• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据

    张炜 周汉文 朱云海 毛武林 佟鑫 马占青 曹永亮

    张炜, 周汉文, 朱云海, 毛武林, 佟鑫, 马占青, 曹永亮, 2016. 东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据. 地球科学, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520
    引用本文: 张炜, 周汉文, 朱云海, 毛武林, 佟鑫, 马占青, 曹永亮, 2016. 东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据. 地球科学, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520
    Zhang Wei, Zhou Hanwen, Zhu Yunhai, Mao Wulin, Tong Xin, Ma Zhanqing, Cao Yongliang, 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520
    Citation: Zhang Wei, Zhou Hanwen, Zhu Yunhai, Mao Wulin, Tong Xin, Ma Zhanqing, Cao Yongliang, 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520

    东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据

    doi: 10.3799/dqkx.2016.520
    基金项目: 

    中国地质调查局地质调查工作项目 1212011086001

    详细信息
      作者简介:

      张炜(1990-),男,硕士研究生,岩石学、矿物学、矿床学专业.E-mail: zhangwei_9010@163.com

      通讯作者:

      周汉文,E-mail: hwzhou@cug.edu.cn

    • 中图分类号: P581

    The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton

    • 摘要: 东昆仑造山带在三叠纪不仅是一个重要的构造-岩浆带,也是一个对于国民经济非常重要的多金属成矿带.该区在三叠纪形成了大量与成矿有关的花岗岩,它们之间的联系、与区域构造运动的关系目前尚未明确.在莫河下拉银多金属矿花岗斑岩岩相学、地球化学和锆石年代学的研究基础上,总结了东昆仑地区三叠纪与成矿有关花岗岩的基本特征,并探讨了它们的演化规律.结果表明:(1) 东昆仑与成矿有关的三叠纪花岗岩年龄为250~200 Ma,具有一个由低K系列-中K钙碱性系列向高K系列-钾玄岩系列过渡的明显趋势,240~200 Ma,A/NK比值由2.00降到1.00;(2)(87Sr/86Sr)i为0.710~0.715,εNd(t)值为-0.6~0.0,εHf(t)主要集中在-5~1,峰值为-2~-1,表明东昆仑与成矿有关三叠纪花岗岩物质主要来源于古老的地壳物质,同时有少量的幔源物质加入;(3) 东昆仑地区在240 Ma进入后造山阶段,出现大规模的钙碱性花岗岩,220 Ma之后花岗岩大量减少,210~204 Ma出现的花岗岩以碱性A型花岗岩为主,标志着碰撞造山结束进入到板内裂解阶段.

       

    • 图  1  中国西部的主要构造单元(a)、东昆仑造山带3个亚带划分(b)和东昆仑造山带P-T花岗岩与三叠纪矿产分布(c)

      矿点:① 埃坑徳勒斯特钼铜多金属矿;② 虎头崖景忍铅锌多金属矿;③ 卡而却卡铜多金属矿;④ 哈日扎铜钼多金属矿;⑤ 尕林格铁矿;⑥ 克妥铜钼多金属矿;⑦ 哈陇休玛钨钼矿;⑧ 加当根铜钼多金属矿;⑨ 鸭子沟铜钼多金属矿;⑩ 漠河下拉银铅锌多金属矿;⑪ 乌兰乌珠儿铜矿;⑫ 于沟子铁-稀有金属矿.年龄出处同表 1表 2.图a据姜春发等(1992)修改;图c据Huang et al.(2014) 修改

      Fig.  1.  Major tectonic units of West China (a), three sub-tectonic zones of the East Kunlun orogenic belt (b) and distribution of P-T granites and the Triassic mineral of the East Kunlun orogenic belt (c)

      图  2  莫河下拉银多金属矿矿区地质简图

      1.第四系冲洪积物;2.晚泥盆世牦牛山组;3.古元古代金水口岩群;4.晚侏罗世钾长花岗岩;5.晚三叠世二长花岗岩;6.晚三叠世斑状二长花岗岩;7.晚三叠世闪长岩;8.晚三叠世钾长花岗岩;9.晚泥盆世辉长岩;10.铜矿脉;11.锌矿脉;12.银矿脉;13.断层;14.推测断层;15.采样钻孔位置及钻孔编号

      Fig.  2.  Geology sketch of Mohexiala silver poly-metallic ore

      图  3  莫河下拉花岗斑岩手标本及显微照片

      a.钻孔11MZK08花岗斑岩岩心照片;b.钻孔12MZK1500花岗斑岩岩心照片;c.花岗斑岩斜长石斑晶显微照片(正交);d.花岗斑岩钾长石斑晶显微照片(正交).矿物代号缩写:Kf.钾长石;Pl.斜长石;Bi.黑云母;Ep.绿帘石

