Early Cretaceous Extension of Great Xing'an Range: Constraints from Geochemistry and Zircon U-Pb Ages of Orbicular Rocks in Uragai Area, Inner Mongolia, China
-
摘要: 大兴安岭火山岩带中南部乌拉盖地区新发现的球状岩石除因其漂亮的构造被人们关注外,其地球化学特征及锆石U-Pb定年对于探讨东北地区大兴安岭演化历史也具有重要意义.在详细的野外地质调查基础上,通过对内蒙古乌拉盖球状岩及其主岩地球化学及Sr-Nd同位素特征等进行综合研究,探讨其源区性质及形成机制.研究结果表明:乌拉盖球状岩及其主岩具有富硅(SiO2=75.35%~76.21%)、富碱(K2O+Na2O=7.30%~7.45%)和低铝(Al2O3=9.82%~11.30%)、镁值(Mg#=4.52~14.47)、铬(Cr=14.5×10-6~22.5×10-6)、镍(Ni=1.84×10-6~3.97×10-6),指示其物质来源于地壳.微量元素和稀土元素具后造山火山岩特征:Rb、Th、K等大离子亲石元素和Nb、Ta、Zr、HREE等高场强元素明显富集,N-MORB标准化图解中Nb负异常不明显,轻重稀土元素分异明显,LREE/HREE=5.21~6.70.初始87Sr/86Sr(0.705 9~0.713 7)高于现代大洋MORB(0.702 29~0.703 34),也显示壳源特征;143Nd/144Nd(0.512 456~0.512 528)则低于现代大洋MORB(0.512 99~0.513 30),εNd值为+4.8~+6.2,又表现亏损地幔的信息.研究认为,乌拉盖球状岩及其主岩岩浆来源于下地壳,且有亏损地幔物质的参与.Sr、Ba、Eu亏损强烈,反映了明显分离结晶作用的存在,岩石形成于板内稳定的构造环境;主量元素及微量元素图解又表现出后造山A型花岗岩特征.年代学研究显示,球状岩没有得到很好的年代学数据,其可能具低温富流体的特征、新生结晶锆石偏少,大量的捕获锆石或其他难容矿物可能为球状岩球粒的生长提供物质基础;球状岩主岩文象花岗岩锆石LA-ICP-MS U-Pb成岩年龄为142.2±2.7 Ma,侵入球状岩的辉绿岩脉年龄平均为140.5 Ma,主岩的围岩正长斑岩获得锆石LA-ICP-MS U-Pb成岩年龄为349.5±3.4 Ma,综合判断球状岩的成岩时代为早白垩世早期(~141 Ma).综合研究表明,乌拉盖地区球状岩石及其主岩形成机制与大兴安岭火山岩带晚期岩浆活动有关,主要受控于白垩世早期蒙古-鄂霍茨克洋闭合后造山伸展体制下的构造背景,是大兴安岭大规模区域伸展作用、岩浆底侵的产物.Abstract: In addition to its beautiful structure, the newly discovered orbicular rocks in the central and southern parts of the Great Xing'an volcanic belt in the Uragai region are of great importance to the exploration of the subduction history of the Great Xing'an Range in the NE China. On the basis of detailed field geological survey, in this paper it makes a comprehensive study on the geochemistry and Sr-Nd isotope characteristics of the orbicular rocks and its host rocks in Uragai area, Inner Mongolia, and discusses its magmatic source and formation mechanism. The analysis results show that the Uragai orbicular rock and its host rocks have high silica (SiO2=75.35%-76.21%) and alkali (K2O+Na2O=7.30%-7.45%), but low aluminium (Al2O3=9.82%-11.30%), Mg# value (Mg#=4.52-14.47), chromium (Cr=14.5×10-6-22.5×10-6), and nickel (Ni=1.84×10-6-3.97×10-6), indicating a crustal magmatic source. Trace and rare earth elements (REEs) show post-orogenic volcanic rock features: obviously enriched in large ion lithophile elements (LILEs, e.g., Rb, Th, K, LREE) and high field strength elements (HFSEs, e.g., Nb, Ta, Zr, HREE). The Nb negative anomaly is not obvious in N-MORB standardized diagram, with significant differentiation between light rare earth elements (LREE) and heavy rare earth elements (HREE) (LREE/HREE=5.21-6.70). The initial 87Sr/86Sr (0.705 9-0.713 7) is higher than the MORB of modern ocean (0.702 29-0.703 34), which also suggests a crustal source. However, the 143Nd/144Nd (0.512 456-0.512 528) was lower than the value of modern oceans (0.512 99-0.513 30), and with εNd value from +4.8 to +6.2, which shows depleted mantle signature. Study shows that the magmatic source of Uragai orbicular rock and its host rocks originated from the lower crust, and with participation of depleted mantle material. The obviously depleted Sr, Ba and Eu suggest the fractional crystallization course, and the rocks formed in a stable in-plate tectonic environment. Major and trace element diagrams also show the post-orogenic A-type granite features. The study shows that the orbicular rocks have few reliable geological ages, probably resulted from sufficient low temperature fluids which blocked the crystallization course. The abundant trapped zircons or other refractory minerals may provide a material basis for the formation of orbicular rocks. The zircon LA-ICP-MS U-Pb age of graphic granite in the main face of the orbicular rocks is 142.2±2.7 Ma, and the average age of diabase dikes in the orbicular rocks is 140.5 Ma, and the zircon LA-ICP-MS U-Pb age obtained from orthophyre, which is surrounding rocks of the main face of the orbicular rocks, is 349.5±3.4 Ma, These age information restricted the formation age of orbicular rocks at Early Cretaceous(141 Ma±), its host rocks is Early Carboniferous, which is totally different with host rocks of orbicular rocks in and abroad. Comprehensive research shows that the formation mechanism of orbicular rock and its host rocks in Uragai area is related to late stage magmatic activity in the Great Xing'an volcanic belt, largely controlled by the post-orogenic extension tectonic setting of the Mongol-Okhotsk Ocean in the Early Cretaceous, and it is a product of the large-scale regional extension and strong magmatic underplating in the Great Xing'an Range.
