Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of Jinjiling Pluton in Nanling
-
摘要: 对南岭九嶷山地区金鸡岭岩体开展LA-ICP-MS锆石U-Pb年代学研究,结果显示主体粗中粒似斑状正长花岗岩和补体细粒斑状二长花岗岩的成岩年龄分别为156.40±0.66 Ma、153.00±2.20 Ma;结合已有资料将二者的形成时代约束在(156.40±0.66)~(159.00±0.45)Ma与(146.00±0.86)~(153.0±2.2)Ma之间;确定其成岩年代同为燕山早期,也明确了两者的形成顺序.岩石地球化学研究表明,金鸡岭岩体整体具有富硅、碱,贫钙、镁,准铝-过铝质(A/KNC=0.97~1.14)等特点;主体岩性稀土含量较补体明显偏高,分别为488.63×10-6~571.67×10-6和166.33×10-6~275.51×10-6,(La/Yb)N分别为10.27~15.84、0.38~1.13;前者稀土元素配分曲线呈右倾轻稀土富集型,而后者则无明显轻、重稀土分馏;两类花岗岩的δEu值都很低,分别为0.049~0.063、0.003~0.007,为铕亏损型;分异指数(DI)为88.76~89.20、90.66~94.06,表明补体发生了更强的岩浆分异作用.金鸡岭岩体富集Rb、K、Th、U、Nd、Hf等大离子高场强元素,亏损Ba、Sr、P、Nb、Ti等元素;Ga/Al(×104)比值为3.32~5.02,平均3.50;Zr+Nb+Ce+Y为255.5×10-6~554.9×10-6,平均422.37×10-6;锆石饱和温度TZr=780.31~820.67℃,平均803.77℃;显示A型花岗岩地球化学属性.Sr、Nd、Hf同位素显示金鸡岭岩体具较高Sr同位素初始值(ISr=0.712 58~0.732 51),较低的εNd(t)(-6.2~-7.0)、εHf(t)(-4.2~-5.5)值特点;示踪其源区以地壳物质为主,无地幔/新生陆壳物质贡献;钕、铪二阶段模式年龄十分接近,分别为1 465~1 566 Ma和1 459~1 541 Ma,揭示其源岩从地幔储库中脱离的时间为中元古代.结合南岭地区地质演化史,推测金鸡岭岩体形成的大地构造背景为太平洋板块俯冲引起的陆内伸展环境.Abstract: A study of LA-ICP-MS zircon U-Pb dating for Jinjiling pluton from Jiuyishan area in Nanling granite belt was carried out. The results show that the diagenetic age of the main medium grained porphyritic syenite and the complement fine-grained porphyritic monzonite are 156.40±0.66 Ma and 153.00±2.20 Ma, respectively. Combined with the existing data, their ages are restricted between (156.40±0.66)-(159.00±0.45) Ma and (146.00±0.86)-(153.00±2.20) Ma, which indicates that the Jinjiling pluton was formed during the early Yanshanian. Geochemical data show that the Jinjiling pluton is characterized by enriched silicone-alkali, depleted calcium-magnesium and metal uminous-peraluminous (A/KNC=0.97-1.14). The content of rare earth elements of the main granite are significantly higher than those of the complement granites, which is 488.63×10-6-571.67×10-6and 166.33×10-6-275.51×10-6, respectively. The main granite is enriched in light rare earth elements (LREE), with the complement granite having no obvious fractionation, both of which show negative Eu anomalies and (La/Yb)N values ranging from 10.27 to 15.84 and 0.38 to 1.13, respectively. The differentiation index (DI) are 88.76-89.20, 90.66-94.06, which indicate that the complement granite has undergone stronger magmatic differentiation. The Jinjiling pluton is enriched in large ion lithophile elements (LILE, e.g., Rb, K, Th, U, Nd and Hf) and relatively depleted in high field strength elements (HFSEs, e.g., Ba, Sr, P, Nb and Ti), with Ga/Al(104) ratios of 3.32-5.02 (average 3.50), Zr+Nb+Ce+Y of 255.5×10-6-554.9×10-6(average 422.37×10-6) and zircon saturation temperatures TZr of 780.31-820.67℃ (average 803.77℃), similar to geochemical features of A-type granites. The Jinjiling pluton has higher initial Sr isotope values of 0.712 58 to 0.732 51, lower εNd(t) values of -6.2 to -7.0 and εHf(t) values of -4.2 to -5.5, revealing that the source area of the Jinjiling pluton is mainly composed of crustal materials, without any contributions from mantle or new continental crust materials. The model ages of Nd and Hf are relatively close, with 1 465-1 566 Ma and 1 459-1 541 Ma, respectively, suggesting that the source rocks were separated from the mantle reservoir during the Mesoproterozoic. Combined with the geological evolution of Nanling area, it is inferred that the tectonic background of Jinjiling pluton is an intracontinental extensional environment caused by subduction of Pacific plate.
