Lithofacies and Origin Evolution of Mudstone of Shetianqiao Formation in Shaoyang Sag of Xiangzhong Depression
-
摘要: 泥盆系佘田桥组泥岩是南方页岩气勘探重点层位之一.为揭示湘中坳陷邵阳凹陷佘田桥组泥岩岩相特征及其发育控制因素,基于系统岩心描述、矿物组分和地球化学采样及测试,对邵阳凹陷佘田桥组泥岩岩相类型、沉积环境特征及其对岩相发育的控制进行了研究,探讨沉积环境演化对岩相类型发育的控制作用.结果表明,佘田桥组泥岩依据矿物组分含量主要识别出硅质泥岩、混合质泥岩、硅质岩、钙质泥岩4种岩相类型,进一步垂向上可划分为5个岩相组合段.岩相组合段Ⅰ和Ⅲ相对富硅质,而组合段Ⅱ、Ⅳ和Ⅴ钙质含量相对较高.沉积环境分析表明佘田桥组泥岩形成于大陆边缘背景;主要处于相对干热气候条件,其中在早期和中期发育相对温湿气候,中期时相对最为温暖潮湿;海平面先上升后下降;中段泥岩中具有过量硅富集特征,主要为生物成因,而受热液作用影响较小;陆源碎屑输入相对较为稳定,在中期时相对最低.沉积环境演化和岩相发育之间的响应关系表明,岩相的发育主要受到古气候、陆源碎屑供给、海平面变化和生物作用等的综合控制,泥岩硅质组分主要来自陆源碎屑输入,生物作用富硅造成了中段硅质富集,而后期当气候向干热转化时,钙质组分增加,泥岩岩相向富钙方向演化.Abstract: The mudstone of the Devonian Shetianqiao Formation is one of the key strata for shale gas exploration in South China. In order to reveal the lithofacies characteristics and controlling factors of Shetianqiao Formation in Shaoyang sag of Xiangzhong depression, the lithofacies, sedimentary environment and its control on lithofacies development of mudstone were studied on the basis of systematical core description and test results of mineralogy and geochemistry, and the control of sedimentary environment evolution on lithofacies type is discussed in this study. Four lithofacies are identified, including siliceous mudstone, mixed mudstone, chert and calcareous mudstone, according to the differences of mineral component content. The Shetianqiao Formation can be divided into 5 lithofacies assemblages. Lithofacies assemblages Ⅰ and Ⅲ are relatively rich in silica, while the content of calcite in assemblages Ⅱ, Ⅳ, and Ⅴ is relatively high. The sedimentary environment analysis indicates that the mudstone of Shetianqiao Formation was formed at the continental margin setting. It was mainly developed in a relatively hot and dry climate, but the climate was relatively warm and humid in the early and middle stages. The middle stage developed the warmest and wettest climate. And the sea levels rose first and then fell in this period. The middle section is characterized by excess silica attributed to the biological origin and little influence by hydrothermal fluids. Terrestrial input was relatively stable and was the lowest in the middle stage. The coupling relationship between sedimentary environment and lithofacies types indicates that the lithofacies are mainly controlled by paleoclimate, terrestrial input, change in sea level, and biological origin. The siliceous components of mudstone are mainly contributed by the terrestrial input. The enriched silica in the middle section is mainly of biological origin. When the climate was hot and dry, the mudstone lithofacies was dominated by the calcium-riched lithofacies in the later period.
