933. https://doi.org/10.2113/gsecongeo.77.8.1923 [2] Barton, P. B., 1967. Possible Role of Organic Matter in the Precipitation of the Mississippi Valley Ores. Economic Geology, Monographs, 3: 371-377. http://www.researchgate.net/publication/313073001_Possible_role_of_organic_matter_in_the_precipitation_of_the_Mississippi_Valley_ores [3] Basuki, N.I., Taylor, B.E., Spooner, E.T. C., 2008. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Economic Geology, 103(4): 783-799. doi: 10.2113/gsecongeo.103.4.783 [4] Basuki, N.I., Spooner, E.T.C., 2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 11(1-4): 1-17. https://doi.org/10.2113/11.1-4.1 [5] Beales, F.W., 1975. Precipitation Mechanisms for Mississippi Valley-Type Ore Deposits. Economic Geology, 70(5): 943-948. https://doi.org/10.2113/gsecongeo.70.5.943 [6] Cai, Y.X., Yang, H.M., Duan, R.C., et al., 2014. Fluid Inclusions and S, Pb, C Isotope Geochemistry of Pb-Zn Deposits Hosted by Lower Cambrian in Western Hunan-Eastern Guizhou Area. Geoscience, 28(1): 29-41 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=88686890504849524849484852 [7] Cao, L., Duan, Q.F., Peng, S.G., et al., 2013. Metallogenic Characteristics and Prospecting Progress of the Yangtze Type Lead-Zinc Deposit. Geology and Mineral Resources of South China, 29(4): 308-317 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=HNKC201304007&dbcode=CJFD&year=2013&dflag=pdfdown [8] Cheilletz, A., Giuliani, G., 1996. The Genesis of Colombian Emeralds: A Restatement. Mineralium Deposita, 31(5): 359-364. https://doi.org/10.1007/s001260050043 [9] Chen, M.H., Hu, X.Z., Bao, Z.X., et al., 2011. Geological Features and Metallogenesis of the Yutang Pb-Zn Ore Concentration Belt in Hunan Province. Geology and Prospecting, 47(2): 251-260 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=37227479 [10] Christensen, J.N., Halliday, A.N., Kenneth, E.L., et al., 1995. Direct Dating of Sulfides by Rb-Sr: A Critical Test Using the Polaris Mississippi Valley-Type Zn-Pb Deposit. Geochimica et Cosmochimica Acta, 59(24): 5191-5197. doi: 10.1016/0016-7037(95)00345-2 [11] Corbella, M., Ayora, C., Cardellach, E., 2004. Hydrothermal Mixing, Carbonate Dissolution and Sulfide Precipitation in Mississippi Valley-Type Deposits. Mineralium Deposita, 39(3): 344-357. doi: 10.1007/s00126-004-0412-5 [12] Deng, X., Yang, K.G., Liu, Y.L., et al., 2010. Characteristics and Tectonic Evolution of Qianzhong Uplift. Earth Science Frontiers, 17(3): 79-89 (in Chinese with English abstract). [13] Dixon, G., Davidson, G. J., 1996. Stable Isotope Evidence for Thermochemical Sulfate Reduction in the Dugald River (Australia) Strata-Bound Shale-Hosted Zinc-Lead Deposit. Chemical Geology, 129(3-4): 227-246. https://doi.org/10.1016/0009-2541(95)00177-8 [14] Duan, Q.F., 2014. The Research of Metallogenic Regularity of Stratabound Zinc-Lead Deposits from Sinian-Cambrian in Western Hunan and Western Hubei (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [15] Duan, Q.F., Cao, L., Zeng, J.K., et al., 2014. Rb-Sr Dating of Sphalerites from Shizishan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan, and Its Geological Significance. Earth Science, 39(8): 977-986, 999 