-
Key words:
- A-type granite /
- zircon U-Pb dating /
- isotope geochemistry /
- tectonics /
- Jinjiling /
- Nanling
-
图 8 金鸡岭岩体10 000 Ga/Al vs. FeO/MgO(a)、10 000 Ga/Al vs. Ce(b)、10 000 Ga/Al vs. (Na2O+K2O)/CaO(c)及(Zr+Nb+Ce+Y) vs. FeO/MgO(d)、Nb-Y-Ce(e)及Nb-Y-Ga(f)判别图解(底图据Whalen et al., 1987)
Fig. 8. 10 000 Ga/Al vs. FeO/MgO (a), 10 000 Ga/Al vs. Ce (b), 10 000 Ga/Al vs. (Na2O+K2O)/CaO(c), (Zr+Nb+Ce+Y) vs. (FeO/MgO)(d), Nb-Y-Ce (e) and Nb-Y-Ga (f) discrimination diagrams of Jinjiling pluton (after Whalen et al., 1987)
表 1 研究区岩浆岩锆石LA-ICP-MS U-Pb定年数据
Table 1. LA-ICP-MS magmatite zircon U-Pb dating results in the study area
测点号 Th U Th/ U 同位素比值 207Pb/206U 207Pb/235U 206Pb/238U 207Pb/206 Pb σ 207Pb/235 U σ 206Pb/238 U σ 年龄(Ma) σ 年龄(Ma) σ 年龄(Ma) σ 12D56-2-01 331.4 1 262.2 0.26 0.0512 34 0.002 042 0.165 713 0.005 854 0.023 751 0.000 403 250.1 86.1 155.7 5.1 151.3 2.5 12D56-2-02 348.9 1 144.6 0.30 0.0529 89 0.002 650 0.173 539 0.009 556 0.023 592 0.000 540 327.8 114.8 162.5 8.3 150.3 3.4 12D56-2-03 466.2 726.3 0.64 0.0527 91 0.001 973 0.177 484 0.006 373 0.024 534 0.000 428 320.4 117.6 165.9 5.5 156.2 2.7 12D56-2-04 696.6 1 625.0 0.43 0.0499 11 0.001 351 0.168 398 0.004 307 0.024 644 0.000 312 190.8 63.0 158.0 3.7 156.9 2.0 12D56-2-05 810.3 2 291.7 0.35 0.0515 16 0.003 091 0.179 554 0.009 613 0.025 428 0.000 717 264.9 137.0 167.7 8.3 161.9 4.5 12D56-2-06 554.9 819.7 0.68 0.0527 64 0.002 192 0.175 790 0.007 601 0.024 341 0.000 414 320.4 94.4 164.4 6.6 155.0 2.6 12D56-2-07 528.3 1 506.3 0.35 0.0524 14 0.002 017 0.179 895 0.006 927 0.024 937 0.000 471 301.9 88.9 168.0 6.0 158.8 3.0 12D56-2-09 700.6 1 276.2 0.55 0.0508 77 0.002 424 0.171 105 0.007 680 0.024 449 0.000 510 235.3 111.1 160.4 6.7 155.7 3.2 12D56-2-10 737.8 1 510.1 0.49 0.0508 58 0.001 555 0.171 380 0.005 048 0.024 423 0.000 341 235.3 70.4 160.6 4.4 155.6 2.1 12D56-2-11 406.1 1 078.6 0.38 0.0499 25 0.002 000 0.171 161 0.006 766 0.024 758 0.000 396 190.8 94.4 160.4 5.9 157.7 2.5 12D56-2-12 395.0 626.6 0.63 0.0535 44 0.003 378 0.176 054 0.010 026 0.024 288 0.000 549 350.1 137.9 164.7 8.7 154.7 3.5 12D56-2-14 505.5 857.0 0.59 0.0506 81 0.002 504 0.175 414 0.008 464 0.025 199 0.000 573 233.4 117.6 164.1 7.3 160.4 3.6 12D56-2-15 590.3 1 392.1 0.42 0.0492 43 0.001 737 0.168 730 0.005 991 0.024 715 0.000 342 166.8 81.5 158.3 5.2 157.4 2.2 12D56-2-17 1 273.5 3 596.5 0.35 0.0519 77 0.001 555 0.176 082 0.004 844 0.024 456 0.000 357 283.4 68.5 164.7 4.2 155.8 2.2 12D56-2-19 813.9 2 644.4 0.31 0.0518 32 0.001 584 0.176 025 0.004 953 0.024 652 0.000 391 279.7 70.4 164.6 4.3 157.0 2.5 12D56-2-20 1 086.9 7 966.7 0.14 0.0502 25 0.002 059 0.173 817 0.006 009 0.024 937 0.000 404 205.6 96.3 162.7 5.2 158.8 2.5 17D35-01 336.9 613.1 0.55 0.0461 87 0.002 825 0.155 701 0.008 597 0.024 287 0.000 350 5.7 144.4 146.9 7.6 154.7 2.2 17D35-02 52.8 102.4 0.52 0.0471 12 0.006 481 0.152 120 0.014 984 0.024 112 0.000 733 53.8 300.0 143.8 13.2 153.6 4.6 17D35-03 324.1 477.2 0.68 0.0492 57 0.003 046 0.163 273 0.009 351 0.024 004 0.000 370 166.8 144.4 153.6 8.2 152.9 2.3 17D35-04 353.4 686.1 0.52 0.0486 68 0.003 555 0.164 264 0.012 365 0.024 090 0.000 311 131.6 162.9 154.4 10.8 153.5 2.0 17D35-05 971.5 1 577.3 0.62 0.0462 05 0.002 045 0.164 449 0.006 884 0.025 420 0.000 344 9.4 113.0 154.6 6.0 161.8 2.2 17D35-06 505.8 664.1 0.76 0.0466 26 0.002 826 0.155 546 0.008 633 0.024 115 0.000 394 31.6 137.0 146.8 7.6 153.6 2.5 17D35-07 492.8 862.1 0.57 0.0493 76 0.002 635 0.163 760 0.008 211 0.023 847 0.000 357 164.9 125.9 154.0 7.2 151.9 2.3 17D35-08 127.2 158.0 0.80 0.0511 12 0.005 670 0.158 