-
Key words:
- Xiangzhong depression /
- Shaoyang sag /
- Shetianqiao Formation /
- mudstone /
- lithofacies /
- sedimentary environment /
- petrography
-
图 9 湘中坳陷邵阳凹陷佘田桥组沉积演化模式(岩性柱状图图例参见图 2)
Fig. 9. Sedimentary evolution model of the Shetianqiao Formation in Shaoyang sag, Xiangzhong depression
表 1 主要岩相类型矿物组分统计
Table 1. Statistics of mineral components of main lithofacies types
岩相类型 占比(%) 硅质矿物含量(%) 碳酸盐矿物含量(%) 粘土矿物含量(%) 类 亚类 硅质类泥岩 硅质岩 15.6 76.0~85.8/79.8 6.4~14.2/9.8 0.1~17.1/10.4 硅质泥岩 65.6 50.9~74.6/62.3 3.2~32.7/17.7 11.3~30.7/20.0 混合类泥岩 混合质泥岩 15.7 39.1~44.8/41.4 27.0~39.9/35.3 17.4~33.8/23.4 钙质类泥岩 钙质泥岩 3.1 26.7/26.7 53.8/53.8 19.6/19.6 -
[1] Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8 [2] Armstrong-Altrin, J.S., Machain-Castillo, M.L., 2016. Mineralogy, Geochemistry, and Radiocarbon Ages of Deep Sea Sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71: 182-200. https://doi.org/10.1016/j.jsames.2016.07.010 [3] Bao, S.J., Lin, T., Nie, H.K., et al., 2016. Preliminary Study of the Transitional Facies Shale Gas Reservoir Characteristics: Taking Permian in the Xiangzhong Depression as an Example. Earth Science Frontiers, 23(1): 44-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201601006.htm [4] Cao, T.T., Liu, G.X., Cao, Q.G., et al., 2018. Influence of Maceral Composition on Organic Pore Development in Shale: A Case Study of Transitional Longtan Formation Shale in Eastern Sichuan Basin. Oil & Gas Geology, 39(1): 40-53 (in Chinese with English abstract). http://www.researchgate.net/publication/325533952_Influence_of_maceral_composition_on_organic_pore_development_in_shale_A_case_study_of_transitional_Longtan_Formation_shale_in_eastern_Sichuan_Basin [5] Chen, L., Chen, X.H., Zhang, B.M., et al., 2020. Provenance and Palaeoenvironment of Upper Devonian Shetianqiao Formation Mudstones in Shaoyang Sag, Xiangzhong Depression, Central China. Geological Journal, 55(1): 934-948. https://doi.org/10.1002/gj.3464 [6] Chen, L., Jiang, Z.X., Liu, K.Y., et al., 2016. Effect of Lithofacies on Gas Storage Capacity of Marine and Continental Shales in the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 36: 773-785. https://doi.org/10.1016/j.jngse.2016.11.024 [7] Chen, L., Lu, Y.C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232-246. https://doi.org/10.1016/j.marpetgeo.2015.04.003 [8] Dong, T., Harris, N.B., Ayranci, K., 2018. Relative Sea-Level Cycles and Organic Matter Accumulation in Shales of the Middle and Upper Devonian Horn River Group, Northeastern British Columbia, Canada: Insights into Sediment Flux, Redox Conditions, and Bioproductivity. GSA Bulletin, 130(5-6): 859-880. https://doi.org/10.1130/b31851.1 [9] He, Z.W., Yang, R.D., Gao, J.B., et al., 2014. The Geochemical Characteristics and Sedimentary Environment of Manganese-Bearing Rock Series of Daotuo Manganese Deposit, Songtao County of Guizhou Province. Geological Review, 60(5): 1061-1075 (in Chinese with English abstract). http://www.researchgate.net/publication/292021634_The_geochemical_characteristics_and_sedimentary_environment_of_manganese-bearing_rock_series_of_Daotuo_manganese_deposit_Songtao_County_of_Guizhou_Province/download [10] Hou, G.J., 1998. Discussion on the Tectonic Nature of Jiangnan Ancient Land: Evidence from the Features of the Banxi Group in Madiyi Area, Hunan Province. Geological Science and Technology Information, 17(3): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ803.000.htm [11] Jia, C.Z., Zheng, M., Zhang, Y.F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). [12] Jing, L., Pan, J.P., Xu, G.S., et