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201408004.htm [16] Fu, S.Y., 2011. Discussion on Formation Rules of High-Grade Pb-Zn Ore in Western Hunan. Nonferrous Metals (Mining Section), 63(6): 27-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKU201106006.htm [17] Gu, T., 2017. Preliminary Study on Special Mineralization Environments of Niujiaotang Cadmium Ore Deposit. Journal of Jilin University (Earth Science Edition), 47(2): 464-476 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201702013.htm [18] Hoser, W.T., Kaplan, I.R., 1966. Isotope Geochemistry of Sedimentary Sulfates. Chemical Geology, 1: 93-135. https://doi.org/10.1016/0009-2541(66)90011-8 [19] Hu, S. Q., 2011. Studies of Tectonic Evolution and Thermochronology in the Northern Upper Yangtze Region (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract). [20] Hu, S.Q., Zhu, G., Zhang, B.L., et al., 2010. K-Ar Geochronology of the Caledonian Event in the Xuefeng Uplift. Geological Review, 56(4): 490-500 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201004003.htm [21] Jin, C.H., Zhang, Y., Zhang, D., 2014. The Metallogenic Model of Niujiaotang Pb-Zn Deposit in Duyun, Guizhou Province. Mineral Deposits, 33(S1): 699-700 (in Chinese). [22] Kesler, S. E., 2005. Ore-Forming Fluids. Elements, 1(1): 13-18. https://doi.org/10.2113/gselements.1.1.13 [23] Leach, D.L., Bradley, D., Lewchuk, M.T., et al., 2001. Mississippi Valley-Type Lead-Zinc Deposits through Geological Time: Implications from Recent Age-Dating Research. Mineralium Deposita, 36(8): 711-740. https://doi.org/10.1007/s001260100208 [24] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. SEG 100th Anniversary Special Publication. 561-607. [25] Li, K., 2018. Metallogenic Model and Prediction of the Carbonate-Hosted Pb-Zn Deposits in Western Hunan and Eastern Guizhou Province, South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [26] Li, K., Duan, Q. F., Zhao, S. R., et al., 2017. Material Sources and Ore-Forming Mechanism of the Huayuan Pb-Zn Ore Deposit in Hunan Province: Evidence from S, Pb, Sr Isotopes of Sulfides. Geologcal Bulletin of China, 36(5): 811-822 (in Chinese with English abstract). http://www.researchgate.net/publication/319008969_Material_sources_and_ore-forming_mechanism_of_the_Huayuan_Pb-Zn_ore_deposit_in_Hu'nan_Province_Evidence_from_S_Pb_Sr_isotopes_of_sulfides [27] Li, K., Wu, C. X., Tang, C. Y., et al., 2014. Carbon and Oxygen Isotopes of Pb-Zn Ore Deposits in Western Hunan and Eastern Guizhou Provinces and Their Implications for the Ore-Forming Process. Geology in China, 41(5): 1608-1619 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201405016.htm [28] Li, K., Zhao, S. R., Tang, Z. Y., et al., 2018a. Fluid Sources and Ore Genesis of the Pb-Zn Deposits of Huayuan Ore-Concentrated District, Northwest Hunan Province, China. Earth Science, 43(7): 2449-2464 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807019.htm [29] Li, K., Tang, Z. Y., Liu, J. S., et al., 2018b. Sources of Metallogenic Materials of Xiunao Pb-Zn Deposit in Eastern Guizhou: Constraints from REE and C, O, S, Pb Isotope Geochemistry. Journal of Guilin University of Technology, 38(3): 365-376 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201803001.htm [30] Li, Z. F., 1991. A Preliminary Discussion on the Origin of Pb-Zn Ore Deposits in Western Hunan and Eastern Guizhou. Guizhou Geology, 8(4): 363-371 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ199104010.htm [31] Liao, Z.W., Wang, S.W., Sun, X.M., et al., 2015. Rb-Sr Dating of Sphalerites from MVT Pb-Zn Deposits in Northeastern Guizhou Province and Its Geological Implications. Mineral Deposits, 34(4): 769-785 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201504008.htm [32] Liu, B. J., Wang, J., 1989. A Diagenesis and Metallogenic Model Associated with Bioherm. Geological Journal of Sichuan, 9(1): 39-44 (in Chinese). [33] Liu, J.M., Liu, J.J., 1997. Basin Fluid Genetic Model of Sediment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 17(4): 448-456 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199704011.htm [34] Liu, J. M., Zhao, S. R., Shen, J., et al., 1998. Review on Direct Isotopic Dating of Hydrothermal Ore-Forming Processes. Progress in Geophysics, 13(3): 46-55 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQWJ803.004.htm [35] Liu, J. S., Zou, X. W., Tang, C. Y., et al., 2012. Preliminary Discussion on Relationship between Pb-Zn Deposits and Paleooil Reservoirs in Western Hunan and Eastern Guizhou Province. Geology and Mineral Resources of South China, 28(3): 220-225 (in Chinese with English abstract). http://www.researchgate.net/publication/285733273_Preliminary_discussion_on_relationship_between_Pb-Zn_deposits_and_Paleo-oil_reservoirs_in_Western_Hunan_and_Eastern_Guizhou_Province [36] Liu, W.J., Lu, J.L., 2000. Characteristics of Organic Geochemistry of Lower Cambrian in Western Hunan: Organic-Mineralization Study on MVT Lead-Zinc Ore Deposits. Acta Sedimentologica Sinica, 18(2): 290-296 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-sedimentologica-sinica_thesis/0201251755799.html [37] Liu, W.J., Zheng, R. C, 2000. Characteristics and Movement of Ore-Forming Fluids in the Huayuan Lead-Zinc Deposit. Mineral Deposits, 19(2): 173-181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200002009.htm [38] Liu, W.J., Zheng, R.C., Li, Y.L., et al., 1999. Study of Bitumen in the Huayuan Lead-Zinc Deposit: Organic Geochemistry Study of MVT Lead-Zinc Deposit. Acta Sedimentologica Sinica, 17(1): 19-23 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb199901003 [39] Liu, Y.C., Hou, Z.Q., Yang, Z.S., et al., 2008. Some Insights and Advances in Study of Mississippi Valley-Type (MVT) Lead-Zinc Deposits. Mineral Deposits, 27(2): 253-264 (in Chinese with English abstract). [40] Luo, W., Yin, Z., Kong, L., et al., 2009. Discussion on the Geological Features and Genesis of the Limei Pb-Zn Ore Concentration Belt in North-Western Hunan Province. Geological Survey and Research, 32(3): 194-202 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-QHWJ200903011.htm [41] Mao, D.L., 2016. Geological Characteristics and Genesis of the Danaopo Pb-Zn Deposit in Huayuan County, Hunan Province. Modern Mining, 32(2): 90-94, 97 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_modern-mining_thesis/0201216292865.html [42] Nakai, S., Halliday, A.N., Kesler, S.E., et al., 1993. Rb-Sr Dating of Sphalerites from