-
Key words:
- orbicular rock /
- isotope chronology /
- geochemistry /
- regional extension /
- Great Xing'an Range /
- Uragai area /
- Inner Mongolia
-
图 1 乌拉盖苏木一带大地构造位置及区域地质略图(据汪岩等,2017修改)
1.全新统;2.上更新世;3.上新统五岔沟组;4.上新统百岔河组;5.早白垩世文象花岗岩;6.上侏罗统玛尼吐组;7.上侏罗统满克头鄂博组;8.中侏罗统塔木兰沟组;9.上石炭统-下二叠统宝力高庙组;10.上志留统卧都河组;11.下奥陶统铜山组;12.晚侏罗世花岗斑岩;13.晚侏罗世少斑状正长岩;14.早二叠世石英闪长岩;15.早石炭世正长斑岩;16.中奥陶世石英闪长岩;17.地质界线/推测断层;18.球状岩产出位置
Fig. 1. Geological sketch map of Uragaisumu area, showing the position of the exposed orbicular rocks
图 4 乌拉盖球状岩等(Na2O+K2O)-SiO2和K2O-SiO2图解
底图a据Wilson(1989), 底图b据Rickwood(1989)
Fig. 4. Plot of total alkali vs. SiO2(TAS) (a) and plot of SiO2 vs. K2O (b) for the orbicular rocks in Uragai area
图 5 乌拉盖球状岩等A/NK-A/CNK图解
Fig. 5. Plot of A/CNK vs. A/NK for the orbicular rocks in Uragai area
图 6 乌拉盖球状岩等(Na2O+K2O-CaO)-SiO2和(FeOT/(FeOT+MgO)-SiO2)判别图解
Fig. 6. Plot of SiO2 vs. (Na2O+K2O-CaO) and SiO2 vs. FeOT/(FeOT+MgO) for the orbicular rocks in Uragai area
图 7 乌拉盖球状岩等稀土元素配分图(a)和微量元素蛛网图(b)
球粒陨石和原始地幔标准值均据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns and primitve mantle-normalized trace element spider diagrams for the orbicular rocks in Uragai area
图 8 乌拉盖球状岩等岩石类型判别图解(底图据Whalen et al., 1987)
Fig. 8. The discriminant diagrams for rock types of the orbicular rocks in Uragai area(diagrams after Whalen et al., 1987)
图 14 (87Sr/86Sr)i-εNd关系图解
底图据Zhou et al.(2008); DM、EMI和EMII数据引自Zindler and Hart(1986); 大兴安岭火山岩数据引自Ying et al.(2010); 松辽盆地火山岩数据引自Li et al.(2012)
Fig. 14. Diagram of (87Sr/86Sr)i vs. εNd
图 15 La/Sm-La关系图解(底图据王中刚等,1989)
Fig. 15. Diagram of La vs. La/Sm(diagram after Wang et al., 1989)
图 16 R1-R2(a)、Rb-(Y+Nb)(b)、Nb-Y-3Ga(c)和Nb-Y-Ce(d)构造环境判别图解
图a底图据Batchelor and Bowden(1985), 图b底图据Pearce et al.(1984), 图c和图d底图据Eby(1992). ①地幔斜长花岗岩;②板块碰撞前花岗岩;③板块碰撞后隆起期花岗岩;④晚造山期花岗岩;⑤非造山区花岗岩;⑥同碰撞花岗岩;⑦造山期后A型花岗岩. Syn-COLG.同碰撞花岗岩;VAG.火山弧花岗岩;WPG.板内花岗岩;POG.后造山花岗岩;ORG.洋中脊花岗岩;A1.非造山A型花岗岩;A2.后造山A型花岗岩
Fig. 16. R1-R2(a), Rb-(Y+Nb)(b), Nb-Y-3Ga (c) and Nb-Y-Ce (d) tectonic discriminant diagrams
表 1 乌拉盖球状岩等主量元素、稀土及微量元素质量分数
Table 1. Contents of major, trace elements and REE for the orbicular rocks in Uragai area
序号 送样号 岩性 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总和 Na2O+
K2OK2O /Na2O 1 D16073b 球状流纹斑岩 76.18 0.24 10.11 2.94 1.12 0.094 0.350 0.41 2.59 4.46 0.056 0.90 99.45 7.15 1.72 2 D16081b1 球状碱性流纹斑岩 76.06 0.24 10.27 2.06 1.80 0.130 0.099 0.40 3.73 4.71 0.033 0.40 99.92 8.48 1.26 3 D16081b2 球状碱性流纹斑岩 75.69 0.25 10.33 2.00 1.89 0.120 0.097 0.43 3.62 4.68 0.038 0.48 99.61 8.37 1.29 4 D16081b3 球粒文象花岗岩 76.00 0.25 10.24 3.64 0.45 0.160 0.350 0.29 3.06 4.68 0.040 1.18 100.35 7.81 1.53 5 D16081b4 球粒文象花岗岩 76.05 0.25 10.41 3.50 0.67 0.067 0.230 0.28 2.76 4.45 0.053 1.14 99.86 7.30 1.61 6 D16074b 石英微晶正长岩 76.21 0.19 11.30 2.50 0.68 0.066 0.170 0.84 4.00 3.47 0.054 0.71 100.19 7.51 0.87 7 D16071b1 微细粒文象花岗岩 75.43 0.28 9.95 4.78 0.63 0.140 0.210 0.34 2.18 4.90 0.047 1.22 100.11 7.16 2.25 8 D16071b2 微细粒文象花岗岩 75.35 0.27 9.82 5.14 0.45 0.160 0.170 0.26 2.34 5.04 0.043 0.86 99.90 7.45 2.15 序号 A/CNK Mg# La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE/HREE δEu 1 1.03 14.33 24.4 87.1 7.92 33.4 6.86 0.77 6.50 1.20 6.89 1.48 3.81 0.65 4.13 0.60 40.5 185.71 6.35 0.35 2 0.86 4.65 44.3 95.9 14.20 59.8 12.20 1.13 11.20 2.05 11.70 2.48 6.50 1.14 7.34 1.09 66.7 271.03 5.23 0.29 3 0.88 4.52 30.6 67.6 9.87 41.3 8.27 0.77 7.37 1.33 7.40 1.55 4.04 0.71 4.65 0.69 40.5 186.15 5.71 0.30 4 0.96 14.47 16.9 143.0 6.83 28.2 6.52 0.81 6.39 1.50 9.24 2.30 6.28 1.14 7.25 1.01 56.8 237.37 5.76 0.38 5 1.06 9.78 11.0 84.4 4.38 17.7 3.95 0.49 3.88 0.91 5.95 1.41 3.89 0.71 4.55 0.65 37.6 143.87 5.55 0.38 6 0.95 9.46 53.4 131.0 16.00 64.8 12.6 1.06 11.50 2.02 11.4 2.30 5.97 1.07 6.40 0.96 59.3 320.48 6.70 0.26 7 1.05 7.12 20.4 86.6 7.29 29.4 6.27 0.30 5.78 1.21 7.67 1.69 4.57 0.83 5.30 0.77 44.7 178.08 5.40 0.15 8 1.00 5.69 33.8 117.0 12.00 48.7 10.20 0.45 9.22 1.91 11.70 2.55 6.85 1.23 8.03 1.15 67.2 264.79 5.21 0.14 序号 δCe (La/Yb)N (La/Sm)N Ba Ga Nb Rb