      Fig.  3.  Photos of samples and photomicrographs under plane polarized light of Mohexiala granite-porphyry

      图  4  东昆仑与成矿有关三叠纪花岗岩K2O-SiO2(a)和A/NK-A/CNK(b)关系

      图a据Rickwood(1989);图b据Maniar and Piccoli(1989);数据来源同表 1

      Fig.  4.  K2O-SiO2 (a) and A/NK-A/CNK (b) relations of the East Kunlun Triassic granites associated with mineralization

      图  5  东昆仑与成矿有关三叠纪花岗岩微量元素蛛网图(a)与稀土元素配分曲线(b)

      200~210 Ma期间是根据一组数据绘制的曲线,而210~220 Ma、220~230 Ma和230~240 Ma期间均是根据多组数据构成的范围图框;原始地幔和球粒陨石标准化值据Sun and McDonough(1989);数据来源同表 1

      Fig.  5.  Trace elements spider diagram (a) and REE pattern (b) of East Kunlun Triassic granites associated with mineralization

      图  6  莫河下拉花岗斑岩锆石CL照片

      Fig.  6.  CL images of zircons of Mohexiala granite-porphyry

      图  7  莫河下拉花岗斑岩锆石U-Pb年龄谐和图

      Fig.  7.  Zircon U-Pb concordia diagram of Mohexiala granite-porphyry

      图  8  东昆仑与成矿有关三叠纪花岗岩(87Sr/86Sr)i-εNd(t)关系(a)和锆石εHf(t)分布(b)

      图a数据引自于丰成友等(2012)高永宝(2013).图b:1.虎头崖239 Ma二长花岗岩;2.尕林格234 Ma石英二长岩;3.卡而却卡B矿区234 Ma花岗闪长岩;4.尕林格228 Ma石英二长闪长岩;5.虎头崖224 Ma花岗闪长岩;6.于沟子210 Ma钾长花岗岩;数据来自于高永宝(2013)

      Fig.  8.  (87Sr/86Sr)i-εNd(t) relation (a) and zircon εHf(t) distribution (b) of East Kunlun Triassic granites associated with mineralization

      图  9  东昆仑与成矿有关三叠纪花岗岩R1-R2和SiO2-Mg#关系

      a图据Batchelor and Bowden(1985)R1=4Si-11(Na+K)-2(Fe+Ti),R2=6Ca+2Mg+Al;b图据Stern and Kilian(1996);引用数据来源同表 1

      Fig.  9.  R1-R2 and SiO2-Mg# relations of East Kunlun Triassic granites associated with mineralization

      图  10  东昆仑与成矿有关三叠纪花岗岩构造判别图解

      VAG.火山弧花岗岩;Syn-COLG.同碰撞花岗岩;Post-COLG.后碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩.底图据Boynton(1983);引用数据来源同表 1

      Fig.  10.  Tectonic discrimination diagram of East Kunlun Triassic granites associated with mineralization

      表  1  东昆仑与成矿有关三叠纪花岗岩统计

      Table  1.   Statistics of East Kunlun Triassic granites associated with mineralization