945 0.014 781 0.023 115 0.000 590 255.6 227.8 149.8 13.0 147.3 3.7 17D35-09 339.1 383.3 0.88 0.0462 27 0.003 469 0.150 412 0.010 709 0.023 315 0.000 506 9.4 179.6 142.3 9.5 148.6 3.2 17D35-10 67.7 121.9 0.56 0.0531 61 0.006 103 0.163 952 0.015 894 0.023 387 0.000 647 344.5 261.1 154.2 13.9 149.0 4.1 17D35-11 48.7 85.6 0.57 0.0566 00 0.009 711 0.174 832 0.023 940 0.024 068 0.000 781 476.0 387.0 163.6 20.7 153.3 4.9 17D35-12 167.9 194.2 0.86 0.0498 86 0.004 321 0.165 135 0.013 311 0.023 396 0.000 463 190.8 198.1 155.2 11.6 149.1 2.9 17D35-13 68.2 116.4 0.59 0.0470 66 0.005 559 0.152 993 0.017 499 0.024 000 0.000 666 53.8 268.5 144.6 15.4 152.9 4.2 17D35-14 675.3 1 216.9 0.55 0.0516 17 0.003 006 0.179 100 0.010 464 0.024 703 0.000 410 333.4 135.2 167.3 9.0 157.3 2.6 17D35-15 81.6 146.2 0.56 0.0465 42 0.004 895 0.143 019 0.012 597 0.022 261 0.000 525 33.4 227.7 135.7 11.2 141.9 3.3 17D35-16 90.3 149.8 0.6 0.0494 53 0.005 396 0.157 529 0.013 580 0.024 356 0.000 650 168.6 237.0 148.5 11.9 155.1 4.1 17D35-17 122.2 200.8 0.61 0.0467 32 0.004 414 0.149 012 0.012 196 0.023 639 0.000 482 35.3 220.3 141.0 10.8 150.6 3.0 17D35-20 77.7 142.3 0.55 0.0532 87 0.004 663 0.172 642 0.012 183 0.023 792 0.000 546 342.7 200.0 161.7 10.5 151.6 3.4 表 2 金鸡岭岩体主量元素(%)和微量、稀土元素(10-6)分析数据
Table 2. Major element (%), trace element (10-6) and rare earth element (10-6) concentrations of Jinjiling pluton
岩体 金鸡岭 金鸡岭 西山 砂子岭 世界花岗岩* 岩性 细粒斑状二长花岗岩 粗中粒似斑状正长花岗岩 5件 14件 9件 A型 变化范围 样号 12D57 12D58 17D35 12D56-2 12D70 17D11 平均 SiO2 75.03 75.31 75.51 75.3 75.87 76.84 75.64 75.6 70.75 69.54 73.81 60.4~79.8 TiO2 0.04 0.01 0.05 0.23 0.18 0.25 0.13 0.12 0.44 0.58 0.26 0.04~1.25 Al2O3 12.93 13.01 12.47 11.89 11.36 11.10 12.13 12.32 13.40 13.15 12.40 7.30~17.50 Fe2O3 0.17 0.05 0.21 0.18 0 0.66 0.21 0.22 0.76 0.39 1.24 0.14~8.70 FeO 1.90 1.97 2.32 2.75 3.33 2.23 2.42 2.22 3.66 4.84 1.58 0.33~6.10 FeO* 2.05 2.01 2.51 2.91 3.33 2.83 2.61 2.42 4.34 5.19 MnO 0.07 0.06 0.04 0.04 0.03 0.04 0.05 0.04 0.06 0.08 0.06 0.01~0.24 MgO 0.23 0.01 0.03 0.18 0.12 0.25 0.14 0.07 0.48 0.74 0.20 < 0.01~0.26 CaO 0.68 0.40 0.67 1.14 1.03 1.13 0.84 0.67 1.79 2.08 0.75 0.08~3.70 Na2O 3.09 4.36 3.88 2.68 2.77 2.64 3.24 3.08 2.55 2.68 4.07 2.80~6.10 K2O 4.68 4.57 4.47 5.13 4.91 4.41 4.70 5.08 4.90 4.76 4.65 2.40~6.50 P2O5 0.01 0.01 0.01 0.04 0.03 0.06 0.03 0.02 0.16 0.19 0.04 < 0.01~0.46 LOI 0.930 < 0.001 0.070 0.040 < 0.001 0.060 0.280 0.270 0.460 0.080 Total 99.76 99.75 99.73 99.61 99.63 99.68 99.69 99.71 99.42 99.03 99.06 A/CNK 1.14 1.01 1.00 0.99 0.97 0.99 1.02 1.05 1.05 0.99 0.95 Ba 25.70 5.86 8.68 427.00 279.00 215.00 160.21 180.66 944.65 716.31 352.00 2.00~1 530.00 Rb 949.00 1230.00 710.00 150.00 285.00 133.00 576.17 568.32 211.75 223.11 169.00 40.00~475.00 Sr 3.36 2.15 2.28 47.90 30.50 43.20 21.57 25.06 110.89 111.25 48.00 0.50~250.00 Y 155.00 150.00 135.00 53.80 61.00 57.20 102.00 91.98 52.16 45.30 75.00 9.00~190.00 Zr 78.20 62.00 98.80 189.00 211.00 250.00 148.17 142.92 298.81 229.69 528.00 82.00~3 530.00 Nb 52.70 12.00 44.20 19.90 19.10 23.70 28.60 23.35 25.94 22.49 37.00 11.00~348.00 Th 27.10 7.35 34.60 53.70 51.70 73.80 41.38 42.71 29.67 26.25 23.00 < 1.00~87.00 Ga 32.30 28.60 29.40 21.40 30.20 18.90 26.80 22.64 21.40 24.73 24.60 14.00~49.50 Hf 6.92 6.04 6.84 5.88 8.00 7.67 6.89 6.74 8.79 7.06 Ta 20.30 6.14 14.70 1.32 2.43 2.37 7.88 8.20 1.84 2.13 U 25.60 9.42 32.00 6.78 10.90 14.30 16.50 13.79 5.41 5.42 5.00 < 1.00~23.00 FeOT/MgO 8.84 245.40 80.88 16.33 28.23 11.30 65.16 38.95 12.05 8.43 10 000 Ga/Al 4.72 4.15 4.46 3.40 5.02 3.22 4.16 370.37 516.96 3.55 3.75 Zr+Nb+ Y+Ce 347.40 255.50 348.60 525.70 502.10 554.90 422.37 79.48 2.35 418.36 777.00 Rb/Sr 282.44 572.09 311.40 3.13 9.34 3.08 196.92 6.38 8.65 2.29 7.33 Zr/Hf 11.30 10.26 14.44 32.14 26.38 32.59 21.19 21.22 33.45 32.19 Sm/Nd 0.37 0.46 0.36 0.18 0.19 0.19 0.29 0.26 0.20 0.20 3.75 t(zr) 820.67 800.72 807.94 811.49 780.31 801.50 803.77 806.95 816.16 785.62 839.00 La 34.30 13.10 30.20 125.00 109.00 103.00 69.10 52.35 67.57 60.76 73.37 31.00~115.80 Ce 61.50 31.50 70.60 263.00 211.00 224.00 143.60 112.12 140.05 120.88 137.00* 18.00~560.00* Pr 12.90 5.22 10.10 26.30 25.80 22.40 17.12 13.66 16.08 14.67 16.37 6.08~24.8 Nd 48.40 21.30 38.20 95.10 88.90 80.40 62.05 49.82 60.46 53.10 65.55 20.31~99.99 Sm 17.90 9.85 13.60 17.20 17.10 15.00 15.11 11.91 11.82 10.47 15.63 3.96~24.39 Eu 0.12 0.03 0.09 1.00 0.91 0.68 0.47 0.44 1.70 1.81 1.13 0.13~1.58 Gd 16.10 9.70 13.80 14.60 15.60 12.90 13.78 12.45 10.43 9.68 14.24 3.91~27.02 Tb 3.82 2.87 3.44 2.13 2.41 2.02 2.78 2.30 1.62 1.56 2.67 0.64~4.32 Dy 25.20 21.50 23.80 11.80 13.00 11.70 17.83 14.08 9.41 8.74 15.18 3.79~25.33 Ho 5.19 4.60 4.95 2.27 2.53 2.28 3.64 2.91 1.86 1.66 3.60 0.90~5.44 Er 15.80 14.60 14.30 5.98 6.73 6.20 10.60 8.40 5.19 4.60 9.90 2.80~13.10 Tm 3.54 3.38 2.82 0.89 1.15 0.97 2.13 1.41 0.72 0.71 1.56 0.47~1.86 Yb 26.90 24.90 19.20 5.66 7.61 6.24 15.09 9.71 4.79 4.43 10.03 3.28~10.80 Lu 3.84 3.78 2.66 0.74 1.03 0.84 2.15 1.50 0.71 0.64 1.31 0.48~1.57 LREE 175.12 81.00 162.79 527.60 452.71 445.48 307.45 240.3 297.68 261.68 308.67 115.61~410.50 HREE 100.39 85.33 84.97 44.07 50.06 43.15 68.00 52.76 34.72 32.02 58.48 16.27~89.43 (La/Yb)n 0.91 0.38 1.13 15.84 10.27 11.84 6.73 5.23 10.55 10.11 6.89 3.97~7.72 δEu 0.007 0.003 0.007 0.063 0.056 0.049 0.031 0.030 0.150 0.180 0.220 0.060~0.460 REE 275.51 166.33 247.76 571.67 502.77 488.63 375.45 293.06 332.40 293.70 310.47 131.88~499.93 注:*引自 Whalen et al.(1987) ; 统计148组数据. 稀土资料转刘昌实等(2003); 统计35组数据.表 3 金鸡岭岩体Sr-Nd同位素数据
Table 3. Sr-Nd isotopic data of Jinjiling pluton
样号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ISr Sm(10-6) Nd(10-6) 147Sm/134Nd 143Nd/144Nd εNd(t) TDM2(Ma) 12D56-2★ 1 109.0 6.537 550.10 1.495 120 0.720 62 16.080 43.69 0.222 7 0.512 339 -6.36 1 532 12D57☆ 721.5 5.104 448.80 1.730 350 0.732 51 4.549 12.94 0.212 7 0.512 335 -6.24 1 084 12D58☆ 1 187.0 4.839 835.90 2.586 540 0.728 04 9.105 20.86 0.264 1 0.512 361 -6.75 1 513 12D70★ 279.0 38.480 21.02 0.762 200 0.715 47 15.280 83.21 0.111 1 0.512 224 -6.38 1 465 D123-1★* 437.9 26.230 48.67 0.822 030 0.713 82 7.350 37.85 0.117 5 0.511 961 -11.63 1 891 D131-1★* 615.1 23.860 75.61 0.880 690 0.712 58 16.150 55.45 0.176 3 0.512 265 -6.86 1 496 D141-1★* 296.6 43.240 19.87 0.759 020 0.714 84 15.240 84.84 0.108 7 0.512 164 -7.49 1 556 D142-1★* 393.1 35.450 32.22 0.787 140 0.715 50 10.720 47.84 0.135 6 0.512 218 -6.98 1 512 JJL-04★※ 555.1 15.300 107.69 0.939 554 0.732 33 13.320 49.72 0.162 0 0.512 275 -7.08 1 389 JJL-07★※ 643.1 17.800 107.08 0.939 870 0.732 07 15.810 64.60 0.148 0 0.512 262 -7.33 1 412 JJL-10★※ 631.0 23.100 80.64 0.897 224 0.732 13 13.540 52.54 0.155 8 0.512 263 -7.32 1 409 JJL-12★※ 601.0 18.100 97.76 0.893 002 0.732 28 13.210 52.57 0.151 9 0.512 254 -7.49 1 424 JJL-17★※ 525.1 20.100 76.72 0.883 109 0.732 18 15.320 69.98 0.132 4 0.512 252 -7.53 1 430 JJL-19★※ 269.4 30.800 25.44 0.762 935 0.732 35 7.380 39.63 0.112 6 0.512 223 -8.1 1 478 JJL-20★※ 346.9 48.200 20.95 0.763 008 0.732 22 12.150 68.17 0.107 8 0.512 216 -8.23 1 489 PXM-01☆※ 897.1 3.200 896.33 1.886 938 0.732 28 6.170 23.29 0.160 2 0.512 238 -7.80 1 448 PXM-03☆※ 891.7 6.300 443.07 1.510 617 0.732 38 9.450 31.95 0.178 8 0.512 322 -6.16 1 310 PXM-05☆※ 1181.2 4.800 789.18 1.839 174 0.732 13 15.420 49.43 0.188 6 0.512 339 -5.83 1 278 注:*4组付建明等(2005);※10组苏红中(2017);☆.螃蟹木,★.金鸡岭. 表 4 金鸡岭岩体Hf同位素数据