Sr V Zr Hf Ta Li Sc Co Cr Ni Th U Be 1 1.46 3.99 2.24 601.00 22.3 31.5 103.0 74.4 10.60 799 6.69 2.14 7.38 2.07 1.36 21.2 1.84 8.18 1.85 1.50 2 0.89 4.08 2.29 8.54 25.7 31.1 121.0 46.1 10.10 799 10.7 1.24 12.30 2.35 2.72 22.5 3.15 10.80 2.59 3.07 3 0.91 4.45 2.33 20.80 26.7 30.6 122.0 50.0 7.67 800 7.41 2.78 9.87 1.68 2.66 15.6 2.28 7.57 1.74 2.11 4 3.12 1.58 1.63 196.00 24.1 29.7 103.0 36.4 10.20 785 9.79 1.51 28.10 3.06 2.28 17.9 3.97 13.80 3.65 3.37 5 2.85 1.63 1.75 160.00 26.6 30.6 106.0 30.7 13.50 804 7.17 1.32 18.70 2.04 1.44 16.7 2.79 9.13 2.32 2.15 6 1.04 5.64 2.67 52.20 22.3 35.2 87.1 104 9.23 887 14.10 1.56 7.91 7.18 3.68 14.5 3.51 11.80 3.64 4.83 7 1.66 2.60 2.05 116.00 34.2 38.5 159.0 27.4 11.70 1
2007.35 1.87 8.20 1.70 1.05 19.5 1.88 8.82 2.08 3.42 8 1.36 2.84 2.09 109.00 35.6 34.7 158.0 28.3 10.90 1
1009.99 2.33 8.64 2.30 2.23 15.8 1.98 12.50 2.88 5.19 注:主量元素质量分数单位为%;微量元素质量分数单位为10-6. 表 2 乌拉盖球状岩等Sr-Nd同位素组成
Table 2. Sr and Nd isotopic compositions of the orbicular rocks in Uragai area
序号 送样号 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd (87Sr/86Sr)i εNd TDM 1 D16081b1 121 46.1 7.41 0.742 69 12.2 59.8 0.128 22 0.512 79 0.707 8 5.9 644 2 D16081b2 122 50.0 6.89 0.738 96 8.27 41.3 0.125 85 0.512 80 0.706 5 6.2 609 3 D16081b3 103 36.4 7.99 0.743 55 6.52 28.2 0.145 32 0.512 77 0.705 9 4.8 848 4 D16081b4 106 30.7 9.75 0.752 27 3.95 17.7 0.140 26 0.512 77 0.706 4 5.0 783 5 D16071b1 159 27.4 16.39 0.789 44 6.27 29.4 0.134 04 0.512 77 0.712 3 5.1 739 6 D16071b2 158 28.3 15.77 0.787 91 10.20 48.7 0.131 64 0.512 79 0.713 7 5.7 671 注:各样品岩性同表 1. 表 3 乌拉盖球状岩中微细粒文象花岗岩(D16071b1)锆石LA-ICP-MS U-Pb分析结果
Table 3. Analysis of LA-ICP-MS U-Pb analysis of graphic granite zircons(D16071b1) in Uragai orbicular rocks
测试编号 Pb Th U Th/U 同位素比值 同位素年龄(Ma) (10-6) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 51.6 337.9 371.3 0.91 0.048 3 0.001 3 0.149 0 0.005 2 0.022 4 0.000 5 122.3 47.2 141.1 4.6 142.7 3.2 2 12.0 78.0 73.6 1.06 0.049 4 0.002 6 0.155 5 0.008 2 0.022 9 0.000 8 168.6 122.1 146.7 7.2 145.9 5.0 3 53.1 209.9 189.6 1.11 0.051 7 0.001 5 0.262 3 0.010 1 0.036 7 0.000 9 272.3 61.1 236.6 8.1 232.5 5.4 4 52.5 20.4 4.0 5.04 0.823 7 0.021 0 31.719 7 6.590 2 0.280 3 0.058 4 0 0 3 541.6 204.6 1 593.0 293.9 5 126.0 264.3 240.6 1.10 0.054 9 0.001 0 0.538 1 0.018 0 0.071 0 0.002 0 409.3 38.9 437.2 11.9 442.4 11.9 6 10.6 66.6 78.8 0.84 0.048 1 0.002 3 0.149 4 0.007 8 0.022 5 0.000 7 105.6 111.1 141.3 6.9 143.6 4.4 7 14.8 94.0 82.0 1.15 0.051 1 0.002 4 0.163 9 0.007 5 0.023 3 0.000 6 255.6 111.1 154.1 6.6 148.4 4.0 8 87.0 413.3 519.9 0.80 0.048 8 0.000 9 0.206 2 0.005 8 0.030 7 0.000 8 200.1 50.0 190.4 4.9 194.7 4.8 9 30.5 59.1 134.9 0.44 0.055 2 0.001 3 0.540 9 0.019 4 0.071 1 0.002 1 416.7 -47.2 439.0 12.8 442.8 12.6 10 21.4 141.2 173.3 0.81 0.049 1 0.002 1 0.147 7 0.006 9 0.021 8 0.000 5 150.1 91.7 139.8 6.1 139.3 3.4 11 53.4 354.5 356.7 0.99 0.047 8 0.001 2 0.148 2 0.005 0 0.022 5 0.000 6 87.1 41.7 140.4 4.4 143.4 3.8 12 42.7 258.4 242.8 1.06 0.067 8 0.003 8 0.201 0 0.011 5 0.021 5 0.000 5 862.7 102.8 186.0 9.8 137.3 3.2 13 35.7 98.2 220.2 0.45 0.052 5 0.001 4 0.343 2 0.011 2 0.047 5 0.001 2 305.6 61.1 299.6 8.5 298.9 7.7 14 40.1 125.6 194.6 0.65 0.059 8 0.001 4 0.331 5 0.010 6 0.040 2 0.001 0 598.2 41.7 290.7 8.1 253.8 6.2 15 126.0 41.4 67.8 0.61 0.158 7 0.002 1 9.174 5 0.235 0 0.419 2 0.010 3 2 442.6 22.2 2 355.6 23.9 2 256.7 47.0 16 100.0 268.3 250.7 1.07 0.080 3 0.003 9 0.524 7 0.034 2 0.047 1 0.001 2 1 205.6 94.4 428.3 22.8 296.9 7.3 17 67.0 228.8 307.1 0.75 0.052 9 0.001 3 0.285 3 0.007 9 0.039 1 0.000 7 327.8 55.5 254.8 6.2 247.0 4.4 18 278.0 133.7 136.9 0.98 0.203 2 0.058 9 4.014 4 1.599 3 0.113 6 0.014 5 2 853.7 474.1 1 637.1 323.9 693.5 84.2 19 94.0 179.9 185.6 0.97 0.065 8 0.001 3 0.691 9 0.019 1 0.076 3 0.001 6 798.2 44.4 534.0 11.5 473.8 9.6 20 36.6 103.6 122.7 0.84 0.064 3 0.006 4 0.419 9 0.049 2 0.046 9 0.001 2 750.0 211.1 356.0 35.2 295.7 7.5 表 4 乌拉盖球状岩围岩正长斑岩(D16070b1)锆石LA-ICP-MS U-Pb分析结果