Mississippi Valley-Type (MVT) Ore Deposits. Geochimica et Cosmochimica Acta, 57(2): 417-427. https://doi.org/10.1016/0016-7037(93)90440-8 [43] Ohmoto, H., Rye, R.O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits(2nd Edition). John Wiley and Sons, New York, 509-567. [44] Qiu, Y. X., Zhang, Y.C., Ma, W.P., 1998. Tectonics and Geological Evolution of Xuefeng Intra-Continental Orogene, South China. Geological Journal of China Universities, 4(4): 432-443 (in Chinese with English abstract). http://www.cqvip.com/QK/90539X/19984/3337666.html [45] Roedder, E., Bodnar, R.J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8(1): 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403 [46] Rui, Z.Y., Ye, J.H., Zhang, L.S., et al., 2004. Pb-Zn Deposits on the Perimeter of the Yangtze Craton and on the Margins of Its Uplifts. Geology in China, 31(4): 337-346 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200404000.htm [47] Schneider, J., Boni, M., Lapponi, F., et al., 2002. Carbonate-Hosted Zinc-Lead Deposits in the Lower Cambrian of Hunan, South China: A Radiogenic (Pb, Sr) Isotope Study. Economic Geology, 97(8): 1815-1827. https://doi.org/10.2113/gsecongeo.97.8.1815 [48] Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173364 [49] Shu, L.S., Zhou, X.M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004 [50] Spangenberg, J., Fontboté, L., Sharp, Z. D., et al., 1996. Carbon and Oxygen Isotope Study of Hydrothermal Carbonates in the Zinc-Lead Deposits of the San Vicente District, Central Peru: A Quantitative Modeling on Mixing Processes and CO2 Degassing. Chemical Geology, 133(1-4): 289-315. https://doi.org/10.1016/s0009-2541(96)00106-4 [51] Tan, J. J., Liu, C. P., Yang, H. M., et al., 2018. Geochronology and Ore-Forming Material Source Constraints for Rouxianshan Pb-Zn Deposit in Huayuan Ore Concentration Area, Western Hunan. Earth Science, 43(7): 2438-2448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807018.htm [52] Tang, Z.Y., Deng, F., Li, K., et al., 2012. Stratigraphic Characteristics of the Cambrian Qingxudong Formation in Relation to Lead-Zinc Mineralization in Western Hunan-Eastern Guizhou Area. Geology in China, 39(4): 1034-1041 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi201204019 [53] Wang, H.Y., 1993. Geochemistry of Pb-Zn Mineralization in Guizhou. Guizhou Geology, 10(4): 272-290 (in Chinese with English abstract). [54] Wang, H.Y., 1996. A Genetic Model for Mineralization of the Zinc-Lead Belts in Eastern Guizhou. Guizhou Geology, 13(1): 7-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ601.002.htm [55] Wang, J., Duan, T.Z., Xie, Y., et al., 2012. The Tectonic Evolution and Its Oil and Gas Prospect of Southeast Margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201211002.htm [56] Wang, J.Z., Li, C.Y., Li, Z.Q., et al., 2002. The Comparison of Mississippi Valley-Type Lead-Zinc Deposits in Southwest of China and in Mid-Continent of United States. Bulletin of Mineralogy, Petrology and Geochemistry, 21(2): 127-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200202011.htm [57] Wang, K.N., 2009. Geological Characters and Causation of Multi- Element Concentration Stratum of Black Rock Series, Lower Cambrian