al., 2012. Lithofacies-Paleogeography Characteristics of the Marine Shale Series of Strata in the Xiangzhong Depression, Hunan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 215-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201202016.htm [13] Lash, G.G., Blood, D.R., 2014. Organic Matter Accumulation, Redox, and Diagenetic History of the Marcellus Formation, Southwestern Pennsylvania, Appalachian Basin. Marine and Petroleum Geology, 57: 244-263. https://doi.org/10.1016/j.marpetgeo.2014.06.001 [14] Liang, W.J., Xiao, C.T., Xiao, K., et al., 2015. The Relationship of Late Jurassic Paleoenvironment and Paleoclimate with Geochemical Elements in Amdo County of Northern Tibet. Geology in China, 42(4): 1079-1091 (in Chinese with English abstract). http://www.researchgate.net/publication/285219207_The_relationship_of_Late_Jurassic_paleoenvironment_and_paleoclimate_with_geochemical_elements_in_Amdo_Country_of_northern_Tibet [15] Liu, B., Shi, J.X., Fu, X.F., et al., 2018. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System: A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 828-838 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=PEAD201805009 [16] Loucks, R.G., Ruppel, S.C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 [17] Lu, Y.B., Ma, Y.Q., Wang, Y.X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm [18] Luo, X.P., Liu, J., Xu, G.S., et al., 2012. Geochemical Characteristics and Isothermal Adsorption Properties of the Devonian-Carboniferous Marine Mud Shale in the Xiangzhong Depression, Hunan, China. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 39(2): 206-214 (in Chinese with English abstract). http://www.researchgate.net/publication/279691358_Geochemical_characteristics_and_isothermal_adsorption_properties_of_the_Devonian-Carboniferous_marine_mud_shale_in_the_Xiangzhong_depression_Hunan_China [19] Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016. Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China: Implications for Depositional Controls on Organic Matter Accumulation. Marine and Petroleum Geology, 75: 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024 [20] Qian, J., Ma, R.L., Bu, S.F., et al., 2013. Lithofacies-Paleogeographical Characteristics of Marine Shale Series of Strata in Xiangzhong and Xiangdongnan Depressions, Hunan. Journal of Chengdu University of Technology(Science & Technology Edition), 40(6): 688-695 (in Chinese with English abstract). [21] Ren, G.M., Wang, P., Zhang, L.K., et al., 2011. Discussion on Geochemical Characteristics and Sedimentary Envi-Ronment of the Fransnian Radiolarian Chert in South-Eastern Yunnan. Geological Review, 57(4): 505-514 (in Chinese with English abstract). [22] Ross, D.J.K., Bustin, R.M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048 [23] Ross, D.J.K., Bustin, R.M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1-2): 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027 [24] Slatt, R.M., Rodriguez, N.D., 2012. Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales: Commonality or Coincidence? Journal of Natural Gas Science and Engineering, 8(8): 68-84. https://doi.org/10.1016/j.jngse.2012.01.008 [25] Tang, X.L., Jiang, Z.X., Huang, H.X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338-346. https://doi.org/10.1016/j.jngse.2015.12.026 [26] Tian, W., Wang, C.S., Bai, Y.S., et al., 2019a. Shale Geochemical Characteristics and Enrichment Mechanism of Organic Matter of the Upper Devonian Shetianqiao Formation Shale in Lianyuan Sag, Central Hunan. Earth Science, 44(11): 3794-3811 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911019.htm [27] Tian, W., Peng, Z.Q., Bai, Y.S., et al., 2019b. Reservoir Characteristics and Exploration Potential of Lower Carboniferous Shale Gas in Lianyuan Sag, Central Hunan. Earth Science, 44(3): 939-952 (in Chinese with English abstract). http://www.researchgate.net/publication/333043205_Reservoir_Characteristics_and_Exploration_Potential_of_Lower_Carboniferous_Shale_Gas_in_Lianyuan_Sag_Central_Hunan [28] Wang, G.C., Carr, T.R., 2013. Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin. AAPG Bulletin, 97(12): 2173-2205. https://doi.org/10.1306/05141312135 [29] Wang, S.F., Zou, C.N., Dong, D.Z., et al., 2014. Biogenic Silica of Organic-Rich Shale in Sichuan Basin and Its Significance for Shale Gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476-486 (in Chinese with English abstract). http://www.researchgate.net/publication/282495102_Biogenic_silica_of_organic-rich_shale_in_Sichuan_Basin_and_its_significance_for_shale_gas [30] Wang, S.H., Zhang, G.D., Zhang, J.S., et al., 2007. Geochemical Studies on Rb and Sr in the Mud on the Inner Shelf of the East China Sea and Their Palaeoclimatic Significance. Science Technology Review, 25(3): 22-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB200703005.htm [31] Wang, Y.M., Wang, S.F., Dong, D.Z., 2016. Lithofacies Characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan. Earth Science Frontiers, 23(1): 119-133 (in Chinese with English abstract). http://www.researchgate.net/publication/303496430_Lithofacies_characterization_of_Longmaxi_Formation_of_the_Lower_Silurian_southern_Sichuan [32] Wang, Z.G., 2015. Breakthrough of Fuling Shale Gas Exploration and Development and Its Inspiration. Oil & Gas Geology, 36(1): 1-6 (in Chinese with English abstract). [33] Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016. Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 189-197 (in Chinese with English abstract). [34] Wu, L.Y., Lu, Y.C., Jiang, S., et al., 2018. Effects of Volcanic Activities in Ordovician Wufeng–Silurian Longmaxi Period on Organic-Rich Shale in the Upper Yangtze Area, South China. Petroleum Exploration and Development, 45(5): 806-816 (in Chinese with English abstract). [35] Xiang, L., Cai, C.F., He, X.Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971-980 (in Chinese with English abstract). http://www.oalib.com/paper/1474863 [36] Xie, S.C., Huang, X.Y., Yang, H., et al., 2013. An Overview on Microbial Proxies for the Reconstruction of Past Global Environmental Change. Quaternary Sciences, 33(1): 1-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201301003.htm [37] Xu, F.H., Qian, J., Yuan, H.F., et al., 2015. Sedimentary Mode and Reservoir Properties of Mud Shale Series of Strata in Xiangzhong-Xiangdongnan Depression, Hunan, China. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 42(1): 80-89 (in Chinese with English abstract). http://www.researchgate.net/publication/282289254_Sedimentary_mode_and_reservoir_properties_of_mud_shale_series_of_strata_in_Xiangzhong-Xiangdongnan_depression_Hunan_China [38] Yang, R.C., Li, J.B., Fan, A.P., et al., 2013. Research Progress and Development Tendency of Provenance Analysis on Terrigenous Sedimentary Rocks. Acta Sedimentologica Sinica, 31(1): 99-107 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB201301012.htm [39] Yi, J.Z., Bao, H.Y., Zheng, A.W., et al., 2019. Main Factors Controlling Marine Shale Gas Enrichment and High-Yield Wells in South China: A Case Study of the Fuling Shale Gas Field. Marine and Petroleum Geology, 103: 114-125. https://doi.org/10.1016/j.marpetgeo.2019.01.024 [40] Zhu, G.Y., Jin, Q., 2002. Study on Source Rock Heterogeneity: A Case of Niu-38 Well in Dongying Depression. Acta Petrolei Sinica, 23(5): 34-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200205006.htm [41] 包书景, 林拓, 聂海宽, 等, 2016. 