Table 4. Analysis of LA-ICP-MS U-Pb analysis of orthophyre zircons (D16071b1) in the main rock of Uragai orbicular rocks
测试编号 Pb Th U Th/U 同位素比值 同位素年龄(Ma) (10-6) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 53.2 138.0 241.8 0.570 5 0.053 1 0.001 1 0.409 8 0.011 8 0.056 0 0.001 3 331.5 44.4 348.8 8.6 351.2 8.2 2 8.4 35.4 43.9 0.807 5 0.050 9 0.002 6 0.247 5 0.013 6 0.035 3 0.000 8 235.3 122.2 224.5 11.1 223.5 5.0 3 38.1 100.5 178.1 0.564 3 0.053 8 0.001 1 0.405 1 0.010 6 0.054 6 0.001 0 361.2 63.9 345.3 7.7 342.7 6.3 4 73.0 188.1 268.1 0.701 6 0.054 3 0.001 0 0.420 2 0.012 3 0.056 1 0.001 3 383.4 44.4 356.2 8.8 351.8 8.1 5 48.8 120.6 221.6 0.544 3 0.053 3 0.000 9 0.422 8 0.014 3 0.057 4 0.001 5 342.7 52.8 358.1 10.3 360.0 9.4 6 28.1 203.4 243.1 0.836 7 0.051 1 0.001 6 0.140 7 0.005 0 0.020 0 0.000 5 255.6 169.4 133.6 4.4 127.5 3.0 7 95.0 204.1 238.6 0.855 7 0.056 4 0.001 0 0.537 0 0.014 6 0.069 1 0.001 6 477.8 38.9 436.5 9.7 430.6 9.6 8 41.3 107.0 189.8 0.563 7 0.053 3 0.001 2 0.403 8 0.012 3 0.054 9 0.001 3 342.7 63.9 344.4 8.9 344.8 8.0 9 38.4 95.4 188.4 0.506 2 0.054 7 0.001 2 0.416 8 0.014 7 0.055 2 0.001 7 466.7 50.0 353.7 10.5 346.6 10.3 10 59.0 145.2 214.7 0.676 3 0.055 8 0.001 3 0.427 5 0.018 2 0.055 5 0.001 6 442.6 50.0 361.4 13.0 348.0 9.8 11 50.7 131.0 223.3 0.586 4 0.053 4 0.001 0 0.406 5 0.012 1 0.055 2 0.001 4 346.4 44.4 346.3 8.8 346.3 8.8 12 44.1 114.2 188.3 0.606 5 0.053 2 0.001 1 0.404 8 0.011 7 0.055 2 0.001 3 344.5 50.0 345.1 8.5 346.2 7.7 13 64.0 164.1 257.9 0.636 2 0.055 0 0.001 1 0.418 0 0.011 3 0.055 1 0.001 2 413.0 44.4 354.6 8.1 345.9 7.6 14 31.5 79.1 166.1 0.476 6 0.053 5 0.001 0 0.406 9 0.010 7 0.055 2 0.001 1 350.1 30.6 346.7 7.8 346.3 6.9 15 27.5 198.7 234.3 0.848 1 0.047 6 0.001 6 0.134 1 0.005 7 0.020 4 0.000 7 79.7 77.8 127.7 5.2 130.4 4.2 16 79.0 208.2 312.7 0.665 7 0.054 4 0.001 1 0.413 3 0.013 2 0.055 1 0.001 1 387.1 141.7 351.2 9.5 345.5 6.8 17 42.3 111.4 203.6 0.547 3 0.053 7 0.001 0 0.408 3 0.010 7 0.055 1 0.001 2 366.7 38.9 347.6 7.8 345.8 7.1 18 46.9 120.3 213.5 0.563 7 0.052 9 0.001 0 0.413 3 0.012 8 0.056 7 0.001 5 324.1 58.3 351.2 9.3 355.5 9.4 19 77.0 200.5 278.2 0.702 4 0.057 6 0.001 3 0.440 0 0.016 2 0.055 3 0.001 3 516.7 50.0 370.2 11.5 346.7 8.1 20 38.3 100.6 177.5 0.567 0 0.054 0 0.001 3 0.413 9 0.013 0 0.055 6 0.001 4 372.3 55.5 351.7 9.4 348.5 8.5 21 29.3 74.6 154.0 0.484 4 0.053 8 0.001 3 0.411 1 0.011 6 0.055 4 0.001 2 361.2 69.4 349.7 8.4 347.9 7.3 22 40.4 300.8 431.8 0.696 4 0.048 4 0.001 1 0.132 6 0.003 6 0.019 8 0.000 4 120.5 55.6 126.4 3.2 126.6 2.3 23 42.7 109.3 202.0 0.541 1 0.052 8 0.001 2 0.411 5 0.013 5 0.056 5 0.001 5 320.4 55.6 350.0 9.8 354.3 9.0 24 108.0 307.1 322.1 0.953 5 0.053 2 0.000 9 0.401 7 0.009 8 0.054 7 0.001 0 344.5 38.9 342.9 7.2 343.5 6.4 25 53.8 136.7 231.2 0.591 2 0.055 3 0.001 2 0.424 5 0.013 0 0.055 6 0.001 1 433.4 44.4 359.3 9.3 348.9 7.0 26 63.0 165.0 262.6 0.628 1 0.052 9 0.001 0 0.411 2 0.010 7 0.056 3 0.001 2 327.8 30.6 349.8 7.8 353.2 7.6 27 40.1 103.4 183.7 0.562 8 0.053 3 0.001 3 0.412 5 0.014 5 0.056 1 0.001 3 342.7 63.9 350.7 10.4 351.6 8.2 28 34.2 83.1 165.2 0.502 9 0.053 6 0.001 2 0.421 9 0.013 5 0.057 1 0.001 6 353.8 41.7 357.4 9.7 358.1 9.8 29 35.8 86.9 178.5 0.486 9 0.055 0 0.001 3 0.428 9 0.015 8 0.056 4 0.001 3 413.0 50.0 362.4 11.3 353.9 7.7 30 36.0 91.6 187.7 0.488 1 0.052 6 0.001 1 0.409 5 0.011 5 0.056 4 0.001 3 322.3 44.4 348.5 8.3 353.6 7.8 -