Series in Hunan and Guizhou. Guizhou Geology, 26(2): 106-111, 140 (in Chinese with English abstract). http://www.cqvip.com/QK/91769X/20092/31370147.html [58] Wang, X.Z., Liang, H.Y., Cheng, J.P., 2000. Main Characteristics of Caledonian Gold Deposits in South China. Mineral Deposits, 19(1): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200001000.htm [59] Wang, Z.G., Zhang, Z.X., 1991. A Computer Program for Calculating Physicochemical Parametres of Mineral Compositions of Inclusions. Geology and Prospecting, 27(7): 22-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199107004.htm [60] Wei, H. T., Shao, Y. J., Xiong, Y.T., et al., 2017. Metallogenic Model of Huayuan Pb-Zn Ore Field in the Western Hunan Province, South China. Journal of Central South University (Science and Technology), 48(9): 2402-2413 (in Chinese with English abstrct). [61] Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas Souring by Thermochemical Sulfate Reduction at 140 ℃. American Association of Petroleum Geologists Bulletin, 79(6): 854-863. http://www.researchgate.net/publication/239867007_Gas_souring_by_thermochemical_sulfate_reduction_at_140C [62] Xia, X.J., Shu, J.W., 1995. Geologic Characteristics and Origin of the Limei Zinc Sulfide Deposit. Geotectonica et Metallogenia, 19(3): 197-204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK503.001.htm [63] Xia, X.J., Fu, S.Y., 2010. Mineralization Pattern of North Western Hunan Lead-Zinc Mine. Nonferrous Metals (Mining Section), 62(2): 35-38 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKU201002011.htm [64] Xue, H.M., Ma, F., Song, Y.Q., 2012. Mafic-Ultramafic Rocks from the Fanjingshan Region, Southwestern Margin of the Jiangnan Orogenic Belt: Ages, Geochemical Characteristics and Tectonic Setting. Acta Petrologica Sinica, 28(9): 3015-3030 (in Chinese with English abstract). http://www.oalib.com/paper/1474713 [65] Yan, D.P., Qiu, L., Chen, F., et al., 2018. Structural Style and Kinematics of the Mesozoic Xuefengshan Intraplate Orogenic Belt, South China Block. Earth Science Frontiers, 25(1): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201801002.htm [66] Yang, H.M., Liu, C.P., Duan, R.C., et al., 2015. Rb-Sr and Sm-Nd Isochron Ages of Bokouchang Pb-Zn Deposit in Tongren, Guizhou Province and Their Geological Implication. Geotectonica et Metallogenia, 39(5): 855-865 (in Chinese with English abstract). [67] Yang, S.X., Lao, K.T., 2007. A Tentative Discussion on Genesis of Lead-Zinc Deposits in Northwest Hunan. Mineral Deposits, 26(3): 330-340 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200703009.htm [68] Yang, S.X., Yu, P.R., Lao, K.T., 2006. The Metallogenic Regularity and Prospecting Orientations of Pb-Zn Deposits in Northwestern Hunan Province. Land & Resources Herald, 3(3): 92-98 (in Chinese). [69] Ye, L., Liu, T. G., Shao, S. X., 2000. Geochemistry of Mineralizing Fluid of Cd-Rich Zinc Deposit: Taking Niujiaotang Cd-Rich Zinc Deposit, Duyun, Guizhou for Example. Geochimica, 29(6): 597-603 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200006012.htm [70] Ye, L., Pan, Z. P., Li, C. Y., et al., 2005. Isotopic Geochemical Characters in Niujiaotang Cd Rich Zinc Deposit, Duyun, Guizhou. Journal