Table 4. Hf isotopic data of Jinjiling pluton
测点号 176Hf/177Hf σ 176Lu/177Hf σ 176Yb/177Hf εHf(0) Age(Ma) εHf(t) 2σ TDM(Ma) 2σ TDM2(Ma) 2σ 17D35-01 0.282 530 0.000 008 0.000 944 0.000 006 0.034 770 -8.6 154.7 -5.3 0.28 1 021 22 1 536 36 17D35-02 0.282 528 0.000 008 0.000 543 0.000 006 0.019 343 -8.6 153.6 -5.3 0.28 1 013 22 1 538 36 17D35-03 0.282 526 0.000 007 0.001 339 0.000 039 0.049 596 -8.7 152.9 -5.5 0.25 1 037 20 1 547 32 17D35-04 0.282 549 0.000 008 0.000 893 0.000 006 0.032 404 -7.9 153.5 -4.6 0.28 993 23 1 494 36 17D35-05 0.282 546 0.000 008 0.001 268 0.000 020 0.048 711 -8.0 161.8 -4.6 0.27 1 006 22 1 496 35 17D35-06 0.282 545 0.000 007 0.001 440 0.000 007 0.054 381 -8.0 153.6 -4.8 0.26 1 013 21 1 506 32 17D35-08 0.282 540 0.000 008 0.000 882 0.000 014 0.031 666 -8.2 147.3 -5.1 0.28 1 005 22 1 516 35 17D35-09 0.282 564 0.000 008 0.000 867 0.000 030 0.032 399 -7.3 148.6 -4.2 0.27 971 22 1 461 34 17D35-10 0.282 543 0.000 009 0.000 637 0.000 007 0.022 653 -8.1 149.0 -4.9 0.30 994 24 1 507 38 17D35-11 0.282 533 0.000 008 0.000 801 0.000 027 0.028 681 -8.4 153.3 -5.2 0.29 1 013 23 1 528 37 17D35-14 0.282 557 0.000 008 0.001 099 0.000 005 0.041 128 -7.6 157.3 -4.3 0.28 987 23 1 474 36 17D35-15 0.282 566 0.000 008 0.000 496 0.000 003 0.017 355 -7.3 141.9 -4.2 0.28 958 22 1 459 36 17D35-16 0.282 526 0.000 008 0.000 573 0.000 005 0.020 078 -8.7 155.1 -5.4 0.27 1 016 21 1 541 34 17D35-17 0.282 538 0.000 008 0.000 572 0.000 003 0.020 286 -8.3 150.6 -5.0 0.27 1 000 21 1 518 34 17D35-20 0.282 551 0.000 007 0.000 549 0.000 001 0.019 250 -7.8 151.6 -4.5 0.25 981 20 1 487 32 -
[1] Anderson, J.L., Morrison, J., 1992. The Role of Anorogenic Granites in the Proterozoic Crustal Development of North America. In: Condie, K., ed., Proterozoic Crustal Evolution. Elsevier, Amsterdam, 263-299. https://doi.org/10.1016/s0166-2635(08)70121-x [2] Chen, J.F., Cuo, X.S., Tang, J.F., et al., 1999. Nd Isotopic Model Ages: Implications of the Grouth of the Continental Crust of Southeastern China. Journal of Nanjing University (Natural Sciences), 35(6): 649-658 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ199906000.htm [3] Chen, P.R., Hua, R.M., Zhang, B.T., et al., 2002. Early Yanshanian Post-Orogenic Granitoids in the Nanling Region: Petrological Constraints and Geodynamic Setting. Science in China (Ser. D), 32(4): 279-298 (in Chinese). [4] Chen, J.F., Jahn, B.M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 [5] Chen, T.Y., Wang, X.Y., Ren, J.S., et al., 1986. Iostopic Geochronology of the Jiuyishan and Baimashan Composite Cranitic Intrusions, Hunan. Geological Review, 32(5): 433-439(in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=8083050 [6] Cheng, S.B., Fu, J.M., Cui, S., et al., 2018. Zircon U-Pb Chronology, Geochemistry of the Indonesian Granitic Rocks from Northern Yuechengling Batholith in Guangxi-Hunan Junction. Earth Science, 43(7): 2330-2349(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807010.htm [7] Cheng, S.B., Fu, J.M., Xu, D.M., et al., 2009. Geochemical Characteristics and Petrogenensis of Xuehuading Granitic Batholith and Its Enclaves, South China. Geotectonica et Metallogenia, 33(4): 588-597(in Chinese with English abstract). http://www.cqvip.com/QK/90781X/200904/32195608.html [8] Clemens, J.D., Holloway, J.R., White, A.J.R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3): 