[1] Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505-539. https://doi.org/10.1093/petrology/egi084 [2] Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Chung, S. L., Cheng, H., Jahn, B. M., et al., 1997. Major and Trace Element, and Sr-Nd Isotope Constraints on the Origin of Paleogene Volcanism in South China Prior to the South China Sea Opening. Lithos, 40(2-4): 203-220. https://doi.org/10.1016/s0024-4937(97)00028-5 [4] Deng, J.F., Zhao, H.L., Mo, X.X., et al., 1996. China Continental Root Structure: The Key of Continental Dynamics. Geological Publishing House, Beijing(in Chinese). [5] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [6] Fan, W.M., Guo, F., Gao, X.F., et al., 2008. Sr-Nd Isotope Mapping of Mesozoic Igneous Rocks in NE China: Constraints on Tectonic Framework and Crustal Growth. Geochimica, 37(4): 361-372(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0024493710002719 [7] Frost, B.R., Barnes, C.G., Collins, W.J., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [8] Furlong, K.P., Fountain, D.M., 1986. Continental Crustal Underplating: Thermal Consideration and Seismic-Petrologic Consequences. Journal of Geophysical Research (Solid Earth), 91(B8): 8285-8294. https://doi.org/10.1029/jb091ib08p08285 [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multiion Counting(LA-MC-ICP-MS). Mineral Deposits, 28(4) : 481-492. http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [10] Huang, J.Q., Ren, J.S., Jiang, C.F., et al., 1981. China Tectonics and Evolution. Science Press, Beijing (in Chinese). [11] Huang, W.L., Wyllie, P.J., 1975. Melting Reactions in the System NaAlSi3O8-KAlSi3O8-SiO2 to 35 Kilobars, Dry and with Excess Water. The Journal of Geology, 83(6): 737-748. https://doi.org/10.1086/628165 [12] Jahn, B. M., Griffin, W.L., Windley, B., 2000. Continental Growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 328(1-2): VⅡ-X. https://doi.org/10.1016/s0040-1951(00)00174-8 [13] Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1-2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 [14] Li, J.Y., Mo, S.G., He, Z.J., et al., 2004. The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas since the Mesozoic. Earth Science Frontiers, 11(3): 157-168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403022.htm [15] Li, S.G., 1973. Introduction to Geomechanics. Science Press, Beijing (in Chinese). [16] Li, S.Q., Chen, F.K., Siebel, W., et al., 2012. Late Mesozoic Tectonic Evolution of the Songliao Basin, NE China: Evidence from Detrital Zircon Ages and Sr-Nd Isotopes. Gondwana Research, 22(3-4): 943-955. doi: 10.1016/j.gr.2012.04.002 [17] Li, Z.C., Pei, X.Z., Li, R.B., et al., 2013. LA-ICP-MS Zircon U-Pb Dating, Geochemistry of the Mishuling Intrusion in Western Qinling and Their Tectonic Significance. Acta Petrologica Sinica, 29(8): 2617-2634(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201308001.htm [18] Liang, C.Y., Liu, Y.J., Li, Y., et al., 2018. The Extensional Uplift Style of North Part of the Da Hinggan Mountains: Evidences from Ductile Deformation Zone of Keluo-Galashan. Acta Petrologica Sinica, 34 (10): 2873-2900 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201810005.htm [19] Lin, Q., Ge, W.C., Cao, L., et al., 2003. Geochemistry of Mesozoic Volcanic Rocks in Da Hinggan Ling: The Bimodal Volcanic Rocks. Geochimica, 32(3): 208-222(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200303001.htm [20] Liu, B.R., Li, W., Zhang, S.Z., et al., 2016. Extensional Detachment, Northern Great Xing'an Ranges, NE China. Journal of Jilin University (Earth Science Edition), 46(5): 1440-1448(in Chinese with English abstract). [21] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [22] Ludwing, K.R., 2003. User's Manual for ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, Berkeley, 4: 74. http://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center [23] Ma, F., Mu, Z.G., Liu, Y.L., 2004a. Geochronology and Geologic Significance of the Orbicular Dioritic Rocks in Luanping, Hebei Province. Geological Review, 50(4): 360-364(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP200404003&dbcode=CJFD&year=2004&dflag=pdfdown [24] Ma, F., Mu, Z.G., Liu, Y.L., et al., 2004b. Geochemistry and Source Nature of the Orbicular Dioritic Rocks in Luanping, Hebei Province. Geochimica, 33(6): 593-601(in Chinese with English abstract). http://www.researchgate.net/publication/285021616_Geochemistry_and_source_nature_of_the_orbicular_dioritic_rocks_in_Luanping_Hebei_Province [25] Ma, F., Mu, Z.G., Liu, Y.L., 2004c. Petrography Characteristics of the Orbicular Dioritic Rock in Luanping, Hebei Province and the Discussion of the Genesis of Orbicular Structure. Acta Petrologica Sinica, 20(6): 1424-1432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200406011.htm [26] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 101 (5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [27] Pablo, G., Toselli, A.J., 2009. Petrology and Geochemistry of the Orbicular Granitoid of Sierra de Velasco (NW Argentina) and Implications for the Origin of Orbicular Rocks. Geological Magazine, 147 (3): 451-468. https://doi.org/10.1017/s0016756809990707 [28] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [29] Rickwood, P.C., 1989. Boundary Lines within Petrologic Dagrames which Use Oxides of Major and Minor Elements. Lithos, 22 (4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [30] Shao, J.A., Zhang, L.Q., Mu, B.L., 2007. Uplifting and Geodynamic in Da Hinggan Mountain. Geological Publishing House, Beijing (in Chinese). [31] Sun, D.Y., Xu, W.L., Zhou, Y., 1994. Formation Mechanism of Mesozoic Volcanic Rock in the Great Xing'an Range. Bulletin of Mineralogy, Petrology and Geochemistry, 13(3): 162-164(in Chinese with English abstract). [32] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42 (1): 313-345. [33] Tischendorf, G., Paelchen, W., 1985. Zur Klassifikation von Granitoiden/Classification of Granitoids. Zeitschrift fuer Geologische Wissenschaften, 13(5): 615-627. [34] Turner, S.P., Foden, J.D., Morrison, R.S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-x [35] Wang, Y., Qian, C., Zhong, H., et al., 2017. The Discovery of Orbicular Acid Hypabyssal Rocks in Wulagaisumu Area of Inner Mongolia and Their Petrographic Characteristics. Geologcal Bulletin of China, 36(2): 321-330(in Chinese with English abstract). http://www.researchgate.net/publication/317975337_The_discovery_of_orbicular_acid_hypabyssal_rocks_in_Wulagaisumu_area_of_Inner_Mongolia_and_their_petrographic_characteristics [36] Wang, F., Zhou, X.H., Zhang, L.C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range(NE China) : Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. https://doi.org/10.1016/j.epsl.2006.09.007 [37] Wang, Q., Li, X.H., Jia, X.H., et al., 2012a. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328(11): 222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029 [38] Wang, T., Guo, L., Zheng, Y.D., et al., 2012b. Timing and Processes of Late Mesozoic Mid-Lower-Crustal Extension in Continental NE Asia and Implications for the Tectonic Setting of the Destruction of the North China Craton: Mainly Constrained by Zircon U-Pb Ages from Metamorphic Core Complexes. Lithos, 154: 315-345. https://doi.org/10.1016/j.lithos.2012.07.020 [39] Wang, Y.X., Gu, L. X., Zhang, Z. Z., et al., 2007. Sr-Nd-Pb Isotope Geochemistry of Rhyolite of the Late Carboniferous Dashitou Group in Eastern Tianshan. Acta Petrologica Sinica, 23(7): 1749-1755(in Chinese with English abstract). http://www.researchgate.net/publication/235353492_Sr-Nd-Pb_isotope_geochemistry_of_Rhyolite_of_the_Late_Carboniferous_Dashitou_group_in_eastern_Tianshan [40] Wang, Z.G., Yu, X.Y., Zhao, Z. H., 1989. Geochemisry of Rare Earth Elements. Science Press, Beijing (in Chinese). [41] Wei, Y.X., Zhao, X.M., Yang, J.X., et al., 2015. The Discovery of Orbicular Granodiorite and Its Petrographic Characteristics in Huangling, Hubei. Geological Bulletin of China, 34(8): 1541-1549(in Chinese with English abstract). http://www.researchgate.net/publication/285611484_The_discovery_of_orbicular_granodiorite_and_its_petrographic_characteristics_in_Huangling_Hubei [42] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [43] Wilson, M., 1989. Igneous Petrology: A Global Tectonic Approach. Unwin Hyman, London. [44] Wu, F. Y., Li, X. H., Yang, J. H., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). [45] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2000. Zircon