      序号 位置 矿种 岩石 年龄(Ma) 年龄测试方法 出处
      1 埃坑德勒斯特 钼铜矿 花岗斑岩 248.0±1.0 锆石LA-ICP-MS 许庆林,2014
      2 虎头崖景忍 铅锌多金属矿 二长花岗岩 239.7±0.8 锆石LA-ICP-MS 高永宝,2013
      3 卡而却卡 铜多金属矿 花岗闪长岩 237.0±2.0 锆石SHRIMP 王松等,2009
      4 虎头崖 铅锌多金属矿 含暗色包体花岗闪长岩 235.4±1.8 锆石LA-ICP-MS 丰成友等,2011
      5 哈日扎 铜钼多金属矿 花岗闪长斑岩 234.5±4.8 锆石LA-ICP-MS 宋忠宝等,2013
      6 尕林格 铁矿 石英二长岩 234.4±0.6 锆石LA-ICP-MS 高永宝,2013
      7 卡而却卡B矿区 铜多金属矿 花岗闪长岩 234.4±0.6 锆石LA-ICP-MS 高永宝,2013
      8 卡而却卡B矿区 铜多金属矿 花岗闪长岩的暗色包体 234.1±0.6 锆石LA-ICP-MS 高永宝,2013
      9 托克妥 铜钼多金属矿 二长花岗斑岩 232.5±0.9 锆石LA-ICP-MS 夏锐等,2014
      10 托克妥 铜钼多金属矿 花岗闪长斑岩 232.6±1.2 锆石LA-ICP-MS 夏锐等,2014
      11 哈陇休玛 钨钼矿 花岗闪长斑岩 230.0±1.0 锆石LA-ICP-MS 许庆林,2014
      12 尕林格 铁矿 含暗色包体花岗岩 229.0±1.0 锆石LA-ICP-MS 于淼,2013
      13 尕林格 铁矿 石英二长闪长岩 228.3±0.5 锆石LA-ICP-MS 高永宝,2013
      14 加当根 铜钼矿 花岗闪长斑岩 227.0±1.0 锆石LA-ICP-MS 许庆林,2014
      15 卡而却卡 似斑状二长花岗岩 227.3±1.8 锆石SHRIMP 丰成友等,2012
      16 虎头崖景忍 铅锌多金属矿 花岗闪长岩 224.3±0.6 锆石LA-ICP-MS 高永宝,2013
      17 鸭子沟 多金属矿 钾长花岗斑岩 224.0±1.6 锆石SHRIMP 李世金等,2008
      18 莫河下拉 银铅锌多金属矿 花岗斑岩 222.0±1.0 锆石LA-ICP-MS 许庆林,2014
      19 长山 钾长花岗岩 219.9±1.3 锆石SHRIMP 丰成友等,2012
      20 虎头崖 铅锌多金属矿 二长花岗岩 219.2±1.4 锆石LA-ICP-MS 丰成友等,2011
      21 乌兰乌珠儿 斑岩铜矿 花岗斑岩 215.1±4.5 锆石SHRIMP 佘宏全等,2007
      22 于沟子 铁-稀有金属矿 (碱性)钾长花岗岩 210.0±0.6 锆石LA-ICP-MS 高永宝,2013
      23 虎头崖景忍 铁多金属矿 正长花岗岩 204.1±2.6 锆石SHRIMP 刘云华等,2006
      下载: 导出CSV

      表  2  东昆仑三叠纪花岗岩矿床统计

      Table  2.   Statistics of East Kunlun Triassic granites mineral deposits

      序号 位置 矿种 矿石 年龄(Ma) 年龄测试方法 出处
      1 虎头崖 铅锌多金属矿 铜多金属矿石 225.0±4.0 辉钼矿Re-Os 丰成友等,2011
      2 虎头崖 铅锌多金属矿 钼矿石 230.0±4.7 辉钼矿Re-Os 丰成友等,2011
      3 鸭子沟 多金属矿 辉钼矿 224.7±3.4 辉钼矿Re-Os 李世金等,2008
      4 卡而却卡 铜多金属矿 辉钼矿 245.5±1.6 辉钼矿Re-Os 高永宝,2013
      5 卡而却卡 铜多金属矿 辉钼矿 239.0±11.0 辉钼矿Re-Os 丰成友等,2009
      6 加当根 铜钼矿 辉钼矿 227.2±1.9 辉钼矿Re-Os 向鹏等,2011
      下载: 导出CSV

      表  3  莫河下拉花岗斑岩主量元素(%)、微量和稀土元素(10-6)分析结果

      Table  3.   Major elements (%), trace elements and rare earth elements (10-6) concentrations of Mohexiala granite-porphyry