of Mineralogy and Petrology, 25(2): 70-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200502012.htm [71] Yin, F. G., Xu, X. S., Wan, F., et al., 2002. Characteristic of Seqence and Stratigraphical Division in Evolution of Upper Yangtze Region during Caledonian. Journal of Stratigraphy, 26(4): 315-319 (in Chinese with English abstract). http://www.researchgate.net/publication/284848834_Characteristic_of_sequence_and_stratigraphical_division_in_evolution_of_Upper_Yangtze_region_during_Caledonian [72] Yu, Y. S., Guo, F. S., Dai, P. Y., et al., 2017a. Ore Genesis of Tangbian Pb-Zn Deposit in Tongren, Guizhou: Evidence from Ore-Forming Fluids and Isotopes. Mineral Deposits, 36(2): 330-344 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201702006.htm [73] Yu, Y. S., Liu, A.S., Dai, P. Y., et al., 2017b. The Metallogenic Epoch and Ore-Forming Material Source of the Tangbian Pb-Zn Deposit in Tongren, Guizhou Province: Evidence from Rb-Sr Dating of Sphalerites and S-Pb Isotope. Geological Bulletin of China, 36(5): 885-892 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201705021.htm [74] Zartman, R. E., Doe, B. R., 1981. Plumbotectonics: The Model. Tectonophysics, 75 (1-2): 135-162. doi: 10.1016/0040-1951(81)90213-4 [75] Zhang, C. Q., Yu, J. J., Mao, J. W., et al., 2009. Advances in the Study of Mississippi Valley-Type Deposits. Mineral Deposits, 28(2): 195-210 (in Chinese with English abstract). [76] Zheng, Y. F., 2001. Theoretical Modeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydrothermal Ore Deposits. Mineral Deposits, 20(1): 57-70, 85 (in Chinese with English abstract). http://www.researchgate.net/publication/284044417_Theoretical_modeling_of_stable_isotope_systems_and_its_applications_to_geochemistry_of_hydrothermal_ore_deposits [77] Zhou, Y., Duan, Q. F., Chen, Y. C., et al., 2016. C, O, H, S, Pb and Sr Isotope Constraints on the Metals Sources of Huayuan Pb-Zn Deposits in Western Hunan. Acta Geologica Sinica, 90(10): 2786-2802 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201610018&dbcode=CJFD&year=2016&dflag=pdfdown [78] Zhou, Y., Duan, Q.F., Cao, L., et al., 2018. Microthermometry and Characteristic Elements Determination of the Fluid Inclusions of the Huayuan Lead-Zinc Deposit in Western Hunan. Earth Science, 43(7): 2465-2483 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807020.htm [79] Zhu, X.Q., Wang, G.L., Lu, H.Z., et al., 2006. Determination of the Age of Gold Deposits in Southeastern Guizhou: With a Disscussion of the Caledonian Hunan-Guizhou Gold Ore Belt. Geology in China, 33(5): 1092-1099 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200605020.htm [80] 蔡应雄, 杨红梅, 段瑞春, 等, 2014. 湘西—黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征. 现代地质, 28(1): 29-41. doi: 10.3969/j.issn.1000-8527.2014.01.003 [81] 曹亮, 段其发, 彭三国, 等, 2013. 扬子型铅锌矿的成矿特征及找矿进展. 华南地质与矿产, 29(4): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201304007.htm [82] 陈明辉, 胡祥昭, 鲍振襄, 等, 2011. 湖南渔塘铅锌矿集中区地质特征及成矿问题讨论. 地质与勘探, 47(2): 251-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102017.htm [83] 邓新, 杨坤光, 刘彦良, 等, 2010. 黔中隆起性质及其构造演化. 地学前缘, 17(3): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003009.htm [84] 段其发, 2014. 