U-Pb Ages of the Basement Rocks beneath the Songliao Basin, NE China. Chinese Science Bulletin, 45(6): 656-660(in Chinese with English abstract). doi: 10.1360/csb2000-45-6-656 [46] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857(in Chinese with English abstract). http://www.researchgate.net/publication/293238367_Preliminary_study_on_the_pre-Mesozoic_tectonic_unit_division_of_the_Xing-Meng_Orogenic_Belt_XMOB [47] Xu, M.J., Xu, W.L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29(2): 354-368(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201302003.htm [48] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44 (5): 1620-1640(in Chinese with English abstract). [49] Xu, W.L., Pei, F.P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Over-Printing and Tansformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. https://doi.org/10.1016/j.jseaes.2013.04.003 [50] Yang, Q.K., Guo, F.S., Yu, Y.S., et al., 2018. Genesis of Alkali-Feldspar Granite at Dawangshan Tungsten Polymetallic Ore Concentration Area in Central Jiangxi Province: Constraints from LA-ICP-MS Zircon U-Pb Chronology and Geochemistry. Geological Journal of China Universities, 24 (6): 856-871(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201270245270.html [51] Yang, X.P., Jiang, B., Yang, Y.J., 2019. Spatil-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area. Earth Science, 44 (10): 3237-3251(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910006.htm [52] Ying, J.F., Zhou, X.H., Zhang, L.C., et al., 2010. Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications. International Journal of Earth Sciences, 99(2): 357-378. https://doi.org/10.1007/s00531-008-0395-z [53] Zhang, L. G., 1995. Geology of Lithospheric Block in East Asia—Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Science Press, Beijing (in Chinese). [54] Zhang, L.C., Chen, Z. G., Zhou, X. H., et al., 2007. Characteristics of Deep Sources and Tectonic-Magmatic Evolution of the Early Cretaceous Volcanics in Genhe Area, Da-Hinggan Mountains: Constraints of Sr-Nd-Pb-Hf Isotopic Geochemistries. Acta Petrologica Sinica, 23(11): 2823-2835 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711014.htm [55] Zhang, L.C., Ying, J.F., Chen, Z.G., et al., 2008. Age and Tectonic Setting of Triassic Basic Volcanic Rocks in Southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911-920(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ysxb98200804029 [56] Zhang, Q., Jin, W.J., Li, C.D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents: Index. Acta Petrologica Sinica, 26(4): 985-1015(in Chinese with English abstract). http://www.researchgate.net/publication/285843532_Revisiting_the_new_classification_of_granitic_rocks_based_on_whole-rock_Sr_and_Yb_contents_Index [57] Zhang, Z.F., 1997. A Preliminary Discussion on the Mechanism of Songliao Large-Size Allochthon and Dahingganling Uplift. Geophysical and Geochemical Exploration, 21(2): 91-98(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199702001.htm [58] Zhao, Y., Song, B., Zhang, S.H., et al., 2006. Geochronology of the Inherited Zircons from Jurassic Nandaling Basalt of the Western Hills of Beijing, North China: Its Implications. Earth Science Frontiers, 13 (2): 184-190 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200602020.htm [59] Zhou, M.F., Arndt, N.T., Malpas, J., et al., 2008. Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China. Lithos, 103(3/4): 352-368. https://doi.org/10.1016/j.lithos.2007.10.006 [60] Zhou, X.H., Ying, J.F., Zhang, L.C., et al., 2009. The Petrogenesis of Late Mesozoic Volcanic Rock and the Contributions from Ancient Micro-Continents: Constraints from the Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopic Systematics. Earth Science, 34(1): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200901002.htm [61] Zhou, X.M., Zhu, Y.H., Chen, J.G., 1990. The Discovery of Orbicular Ultramafic Rocks and Its Genesis Research. Chinese Science Bulletin, 35(8): 604-606(in Chinese). doi: 10.1360/csb1990-35-8-604 [62] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [63] 邓晋福, 赵海玲, 莫宣学, 等, 1996. 