      样品号 11MZK08
      TW1
      12MZK1500
      TW04
      12MZK1500
      TW03
      SiO2 65.8 68.7 66.9
      TiO2 0.34 0.32 0.34
      Al2O3 14.1 15.3 15.0
      Fe2O3 3.82 3.06 3.71
      MnO 0.19 0.04 0.07
      MgO 0.58 0.63 0.66
      CaO 1.64 1.92 1.81
      Na2O 2.16 4.13 3.96
      K2O 5.88 4.36 4.37
      P2O5 0.11 0.10 0.11
      BaO 0.12 0.10 0.09
      Total 100.7 100.2 99.9
      LOI 3.63 1.42 2.35
      A/CNK 1.09 1.02 1.03
      A/NK 1.42 1.33 1.33
      K2O/Na2O 2.72 1.06 1.10
      Mg# 23.2 29.1 26.2
      K 4.88 3.62 3.63
      P 480 436 480
      Ti 2 040 1 920 2 040
      Ba 1110 852 783
      Ce 85.1 79.1 78.3
      Cr <10 <10 <10
      Cs 7.32 7.64 8.25
      Dy 3.46 3.21 3.16
      Er 1.96 2.04 2.00
      Eu 1.04 0.89 0.86
      Ga 15.0 17.4 16.9
      Gd 3.77 3.33 3.44
      Hf 7.30 7.10 7.00
      Ho 0.71 0.66 0.70
      La 43.4 41.1 40.9
      Lu 0.34 0.35 0.33
      Nb 11.9 11.5 11.5
      Nd 27.5 25.7 26.0
      Pr 8.12 7.58 7.64
      Rb 264 184 221
      Sm 4.83 4.45 4.51
      Sn 40.0 15.0 18.0
      Sr 125 340 251
      Ta 1.20 1.10 1.10
      Tb 0.63 0.57 0.58
      Th 18.1 17.8 17.5
      Tm 0.32 0.31 0.30
      U 5.31 5.08 5.05
      V 17.0 18.0 17.0
      W 721 524 574
      Y 19.7 19.5 19.9
      Yb 2.00 2.16 2.07
      Zr 253 242 242
      (La/Yb)N 15.6 13.6 14.2
      R1 2 142 2 011 1 933
      R2 481 538 521
      Y+Yb 21.7 21.6 21.9
      Sr/Y 6.3 17.4 12.6
      Ba/Th 61.3 47.8 44.7
      Nb/Zr 0.05 0.05 0.05
      Rb/Sr 2.11 0.54 0.88
      Rb/Ba 0.24 0.22 0.28
      Y+Nb 31.6 31.0 31.4
      Yb+Ta 3.20 3.26 3.17
      ∑REE 183 171 170
      LREE 169 158 158
      HREE 13.1 12.6 12.5
      LREE/HREE 12.8 12.5 12.5
        注:LOI为烧失量,单位为%;Mg#=Mg2+/(Mg2++Fe2+);A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔数比);A/NK=Al2O3/(Na2O+K2O)(摩尔数比);R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+Al;(La/Yb)N标准化数据来自于Sun and McDonough(1989).
      下载: 导出CSV