湘西-鄂西地区震旦系-寒武系层控铅锌矿成矿规律研究(博士学位论文). 武汉: 中国地质大学(武汉). [85] 段其发, 曹亮, 曾健康, 等, 2014. 湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义. 地球科学, 39(8): 977-986, 999. doi: 10.3799/dqkx.2014.089 [86] 付胜云, 2011. 湘西铅锌矿富矿成矿规律探讨. 有色金属(矿山部分), 63(6): 27-35. doi: 10.3969/j.issn.1671-4172.2011.06.007 [87] 谷团, 2017. 牛角塘伴生型镉矿床特殊的成矿环境. 吉林大学学报(地球科学版), 47(2): 464-476. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201702013.htm [88] 胡召齐, 2011. 上扬子地区北部构造演化与热年代学研究(博士学位论文). 合肥: 合肥工业大学. [89] 胡召齐, 朱光, 张必龙, 等. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490-500. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201004003.htm [90] 金灿海, 张玙, 张达, 等. 2014. 贵州都匀牛角塘铅锌矿床成矿模式. 矿床地质, 33(S1): 699-700. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1352.htm [91] 李堃, 2018. 湘西-黔东地区铅锌矿床成矿模式与成矿预测(博士学位论文). 武汉: 中国地质大学(武汉). [92] 李堃, 吴昌雄, 汤朝阳, 等, 2014. 湘西黔东地区铅锌矿床C、O同位素地球化学特征及其对成矿过程的指示. 中国地质, 41(5): 1608-1619. doi: 10.3969/j.issn.1000-3657.2014.05.016 [93] 李堃, 段其发, 赵少瑞, 等, 2017. 湖南花垣铅锌矿床成矿物质来源与成矿机制: 来自S、Pb、Sr同位素的证据. 地质通报, 36(5): 811-822. doi: 10.3969/j.issn.1671-2552.2017.05.013 [94] 李堃, 赵少瑞, 汤朝阳, 等, 2018a. 湘西北花垣矿集区铅锌矿床成矿流体来源及矿床成因. 地球科学, 43(7): 2449-2464. doi: 10.3799/dqkx.2018.554 [95] 李堃, 汤朝阳, 刘劲松, 等, 2018b. 黔东松桃嗅脑铅锌矿床成矿物质来源: 稀土元素与碳、氧、硫、铅同位素制约. 桂林理工大学学报, 38(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201803001.htm [96] 李宗发, 1991. 湘西黔东地区铅锌矿成因初步探讨. 贵州地质, 8(4): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199104010.htm [97] 廖震文, 王生伟, 孙晓明, 等, 2015. 黔东北地区MVT型铅锌矿床闪锌矿Rb-Sr定年及其地质意义. 矿床地质, 34(4): 769-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504008.htm [98] 刘宝珺, 王剑, 1989. 一个与生物丘有关的成岩成矿模式. 四川地质学报, 9(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB198901003.htm [99] 刘建明, 刘家军, 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式. 矿物学报, 17(4): 448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012 [100] 刘建明, 赵善仁, 沈洁, 等, 1998. 成矿流体活动的同位素定年方法评述. 地球物理学进展, 13(3): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.004.htm [101] 刘劲松, 邹先武, 汤朝阳, 等, 2012. 湘西黔东地区铅锌矿床与古油藏关系初探. 华南地质与矿床, 28(3): 220-225. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201203005.htm [102] 刘文均, 郑荣才, 李元林, 等, 1999. 花垣铅锌矿床中沥青的初步研究: MVT铅锌矿床有机地化研究(Ⅰ). 沉积学报, 17(1): 19-23. doi: 10.3969/j.issn.1000-0550.1999.01.003 [103] 刘文均, 卢家烂, 2000. 湘西下寒武统有机地化特征: MVT铅锌矿床有机成矿作用研究(Ⅲ). 沉积学报, 18(2): 290-296. doi: 10.3969/j.issn.1000-0550.2000.02.021 [104] 刘文均, 郑荣才, 2000. 花垣铅锌矿床成矿流体特征及动态. 矿床地质, 19(2): 173-181. doi: 10.3969/j.issn.0258-7106.2000.02.009 [105] 刘英超, 侯增谦, 杨竹森, 等, 2008. 密西西比河谷型(MVT)铅锌矿床: 认识与进展. 矿床地质, 27(2): 253-264. doi: 10.3969/j.issn.0258-7106.2008.02.010 [106] 罗卫, 尹展, 孔令, 等, 2009. 花垣李梅铅锌矿集区地质特征及矿床成因探讨. 地质调查与研究, 33(3): 194-202. doi: 10.3969/j.issn.1672-4135.2009.03.005 [107] 毛党龙, 2016. 湖南省花垣县大脑坡铅锌矿地质特征及成因. 现代矿业, 32(2): 90-94, 97. doi: 10.3969/j.issn.1674-6082.2016.02.028 [108] 丘元禧, 张渝昌, 马文璞, 1998. 雪峰山陆内造山带的构造特征与演化. 高校地质学报, 4(4): 432-443. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX804.007.htm [109] 芮宗瑶, 叶锦华, 张立生, 等, 2004. 扬子克拉通周边及其隆起边缘的铅锌矿床. 中国地质, 31(4): 337-346. doi: 10.3969/j.issn.1000-3657.2004.04.001 [110] 舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 [111] 谭娟娟, 刘重芃, 杨红梅, 等, 2018. 湘西花垣矿集区柔先山铅锌矿床的成矿时间和物质来源. 地球科学, 43(7): 2438-2448. doi: 10.3799/dqkx.2018.132 [112] 汤朝阳, 邓峰, 李堃, 等, 2012. 