中国大陆根-柱构造: 大陆动力学的钥匙. 北京: 地质出版社. [64] 范蔚茗, 郭峰, 高晓峰, 等, 2008. 东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义. 地球化学, 37(4): 361-372. doi: 10.3321/j.issn:0379-1726.2008.04.010 [65] 黄汲清, 任继舜, 姜春发, 等, 1981. 中国大地构造及其演化. 北京: 科学出版社. [66] 李锦轶, 莫申国, 和政军, 等, 2004. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约. 地学前缘, 11(3): 157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017 [67] 李四光, 1973. 地质力学概论. 北京: 科学出版社 [68] 李佐臣, 裴先治, 李瑞保, 等, 2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义. 岩石学报, 29(8): 2617-2634. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308001.htm [69] 梁琛岳, 刘永江, 李伟, 等, 2018. 大兴安岭北段伸展隆升样式: 来自科洛-嘎拉山韧性变形带的证据. 岩石学报, 34 (10): 2873-2900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810005.htm [70] 林强, 葛文春, 曹林, 等, 2003. 大兴安岭中生代双峰式火山岩的地球化学特征. 地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 [71] 刘勃然, 李伟, 张守志, 等, 2016. 大兴安岭北段伸展构造. 吉林大学学报(地球科学版), 46(5): 1440-1448. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605015.htm [72] 马芳, 穆治国, 刘玉琳, 2004a. 河北滦平球状闪长岩年代学及其地质意义. 地质论评, 50(4): 360-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404003.htm [73] 马芳, 穆治国, 刘玉琳, 等, 2004b. 河北滦平球状闪长岩岩石地球化学特征与源区性质探讨. 地球化学, 33(6): 593-601. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406006.htm [74] 马芳, 穆治国, 刘玉琳, 2004c. 滦平球状闪长岩岩相学特征和球状构造成因探讨. 岩石学报, 20(6): 1424-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406011.htm [75] 邵济安, 张履桥, 牟保垒, 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社 [76] 孙德有, 许文良, 周燕, 1994. 大兴安岭中生代火山岩的形成机制. 矿物岩石地球化学通报, 13(3): 162-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH403.015.htm [77] 汪岩, 钱程, 钟辉, 等, 2017. 内蒙古乌拉盖苏木球状酸性浅成岩的发现及其岩相学特征. 地质通报, 36(2): 321-330. doi: 10.3969/j.issn.1671-2552.2017.02.016 [78] 王银喜, 顾连兴, 张遵忠, 等, 2007. 东天山晚石炭世大石头群流纹Sr-Nd-Pb同位素地球化学研究. 岩石学报, 23(7): 1749 -1755. doi: 10.3969/j.issn.1000-0569.2007.07.020 [79] 王中刚, 于学元, 赵振华, 1989. 稀土元素地球化学. 北京: 科学出版社. [80] 魏运许, 赵小明, 杨金香, 等, 2015. 湖北黄陵球状花岗闪长岩的发现及其岩相学特征. 地质通报, 34(8): 1541-1549. doi: 10.3969/j.issn.1671-2552.2015.08.013 [81] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [82] 吴福元, 孙德有, 李惠民, 等, 2000. 松辽盆地基底岩石的锆石U-Pb年龄. 科学通报, 45(6): 656-660. doi: 10.3321/j.issn:0023-074X.2000.06.021 [83] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [84] 徐美君, 许文良, 王枫, 等, 2013. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义. 岩石学报, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm [85] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化. 地球科学, 44(5): 1620-1640. doi: 10.3799/dqkx.2019.036 [86] 杨庆坤, 郭福生, 于玉帅, 等, 2018. 赣中大王山钨多金属矿床中碱长花岗岩成因: 来自LA-ICP-MS锆石U-Pb年代学、岩石地球化学的制约. 高校地质学报, 24(6): 856-871. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806007.htm [87] 杨晓平, 江斌, 杨雅军, 2019. 大兴安岭早白垩世火山岩的时空分布特征. 地球科学, 44(10): 3237-3251. doi: 10.3799/dqkx.2019.080 [88] 张理刚, 1995. 东亚岩石圈块体地质-上地幔、基底和花岗岩同位素地球化学及其动力学. 北京, 科学出版社. [89] 张连昌, 陈志广, 周新华, 等, 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约. 岩石学报, 23(11): 2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013 [90] 张连昌, 英基丰, 陈志广, 等, 2008. 大兴安岭南段三叠纪基性火山岩时代与构造环境. 岩石学报, 24(4): 911-920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804030.htm [91] 张旗, 金惟俊, 李承东, 等, 2010. 再论花岗岩按照Sr-Yb的分类: 标志. 岩石学报, 26(4): 985-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004002.htm [92] 张振法, 1997. 松辽大型移置体和大兴安岭隆起机制探讨. 物探与化探, 21(2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199702001.htm [93] 赵越, 宋彪, 张拴宏, 等, 2006. 北京西山侏罗纪南大岭组玄武岩的继承年代学及其含义. 地学前缘, 13(2): 184-190. doi: 10.3321/j.issn:1005-2321.2006.02.016 [94] 周新华, 英基丰, 张连昌, 等, 2009. 大兴安岭晚中生代火山岩成因与古老地块物质贡献: 锆石U-Pb年龄及多元同位素制约. 地球科学, 34(1): 1-10. http://www.earth-science.net/article/id/1781 [95] 周新民, 朱云鹤, 陈建国, 1990. 超镁铁球状岩的发现及其成因研究. 科学通报, 35(8): 604-606. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199008012.htm