      表  4  莫河下拉银多金属矿花岗斑岩LA-ICP-MS锆石U-Pb测年结果

      Table  4.   LA-ICP-MS U-Pb zircons dating results of Mohexiala granite-porphyry

      分析点号 Th(10-6) U(10-6) Th/U 207Pb/235U 1σ 206Pb/238U 1σ 年龄(Ma) 谐和度(%)
      207Pb/235U 1σ 206Pb/238U 1σ
      12MZK1500TW03-01 124 203 0.61 0.238 9 0.013 1 0.035 1 0.000 5 218 11 222 3 97
      12MZK1500TW03-02 133 222 0.60 0.242 6 0.014 3 0.035 5 0.000 5 221 12 225 3 98
      12MZK1500TW03-03 162 251 0.65 0.256 1 0.012 6 0.034 4 0.000 4 231 10 218 3 94
      12MZK1500TW03-04 132 230 0.57 0.247 3 0.013 6 0.034 9 0.000 4 224 11 221 3 98
      12MZK1500TW03-05 118 208 0.57 0.250 5 0.013 9 0.034 8 0.000 5 227 11 221 3 97
      12MZK1500TW03-06 100 180 0.55 0.251 0 0.017 2 0.034 8 0.000 5 227 14 220 3 96
      12MZK1500TW03-07 96 174 0.55 0.247 8 0.015 7 0.035 1 0.000 6 225 13 223 4 99
      12MZK1500TW03-08 120 219 0.55 0.242 3 0.013 5 0.035 0 0.000 5 220 11 222 3 99
      12MZK1500TW03-09 106 189 0.56 0.245 3 0.015 0 0.035 2 0.000 5 223 12 223 3 99
      12MZK1500TW03-10 88 132 0.66 0.253 8 0.019 2 0.035 1 0.000 6 230 16 222 4 96
      12MZK1500TW03-11 110 206 0.54 0.251 1 0.014 5 0.035 0 0.000 6 228 12 222 3 97
      12MZK1500TW03-12 133 228 0.58 0.251 8 0.013 4 0.034 5 0.000 5 228 11 218 3 95
      12MZK1500TW03-13 124 208 0.59 0.241 5 0.015 2 0.035 3 0.000 5 220 12 224 3 98
      12MZK1500TW03-14 115 204 0.56 0.230 5 0.013 0 0.034 6 0.000 5 211 11 219 3 95
      12MZK1500TW03-15 116 204 0.57 0.232 3 0.013 4 0.035 1 0.000 5 212 11 223 3 95
      12MZK1500TW03-16 148 223 0.66 0.251 9 0.012 1 0.034 8 0.000 5 228 10 221 3 96
      12MZK1500TW03-17 118 210 0.56 0.261 8 0.013 2 0.034 9 0.000 4 236 11 221 3 93
      12MZK1500TW03-18 121 213 0.57 0.255 4 0.013 5 0.035 7 0.000 5 231 11 226 3 97
      12MZK1500TW03-19 87 161 0.54 0.233 4 0.015 2 0.034 8 0.000 5 213 13 220 3 96
      12MZK1500TW03-20 95 174 0.54 0.241 4 0.013 3 0.034 9 0.000 5 220 11 221 3 99
      12MZK1500TW03-21 111 168 0.66 0.240 1 0.018 8 0.035 0 0.000 5 218 15 222 3 98
      12MZK1500TW03-22 130 231 0.56 0.243 8 0.013 3 0.035 0 0.000 5 222 11 222 3 99
      12MZK1500TW03-23 109 191 0.57 0.246 4 0.015 4 0.035 1 0.000 5 224 13 222 3 99
      12MZK1500TW03-24 66 130 0.51 0.242 2 0.019 5 0.034 6 0.000 5 220 16 220 3 99
      12MZK1500TW03-25 99 176 0.56 0.231 5 0.017 1 0.034 3 0.000 5 211 14 217 3 97
      12MZK1500TW03-26 104 194 0.54 0.250 1 0.013 5 0.034 6 0.000 5 227 11 219 3 96
      12MZK1500TW03-27 111 201 0.55 0.235 4 0.013 7 0.035 5 0.000 5 215 11 225 3 95
      12MZK1500TW03-28 102 187 0.55 0.243 2 0.015 8 0.034 9 0.000 5 221 13 221 3 99
      12MZK1500TW03-29 86 148 0.58 0.242 6 0.018 3 0.034 9 0.000 5 221 15 221 3 99
      12MZK1500TW03-30 104 197 0.53 0.236 7 0.013 9 0.034 8 0.000 5 216 11 221 3 97
      下载: 导出CSV
    • [1] Bai, H.K., Ma, H.Y., E, Q.L., et al., 2012.Geological Characteristics and Genesis of in the Mohexiala Silver Polymetallic Deposit, Golmud, Qinghai Province.Urban Construction Theory Research, (7) (in Chinese).
      [2] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55.doi:10.1016/0009-2541(85)900 34-8
      [3] Bian, Q.T., Luo, X.Q., Li, D.H., et al., 2001.Geochemistry and Formation Environment of the Buqingshan Ophiolite Complex, Qinghai Province, China.Acta Geologica Sinica, 75(1):45-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200101008.htm
      [4] Boynton, W.V., 1983.Cosmochemistry of the Rare Earth Elements, Meteorite Studies.Developments in Geochemistry, 2(2):63-114.doi: 10.1016/b978-0-444-42148-7.50008-3
      [5] Chen, G.C., 2014.Petrology, Genesis and Geological Significance of Late Paleozoic-Early Mesozoic Granitoids in East Kunlun Orogen (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract).
      [6] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Late Triassic Magma Mixing in the East Kunlun Orogenic Belt.A Case Study of Helegang Xilikete Granodiorites.Geology in China, 40(4):1044-1065 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304006.htm
      [7] Feng, C.Y., Li, D.S., Qu, W.J., et al., 2009.Re-Os Isotipic Dating of Molybdenite from the Suolajier Skarn-Type Copper-Molybdenum Deposit of Qimantage Mountain in Qinghai Province and Its Geological Significance.Rock and Mineral Analysis, 28(3):223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903012.htm
      [8] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qiamantage Area, Qinghai Province, China.Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678 (in Chinese with English abstract). http://www.oalib.com/paper/1475917
      [9] Feng, C.Y., Wang, X.P., Shu, X.F., et al., 2011.Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghai Province and Its Geological Significance.Journal of Jilin University (Earth Science Edition), 41(6):1806-1817 (in Chinese with English abstract). https://www.researchgate.net/publication/283873870_Isotopic_chronology_of_the_Hutouya_skarn_lead-zinc_polymetallic_ore_district_in_Qimantage_area_of_Qinghai_Province_and_its_geological_significance
      [10] Gao, Y.B., 2013.The Intermediate-Acid Intrusive Magmatism and Minerlizationg in Qimantag, East Kunlun Moutains (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract).