湘西-黔东地区寒武系清虚洞组地层特征与铅锌成矿关系. 中国地质, 39(4): 1034-1041. doi: 10.3969/j.issn.1000-3657.2012.04.019 [113] 王华云, 1993. 贵州铅锌矿的地球化学特征. 贵州地质, 10(4): 272-290. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199304001.htm [114] 王华云, 1996. 黔东铅锌矿的成矿规律及成矿模式. 贵州地质, 13(1): 7-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ601.002.htm [115] 王剑, 段太忠, 谢渊, 等, 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. doi: 10.3969/j.issn.1671-2552.2012.11.001 [116] 王奖臻, 李朝阳, 李泽琴, 等, 2002. 川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比. 矿物岩石地球化学通报, 21(2): 127-132. doi: 10.3969/j.issn.1007-2802.2002.02.011 [117] 王康年, 2009. 湘黔下寒武统黑色岩系"多元素富集层"地质特征及成因探讨. 贵州地质, 26(2): 106-111. doi: 10.3969/j.issn.1000-5943.2009.02.006 [118] 王秀璋, 梁华英, 程景平, 2000. 华南加里东期金矿床的基本特征. 矿床地质, 19(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200001000.htm [119] 王真光, 张姿旭, 1991. 矿物包裹体成分物理化学参数的计算程序. 地质与勘探, 27(7): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199107004.htm [120] 隗含涛, 邵拥军, 熊伊曲, 等, 2017. 湘西花垣铅锌矿田成矿模式. 中南大学学报(自然科学版), 48(9): 2402-2413. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201709020.htm [121] 夏新阶, 舒见闻, 1995. 李梅锌矿床地质特征及其成因. 大地构造与成矿学, 19(3): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK503.001.htm [122] 夏新阶, 付胜云, 2010. 湘西北铅锌矿床成矿模式. 有色金属(矿山部分), 62(2): 35-38. doi: 10.3969/j.issn.1671-4172.2010.02.010 [123] 薛怀民, 马芳, 宋永勤, 2012. 江南造山带西南段梵净山地区镁铁质-超镁铁质岩: 形成时代、地球化学特征与构造环境. 岩石学报, 28(9): 3015-3030. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209027.htm [124] 颜丹平, 邱亮, 陈峰, 等, 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801002.htm [125] 杨红梅, 刘重芃, 段瑞春, 等, 2015. 贵州铜仁卜口场铅锌矿床Rb-Sr与Sm-Nd同位素年龄及其地质意义. 大地构造与成矿学, 39(5): 855-865. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201505009.htm [126] 杨绍祥, 劳可通, 2007. 湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析. 矿床地质, 26(3): 330-340. doi: 10.3969/j.issn.0258-7106.2007.03.010 [127] 杨绍祥, 余沛然, 劳可通, 2006. 湘西北地区铅锌矿床成矿规律及找矿方向. 国土资源导刊, 3(3): 92-98. doi: 10.3969/j.issn.1672-5603.2006.03.025 [128] 叶霖, 刘铁庚, 邵树勋, 2000. 富镉锌矿成矿流体地球化学研究: 以贵州都匀牛角塘富镉锌矿为例. 地球化学, 29(6): 597-603. doi: 10.3321/j.issn:0379-1726.2000.06.013 [129] 叶霖, 潘自平, 李朝阳, 等, 2005. 贵州都匀牛角塘富镉锌矿同位素地球化学研究. 矿物岩石, 25(2): 70-74. doi: 10.3969/j.issn.1001-6872.2005.02.012 [130] 尹福光, 许效松, 万方, 等, 2002. 加里东期上扬子区前陆盆地演化过程中的层序特征与地层划分. 地层学杂志, 26(4): 315-319. doi: 10.3969/j.issn.0253-4959.2002.04.013 [131] 于玉帅, 郭福生, 戴平云, 等, 2017a. 贵州铜仁塘边铅锌矿床成因的流体包裹体和同位素证据. 矿床地质, 36(2): 330-344. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201702006.htm [132] 于玉帅, 刘阿睢, 戴平云, 等, 2017b. 贵州铜仁塘边铅锌矿床成矿时代和成矿物质来源: 来自Rb-Sr同位素测年和S-Pb同位素的证据. 地质通报, 36(5): 885-892. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201705021.htm [133] 张长青, 余金杰, 毛景文, 等, 2009. 密西西比型(MVT)铅锌矿床研究进展. 矿床地质, 28(2): 195-210. doi: 10.3969/j.issn.0258-7106.2009.02.008 [134] 郑永飞, 2001. 稳定同位素体系理论模式及其矿床地球化学应用. 矿床地质, 20(1): 57-70, 85. doi: 10.3969/j.issn.0258-7106.2001.01.007 [135] 周云, 段其发, 陈毓川, 等, 2016. 湘西花垣铅锌矿田成矿物质来源的C、O、H、S、Pb、Sr同位素制约. 地质学报, 90(10): 2786-2802. doi: 10.3969/j.issn.0001-5717.2016.10.017 [136] 周云, 段其发, 曹亮, 等, 2018. 湘西花垣地区铅锌矿床流体包裹体显微测温与特征元素测定. 地球科学, 43(7): 2465-2483. doi: 10.3799/dqkx.2018.520 [137] 朱笑青, 王甘露, 卢焕章, 等, 2006. 黔东南金矿形成时代的确定——兼论湘黔加里东金矿带. 中国地质, 33(5): 1092-1099. doi: 10.3969/j.issn.1000-3657.2006.05.019