海陆过渡相页岩气成藏特征初探: 以湘中坳陷二叠系为例. 地学前缘, 23(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601006.htm [42] 曹涛涛, 刘光祥, 曹清古, 等, 2018. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例. 石油与天然气地质, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm [43] 何志威, 杨瑞东, 高军波, 等, 2014. 贵州松桃道坨锰矿含锰岩系地球化学特征和沉积环境分析. 地质论评, 60(5): 1061-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201405012.htm [44] 侯光久, 1998. 江南古陆的构造属性讨论——以湖南马底驿地区板溪群为例. 地质科技情报, 17(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ803.000.htm [45] 贾承造, 郑民, 张永峰, 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm [46] 敬乐, 潘继平, 徐国盛, 等, 2012. 湘中拗陷海相页岩层系岩相古地理特征. 成都理工大学学报(自然科学版), 39(2): 215-222. doi: 10.3969/j.issn.1671-9727.2012.02.015 [47] 梁文君, 肖传桃, 肖凯, 等, 2015. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究. 中国地质, 42(4): 1079-1091. doi: 10.3969/j.issn.1000-3657.2015.04.022 [48] 柳波, 石佳欣, 付晓飞, 等, 2018. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm [49] 陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095 [50] 罗小平, 刘军, 徐国盛, 等, 2012. 湘中拗陷泥盆-石炭系海相泥页岩地球化学特征及等温吸附性能. 成都理工大学学报(自然科学版), 39(2): 206-214. doi: 10.3969/j.issn.1671-9727.2012.02.014 [51] 钱劲, 马若龙, 步少峰, 等, 2013. 湘中、湘东南拗陷泥页岩层系岩相古地理特征. 成都理工大学学报(自然科学版), 40(6): 688-695. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201306008.htm [52] 任光明, 王鹏, 张林奎, 等, 2011. 滇东南弗拉斯期放射虫硅质岩地球化学特征及沉积环境探讨. 地质论评, 57(4): 505-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104006.htm [53] 田巍, 王传尚, 白云山, 等, 2019a. 湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理. 地球科学, 44 (11): 3794-3811. doi: 10.3799/dqkx.2019.156 [54] 田巍, 彭中勤, 白云山, 等, 2019b. 湘中涟源凹陷石炭系测水组页岩气成藏特征及勘探潜力. 地球科学, 44(3): 939-952. doi: 10.3799/dqkx.2018.291 [55] 王淑芳, 邹才能, 董大忠, 等, 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50(3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201403010.htm [56] 王顺华, 张国栋, 张纪双, 等, 2007. 东海内陆架泥质沉积Rb和Sr的地球化学及其古气候意义. 科技导报, 25(3): 22-27. doi: 10.3321/j.issn:1000-7857.2007.03.005 [57] 王玉满, 王淑芳, 董大忠, 2016. 川南下志留统龙马溪组页岩岩相表征. 地学前缘, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm [58] 王志刚, 2015. 涪陵页岩气勘探开发重大突破与启示. 石油与天然气地质, 36(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501002.htm [59] 吴蓝宇, 胡东风, 陆永潮, 等, 2016. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相. 石油勘探与开发, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm [60] 吴蓝宇, 陆永潮, 蒋恕, 等, 2018. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响. 石油勘探与开发, 45(5): 806-816. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805007.htm [61] 向雷, 蔡春芳, 贺训云, 等, 2012. 贵州渣拉沟剖面下寒武统黑色硅质岩微量元素富集机制. 岩石学报, 28(3): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203026.htm [62] 谢树成, 黄咸雨, 杨欢, 等, 2013. 示踪全球环境变化的微生物代用指标. 第四纪研究, 33(1): 1-18. doi: 10.3969/j.issn.1001-7410.2013.01.01 [63] 徐昉昊, 钱劲, 袁海锋, 等, 2015. 湘中-湘东南拗陷泥页岩层系沉积模式及储层特征. 成都理工大学学报(自然科学版), 42(1): 80-89. doi: 10.3969/j.issn.1671-9727.2015.01.10 [64] 杨仁超, 李进步, 樊爱萍, 等, 2013. 陆源沉积岩物源分析研究进展与发展趋势. 沉积学报, 31(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301012.htm [65] 朱光有, 金强, 2002. 烃源岩的非均质性研究——以东营凹陷牛38井为例. 石油学报, 23(5): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200205006.htm