      [11] Gu, F.B., 1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaezoic-Mesozoic Era.Geology of Qinghai, (1):4-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL199401001.htm
      [12] Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998.Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermedate-Acidic Igneous Rocks from the Eastern Kunlun Moutains of Northweatern China.Geoscience, 12(3):51-59 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ803.006.htm
      [13] He, S.Y., Qi, L.Y., Shu, S.L., et al., 2008.Metallogenic Environment and Potential in the Qimantage Porphyry Copper Deposit, Qinghai.Geology and Prospecting, 44(2):14-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200802004.htm
      [14] Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62.doi.10.2113/0530027 doi: 10.2113/0530027
      [15] Huang, H., Niu, Y.L., Nowell, G, et al., 2014.Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism.Chemical Geology, 370:1-18.doi: 10.1016/j.chemgeo.2014.01.010
      [16] Jiang, C.F., Wang, Z.Q., Li, J.Y., 2000.Close-Open Tectonic of Central Orogenic Belt.Geological Publishing House, Beijing (in Chinese).
      [17] Jiang, C.F., Yang, J.S., Feng, B.G., et al., 1992.Close-Open Tectonic of Kunlun Orogenic Belt.Geological Publishing House, Beijing (in Chinese).
      [18] Li, B.L., Shen, X., Chen, G.J., et al., 2012.Geochemical Features of Ore-Forming Fluids and Metallogenesis of Vein Ⅰ in Asiha Gold Ore Deposit, Eastern Kunlun, Qinghai Province.Journal of Jilin University (Earth Science Edition), 42(6):1676-1687 (in Chinese with English abstract). https://www.researchgate.net/publication/287527258_Geochemical_features_of_ore-forming_fluids_and_metallogenesis_of_Vein_I_in_Asiha_gold_ore_deposit_Eastern_Kunlun_Qinghai_province
      [19] Li, C.N., 1992.Trace Elements Petrology of Igneous.China University of Geosciences Press, Wuhan, 181 (in Chinese).
      [20] Li, D.X., Zhang, D.Q., Cui, Y.H., et al., 2003.The Root Part of the Xiaosaishitengshan Porphyry Cu (Mo) Deposit.Acta Geoscientia Sinica, 24(3):211-218 (in Chinese with English abstract). http://www.oalib.com/paper/1557589
      [21] Li, S.J., Sun, F.Y., Feng, C.Y., et al., 2008.Geochronological Study on Yazigou Polymetallic Deposit in Eastern Kunlun, Qinhai Province.Acta Geologica Sinica, 82(7):949-955 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200807015.htm
      [22] Li, X.H., Zhou, H.W., Liu, Y., et al., 2001.Mesozoic Shoshonitic Intrusives in the Yangchun Basin, Western Guangdong, and Their Tectonic Significance.Ⅱ.Trace Elements and Sr-Nd Isotopes.Geochimica, 1(30):57-65 (in Chinese with English abstract). https://www.researchgate.net/publication/284045263_Mesozoic_shoshonitic_intrusives_in_the_Yangchun_Basin_western_Guangdong_and_their_tectonic_significance_I_Petrology_and_isotope_geochronology
      [23] Liu, Y.H., Mo, X.X., Yu, X.H., et al., 2006.Zircon SHRIMP U-Pb Dating of the Jingren Granite, Yemaquan Region of the East Kunlun and Its Geological Significance.Acta Petrologica Sinica, 22(10):2457-2463 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200610005.htm
      [24] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridoite Interactions in the Trans-North Orogen.U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.doi:10.1093/petrolo gy/egp082
      [25] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546.doi: 10.1007/s11434-010-3052-4
      [26] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43.doi.10.1016/j.chem geo.2008.08.004 doi: 10.1016/j.chemgeo.2008.08.004
      [27] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014.Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Triassic Granites from the Xiangride Area, East Kunlun.Acta Petrologica Sinica, 30(11):3229-3241 (in Chinese with English abstract). https://www.researchgate.net/publication/305533634_Zircon_LA-ICP-MS_U-Pb_age_dating_petrogenesis_and_tectonic_implications_of_the_Late_Triassic_granites_from_the_Xiangride_area_East_Kunlun
      [28] Luo, Z.H., Deng, J.F., Cao, Y.Q., et al., 1999.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun, Qinghai Province.Geoscience, 13(1):51-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.007.htm
      [29] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Drived Magmatism in the East Kunlun.Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun
      [30] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.doi:10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [31] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M
      [32] Pearce, J., 1996.Sources and Setting of Granitic Rocks.Episodes, 19(4):120-125. http://www.episodes.org/index.php/epi/article/viewFile/62996/49159
      [33] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263.doi: 10.1016/0024-4937(89)90028-5
      [34] Roberts, M.P., Clemens, J.D., 1993.Origin of High-Potassium, Talc-Alkaline, Ⅰ-Type Granitoids.Geology, 21(9):825.doi:10.1130/091-7613(1993)021<0825:oohpta>2.3.co;2
      [35] She, H.Q., Zhang, D.Q., Jing, X.Y., et al., 2007.Geological Characteristics and Genesis of the Ulan Uzhur Porphyry Copper Deposit in Qinghai.Geology in China, 34(2):306-314 (in Chinese with English abstract). https://www.researchgate.net/publication/288431069_Geological_characteristics_and_genesis_of_the_Ulan_Uzhur_porphyry_copper_deposit_in_Qinghai