317-324 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=71/3-4/317 [9] Diwu, C.R., Sun, Y., Yuan, H.L., et al., 2008. Geochronology and Hf Isotopes of Detrital Zircons from Songshan Quartzite of Dengfeng in Henan Province end Its Geological Significance. Chinese Science Bulletin, 53(16): 1923-1934(in Chinese). doi: 10.1360/csb2008-53-16-1923 [10] Du, R.J., Lai, J.Q., Ou, Q., et al., 2019. Petrogenesis of the Jinjiling Diabasic Dikes in Southern Hunan and Its Dynamic Significance. Acta Geologica Sinica, 93(8): 1998-2019(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201908012.htm [11] Eby, G.N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations of Their Petrogenesis. Lithos, 26(1/2): 115-134. https://doi.org/10.1016/0024-4937(90)90043-Z [12] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [13] Fu, J.M., 2005. The Early Yanshanian Granitoids of Qitianling-Jiuyishan Area, South China: Implication for Crust-Mantle Interaction (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [14] Fu, J.M., Li, H.Q., Qu, W.J., et al., 2007. Re-Os Isotope Dating of the Da'ao Tungsten-Tin Deposit in the Jiuyi Mountains, Southern Hunan Province. Geology in China, 34(4): 651-656(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173670 [15] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004a. Geochemistry and Tectonic Setting of Xishan Aluminous A-Type Granitic Volcanic-Intrusive Complex, Southern Hunan. Journal of Earth Sciences and Environment, 26(4): 15-23(in Chinese with English abstract). http://www.researchgate.net/publication/303176210_Geochemistry_and_tectonic_setting_of_Xishan_aluminous_A-type_granitic_volcanic-intrusive_complex_Southern_Hunan [16] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004b. SHRIMP U-Pb Zircon Dating of The Jiuyishan Composite Granite in Hunan and Its Geological Significance. Geotectonica et Metallogenia, 28(4): 370-378(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173669 [17] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2005. Ascertainment of the Jinjiling Aluminous A-Type Granite, Hunan Province and Its Tectonic Settings. Geochimica, 34(3): 215-226(in Chinese with English abstract). [18] Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662 [19] Guo, C.L., Zeng, L.S., Li, Q.L., et al., 2016. Hybrid Genesis of Jurassic Fayalite-Bearing Felsic Subvolcanic Rocks in South China: Inspired by Petrography, Geochronology, and Sr-Nd-O-Hf Isotopes. Lithos, 264: 175-188. https://doi.org/10.1016/j.lithos.2016.08.020 [20] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005. Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nanling Range. Geological Journal of China Universities, 11(3): 291-304(in Chinese with English abstract). http://www.researchgate.net/publication/284338234_Metallogeneses_and_their_geodynamic_settings_related_to_Mesozoic_granitoids_in_the_Nanling_range [21] Huang, H.Q., Li, X.H., Li, W.X., et al., 2011. Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1 [22] Hunan Bureau of Geology and Mineral Resources, 1998. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese). [23] Hunan Bureau of Geology and Mineral Resources, 2016. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese). [24] Jia, X.H., Wang, Q., Tang, G.J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese with English abstract). http://www.sciencemeta.com/index.php/ddgzyckx/user/setLocale/en_US?source=/index.php/ddgzyckx/article/view/172009 [25] Jiang, Y.H., Jiang, S.Y., Zhao, K.D., et al., 2006. Petrogenesis of Late Jurassic Qianlishan Granites and Mafic Dykes, Southeast China: Implications for a Back-Arc Extension Setting. Geological Magazine, 143(4): 457-474. https://doi.org/10.1017/s0016756805001652 [26] King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x [27] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract). doi: 10.1002/gj.3841 [28] Li, X.H., Li, W.X., Li, Z.X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 62(9): 981-991(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JXTW200714000 [29] Li, Y., Dong, S.W., Zhang, Y.Q., et al., 2016. Episodic Mesozoic Constructional Events of Central South China: Constraints from Lines of Evidence of Superimposed Folds, Fault Kinematic Analysis, and Magma Geochronology. International Geology Review, 58(9): 1076-1107. https://doi.org/10.1080/00206814.2016.1146999 [30] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 [31] Liu, C.S., Chen, X.M., Chen, P.R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for A-Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200304010.htm [32] Liu, F., Li, K., Huang, G.C., et al., 2018. Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807009.htm [33] Liu, H., Chen, F., Leng, W., et al., 2018. Crustal Footprint of the Hainan Plume beneath Southeast China. Journal of Geophysical Research: Solid Earth, 123(4): 3065-3079. https://doi.org/10.1002/2017jb014712 [34] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [35] Liu, Y., Lai, J.Q., Xiao, W.Z., et al., 2019. Petrogenesis and Mineralization of Two-Stage A-Type Granites in Jiuyishan, South China: Constraints from Whole-Rock Geochemistry, Mineral Composition and Zircon U-Pb-Hf Isotopes. Acta Geologica Sinica, 93(4): 874-900. https://doi.org/10.1111/1755-6724.13864 [36] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [37] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 [38] Mo, Z.S., Ye, B.D., Pan, W.Z., et al., 1980. Geology of Granite in Nanling Range. Geological Publishing House, Beijing(in Chinese). [39] Shu, X.J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanling, South China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [40] Su, H.Z., 2017. The Petrogenesis Studies of the Mesozoic Xiangyuan Tungsten-Tin Deposit and Related Granites in Hunan Province(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [41] Sylvester, P.J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302 [42] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London. [43] Turner, S.P., Foden, J.D., Morrison, R.S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X [44] Whalen, J.B., Carrie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202 [45] Whalen, J.B., Jenner, G.A., Longstaffe, F.J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37(6): 1463-1489. https://doi.org/10.1093/petrology/37.6.1463 [46] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 [47] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [48] Zhang, B.T., Dai, Y.S., Wang, J., et al., 2001. Geology and Magma-Dynamical Features of Jinjiling Composite Granitic Batholith in the Western Nanling Region. Geological Journal of China Universities, 7(1): 50-61(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200101005.htm [49] Zhang, B.T., Wu, J.Q., Ling, H.F., et al., 2012. Magma-Dynamical Evidence for Indo-Sinian Emplacement of the Uranium-Bearing Jinjiling Granite Batholith and Its Tectonic Implication. Uranium Geology, 28(1): 11-20, 34(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ201201003.htm [50] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm [51] Zhao, K.D., Jiang, S.Y., Chen, W.F., 