      [36] Song, Z.B., Jia, Q.Z., Zhang, Z.Y., et al., 2010.Study on Geological Feature and Origin of Yemaquan Fe-Cu Deposit in Qimantage Area, Eastern Kunlun.Northwestern Geology, 43(4):209-217 (in Chinese with English abstract). https://www.researchgate.net/publication/281224511_Study_on_geological_feature_and_origin_of_Yemaquan_Fe-Cu_deposit_in_Qimantage_area_Eastern_Kunlun
      [37] Song, Z.B., Zhang, Y.L., Chen, X.Y., et al., 2013.Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications.Mineral Deposits, 32(1):157-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201301014.htm
      [38] Stern, C.R., Kilian, R., 1996.Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone.Constributions to Mineralogy and Petrology, 123(3):263-281.doi.10.1007/s00410 0050155 doi: 10.1007/s004100050155
      [39] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematic of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.doi: 10.1144/gsl.sp.1989.042.01.19
      [40] Wang, S., Feng, C.Y., Li, S.J., et al., 2009.Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit, Qimantage Mountain, Qinghai Province, and Its Geological Implications.Geology in China, 36(1):74-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901008.htm
      [41] Wang, Y.J., Shen, Y.C., Lin, G., et al., 1999.Paleozoic Tectonmagmatism in the Northern Central Kunlun Mountains and Its Evolution.Acta Geoscientia Sinica, 20(1):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB901.000.htm
      [42] Wu, J.H., Feng, C.Y., Zhang, D.Q., et al., 2010.Geology of Porphyry and Skarn Type Copper Polymetallic Deposits in Southern Margin of Qaidam Basin.Mineral Deposits, 29(5):760-774 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201005003.htm
      [43] Xia, R., Qing, M., Wang, C.M., et al., 2014.The Genesis of the Ore-Bearing Porphry of the Tuoketuo Porphry Cu-Au (Mo) Deposit in the East Kunlun, Qinghai Province.Constraints from Zircon U-Pb Geochronalogical and Geochemistry.Journal of Jilin Univesity (Earth Science Edition), 44(5):1502-1524 (in Chinese with English abstract). https://www.researchgate.net/publication/286654334_The_genesis_of_the_ore-bearing_porphyry_of_the_Tuoketuo_porphyry_Cu-AuMo_deposit_in_the_East_Kunlun_Qinghai_Province_Constraints_from_zircon_U-Pb_geochronological_and_geochemistry
      [44] Xiang, P., 2011.Mineralization Characteristics and Conditions of the Jiadanggen Porphyry Cu (Mo) Deposit, Qinghai Province, China (Dissertation).China University of Geosciences, Wuhan.
      [45] Xiang, P., Yao, S.Z., Zhou.Z.G., 2013.Geochemistry and Genesis of Igneous Rocks in Jiadanggen Porphyry Cu (Mo) Deposit, Qinghai Province, China.Northwestern Geology, 46(1):139-153 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201301018.htm
      [46] Xu, Q.L., 2014.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province (Dissertation).Jilin University, Changchun (in Chinese with English abstract).
      [47] Xu, Q.L., Sun, F.Y., Li, B.Y., et al., 2014.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-Porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia, 38(2):421-433 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201402021.htm
      [48] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231.doi:10.1016/0040-1951 (95)00199-9
      [49] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009.Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau.Evidence for Paleo-Tethyan Suture in Northwest China.Journal of Earth Science, 20(2):303-331.doi.10.1007/s12583-009-0027-y doi: 10.1007/s12583-009-0027-y
      [50] Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):3-6 (in Chinese with English abstract). https://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt
      [51] Yu, M., 2013.Geochemistry and Zonation of the Galinge Iron Deposit, Qinghai Province (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      [52] Yuan, W.M., Mo, X.X., Yu, X.H., et al., 2000.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Moutains.Geological Review, 46(2):203-211 (in Chinese with English abstract). https://www.researchgate.net/publication/284296821_The_record_of_Indosinian_tectonic_setting_from_the_granotoid_of_eastern_Kunlun_Mountains
      [53] Zhang, D.Q., Dang, X.Y., She, H.Q., et al., 2005.Ar-Ar Dating of Orogenic Gold Deposits in Northern Margin of Qaidam and East Kunlun Moutains and Its Geological Significance.Mineral Deposits, 24(2):87-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200502000.htm
      [54] 拜红奎, 马鸿颖, 鄂琴莲, 等, 2012.青海省格尔木市莫河下拉银多金属矿地质特征及成因浅析.城市建设理论研究(电子版), (7). http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085071.htm
      [55] 边千韬, 罗小全, 李涤徽, 等, 2001.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境.地质学报, 75(1): 45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101008.htm
      [56] 陈国超, 2014. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义(博士学位论文). 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070097.htm
      [57] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例.中国地质, 40(4): 1044-1065. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201304006.htm
      [58] 丰成友, 李东生, 屈文俊, 等, 2009.青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义.岩矿测试, 28(3): 223-227. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200903012.htm
      [59] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2): 665-678. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm
      [60] 丰成友, 王雪萍, 舒晓峰, 等, 2011.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义.吉林大学学报(地球科学版), 41(6): 1806-1817. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106014.htm
      [61] 高永宝, 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用(博士学位论文). 西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014032422.htm
      [62] 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, (1): 4-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199401001.htm
      [63] 郭正府, 邓晋福, 许志琴, 等, 1998.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程.现代地质, 12(3): 51-59. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
      [64] 何书跃, 祁兰英, 舒树兰, 等, 2008.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探, 44(2): 14-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200802004.htm
      [65] 姜春发, 王宗起, 李锦轶, 2000.中央造山带开合构造.北京:地质出版社.
      [66] 姜春发, 杨经绥, 冯秉贵, 等, 1992.昆仑开合构造.北京:地质出版社.
      [67] 李碧乐, 沈鑫, 陈广俊, 等, 2012.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因.吉林大学学报(地球科学版), 42(6): 1676-1687. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206013.htm
      [68] 李昌年, 1992.火成岩微量元素岩石学.武汉:中国地质大学出版社, 181.
      [69] 李大新, 张德全, 崔艳合, 等, 2003.小赛什腾山斑岩铜(钼)矿床根部带的特征.地球学报, 24(3): 211-218. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200303002.htm
      [70] 李世金, 孙丰月, 丰成友, 等, 2008.青海东昆仑鸭子沟多金属矿的成矿年代学研究.地质学报, 82(7): 949-955. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807015.htm
      [71] 李献华, 周汉文, 刘颖, 等, 2001.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球化学.地球化学, 1(30): 57-65. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101007.htm
      [72] 刘云华, 莫宣学, 喻学惠, 等, 2006.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 22(10): 2457-2463. doi: 10.3969/j.issn.1000-0569.2006.10.006
      [73] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11): 3229-3241. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411010.htm
      [74] 罗照华, 邓晋福, 曹永清, 等, 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1): 51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm
      [75] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6): 292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm
      [76] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3): 403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      [77] 佘宏全, 张德全, 景向阳, 等, 2007.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因.中国地质, (2): 306-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200702013.htm
      [78] 宋忠宝, 贾群子, 张占玉, 等, 2010.东昆仑祁漫塔格地区野马泉铁铜矿床地质特征及成因探讨.西北地质, 43(4): 209-217. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004031.htm
      [79] 宋忠宝, 张雨莲, 陈向阳, 等, 2013.东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 32(1): 157-168. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201301014.htm
      [80] 王松, 丰成友, 李世金, 等, 2009.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义.中国地质, 36(1): 74-84. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901008.htm
      [81] 王岳军, 沈远超, 林舸, 等, 1999.中昆仑北部古生代构造岩浆作用及其演化.地球学报, 20(1): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB901.000.htm
      [82] 吴健辉, 丰成友, 张德全, 等, 2010.柴达木盆地南缘祁漫塔格-鄂拉山地区斑岩-矽卡岩矿床地质.矿床地质, 29(5): 760-774. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005003.htm
      [83] 夏锐, 卿敏, 王长明, 等, 2014.青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束.吉林大学学报(地球科学版), 44(5): 1502-1524. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405011.htm
      [84] 向鹏, 2011. 青海省加当根斑岩型铜(钼)矿床成矿特征及成矿条件研究(硕士学位论文). 武汉: 中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y2009742
      [85] 向鹏, 姚书振, 周宗桂, 2013.青海加当根斑岩型铜(钼)矿床岩石地球化学特征及其成因认识.西北地质, 46(1): 139-153. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301018.htm
      [86] 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究(博士学位论文). 长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267862.htm
      [87] 许庆林, 孙丰月, 李碧乐, 等, 2014.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景.大地构造与成矿学, 38(2): 421-433. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402021.htm
      [88] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4): 3-6. http://www.earth-science.net/WebPage/Article.aspx?id=532
      [89] 于淼, 2013. 青海尕林格铁矿矽卡岩矿物学及矿化蚀变分带特征研究(硕士学位论文). 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013270294.htm
      [90] 袁万明, 莫宣学, 喻学惠, 等, 2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评, 46(2): 203-211. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm
      [91] 张德全, 党兴彦, 佘宏全, 等, 2005.柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义.矿床地质, 24(2): 87-98. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200502000.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  3794
    • HTML全文浏览量:  1519
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-03-08
    • 刊出日期:  2016-08-15

    目录

      /

      返回文章
      返回