2014. Mineralogy, Geochemistry and Ore Genesis of the Dawan Uranium Deposit in Southern Hunan Province, South China. Journal of Geochemical Exploration 138: 59-71. http://dx.doi.org/10.1016/j.gexplo.2013.12.009 [52] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [53] Zhou, Z.M., 2015. Late Mesozoic Polycyclic Tectono-Magmatic Evolution and Forming Mechanism of the Geothermal Systems in South China—New Constraints from Typical Plutons in Guangdong Province(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [54] Zhou, Z.M., Ma, C.Q., Wang, L.X., et al., 2018. A Source-Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300/301: 278-290. https://doi.org/10.1016/j.lithos.2017.11.017 [55] 陈江峰, 郭新生, 汤加富, 等, 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学), 35(6): 649-658. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906000.htm [56] 陈培荣, 华仁民, 章邦桐, 等, 2002. 南岭燕山期后造山花岗岩类: 岩石学制约和地球动力学背景. 中国科学(D辑), 32(4): 279-289. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm [57] 陈廷愚, 王雪英, 任纪舜, 等, 1986. 湖南九嶷山及白马山复式花岗岩体的同位素地质年代测定. 地质论评, 32(5): 433-439. doi: 10.3321/j.issn:0371-5736.1986.05.003 [58] 程顺波, 付建明, 崔森, 等, 2018. 湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征. 地球科学, 43(7): 2330-2349. doi: 10.3799/dqkx.2018.178 [59] 程顺波, 付建明, 徐德明, 等, 2009. 湖南雪花顶花岗岩及其包体的地质地球化学特征和成因分析. 大地构造与成矿学, 33(4): 588-597. doi: 10.3969/j.issn.1001-1552.2009.04.013 [60] 第五春荣, 孙勇, 袁洪林, 等, 2008. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义. 科学通报, 53(16): 1923-1934. doi: 10.3321/j.issn:0023-074X.2008.16.009 [61] 杜日俊, 赖健清, 欧权, 等, 2019. 湘南金鸡岭辉绿岩脉的岩石成因及动力学意义. 地质学报, 93(8): 1998-2019. doi: 10.3969/j.issn.0001-5717.2019.08.012 [62] 付建明, 2005. 华南骑田岭-九嶷山地区燕山早期花岗类与壳-幔相互作用(博士学位论文). 武汉: 中国地质大学. [63] 付建明, 李华芹, 屈文俊, 等, 2007. 湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究. 中国地质, 34(4): 651-656. doi: 10.3969/j.issn.1000-3657.2007.04.014 [64] 付建明, 马昌前, 谢才富, 等, 2004a. 湘南西山铝质A型花岗质火山-侵入杂岩的地球化学及其形成环境. 地球科学与环境学报, 26(4): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200404004.htm [65] 付建明, 马昌前, 谢才富, 等, 2004b. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学, 28(4): 370-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404002.htm [66] 付建明, 马昌前, 谢才富, 等, 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215-226. doi: 10.3321/j.issn:0379-1726.2005.03.002 [67] 湖南省地质矿产局, 1998. 湖南省区域地质志. 北京: 地质出版社. [68] 湖南省地质矿产局, 2016. 湖南省区域地质志. 北京: 地质出版社. [69] 华仁民, 陈培荣, 张文兰, 等, 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304. doi: 10.3969/j.issn.1006-7493.2005.03.002 [70] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 [71] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013 [72] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 62(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [73] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011 [74] 刘飞, 李堃, 黄圭成, 等, 2018. 桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征, 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180 [75] 莫柱孙, 叶伯丹, 潘维祖, 等, 1980. 南岭花岗岩地质学. 北京: 地质出版社. [76] 舒徐洁, 2014. 华南南岭地区中生代花岗岩成因与地壳演化(博士学位论文). 南京: 南京大学. [77] 苏红中, 2017. 湖南中生代湘源钨锡矿床及相关花岗岩成因研究(硕士学位论文). 北京: 中国地质大学. [78] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23, 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [79] 章邦桐, 戴永善, 王驹, 等, 2001. 南岭西段金鸡岭复式花岗岩基地质及岩浆动力学特征. 高校地质学报, 7(1): 50-61. doi: 10.3969/j.issn.1006-7493.2001.01.006 [80] 章邦桐, 吴俊奇, 凌洪飞, 等, 2012. 金鸡岭产铀花岗岩体印支期侵位的岩浆动力学证据及其构造意义. 铀矿地质, 28(1): 11-20, 34. doi: 10.3969/j.issn.1000-0658.2012.01.002 [81] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [82] 周佐民, 2015. 华南晚中生代多旋回构造-岩浆演化及地热成因机制: 来自广东典型岩体的制约(博士学位论文). 武汉: 中国地质大学.