• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2012—2013年重庆雪玉洞洞穴系统碳循环特征

    任坤 沈立成 袁道先 王晓晓 徐尚全

    任坤, 沈立成, 袁道先, 王晓晓, 徐尚全, 2016. 2012—2013年重庆雪玉洞洞穴系统碳循环特征. 地球科学, 41(8): 1424-1434. doi: 10.3799/dqkx.2016.113
    引用本文: 任坤, 沈立成, 袁道先, 王晓晓, 徐尚全, 2016. 2012—2013年重庆雪玉洞洞穴系统碳循环特征. 地球科学, 41(8): 1424-1434. doi: 10.3799/dqkx.2016.113
    Ren Kun, Shen Licheng, Yuan Daoxian, Wang Xiaoxiao, Xu Shangquan, 2016. Carbon Cycle Characteristics in Karst Cave System of Xueyu Cave from 2012 to 2013. Earth Science, 41(8): 1424-1434. doi: 10.3799/dqkx.2016.113
    Citation: Ren Kun, Shen Licheng, Yuan Daoxian, Wang Xiaoxiao, Xu Shangquan, 2016. Carbon Cycle Characteristics in Karst Cave System of Xueyu Cave from 2012 to 2013. Earth Science, 41(8): 1424-1434. doi: 10.3799/dqkx.2016.113

    2012—2013年重庆雪玉洞洞穴系统碳循环特征

    doi: 10.3799/dqkx.2016.113
    基金项目: 

    中国地质调查局项目 DD20160285

    中国地质科学院基本科研业务费专项项目 2016005

    重庆市院士专项项目 CSTC2013jcyjys20001

    中央高校基本科研业务费专项项目 XDJK2015D003

    国家自然科学基金项目 41103068

    详细信息
      作者简介:

      任坤(1988-),男,硕士,主要从事岩溶环境学与水文地质方面的研究.E-mail: rkhblhk@163.com

    • 中图分类号: P592

    Carbon Cycle Characteristics in Karst Cave System of Xueyu Cave from 2012 to 2013

    • 摘要: 重庆雪玉洞洞内CO2浓度之高,在国内外皆罕见,但此洞穴系统碳循环特征及控制因素仍不清楚.利用土壤二氧化碳分压(PCO2-soil)、洞内大气二氧化碳分压(PCO2-cave)、地下河水二氧化碳分压(PCO2-eq)、方解石饱和指数(SIc)、地下河水溶解无机碳同位素(δ13CDIC)等指标来研究雪玉洞洞内CO2浓度变化、控制因素以及地下河对洞内碳循环的影响.结果表明:雪玉洞上覆PCO2-soil雨季高,旱季低;降雨量是控制上覆PCO2-soil的重要因子.雪玉洞PCO2-cave变化规律明显,暖季高,冷季低;温度变化导致洞内外气流频繁交换是PCO2-cave突变的重要原因,地下河水CO2脱气能够在短时间内让PCO2-cave上升到较高值.雨季由于土壤CO2效应,地下河水具有低SIc、高PCO2-eq特性,矿化度较高,并且部分月份地下河水具有溶蚀性;旱季由于土壤CO2效应及降雨较少,地下河水呈现高SIc、低PCO2-eq特性,矿化度较低,以沉积为主.

       

    • 图  1  雪玉洞地理位置及监测点位置

      Fig.  1.  Location of Xueyu cave and sampling sites

      图  2  土壤CO2监测装置

      Fig.  2.  Monitoring devices of soil CO2

      图  3  开放系统中方解石溶解的基本物理化学过程

      [H2CO3*]指水中的CO2与H2CO3活度之和

      Fig.  3.  Dissolution of calcite in an open karst system

      图  4  -lg(PCO2-eq) vs. SIc关系模型

      Peyraube et al.(2012)

      Fig.  4.  Relationship of -lg(PCO2-eq) vs. Sic

      图  5  研究区土壤PCO2、洞穴PCO2随时间变化规律

      Fig.  5.  The variation relationships of PCO2-soil and PCO2-cave with time in study area

      图  6  地下河水-lg(PCO2-eq) vs. SIc模型输出结果

      Fig.  6.  Results of subterranean stream in -lg(PCO2-eq) vs. SIc

      图  7  土壤PCO2与降雨量、温度的相关性

      Fig.  7.  Correlations of PCO2-soil vs. precipitation and PCO2-soil vs. temperature

      图  8  雪玉洞冷季、暖季气流交换示意

      图中黑色粗箭头为洞外气流,灰色虚箭头为洞内气流,灰色实箭头为土壤气流

      Fig.  8.  Schematic summary of the two main types of air circulation in Xueyu cave

      图  9  雪玉洞内各相PCO2变化

      Fig.  9.  Evolution of equilibrium and saturation values of PCO2 from water in Xueyu cave

      表  1  文中术语

      Table  1.   The nomenclature in article

      表达式 代表意义 表达式 代表意义
      [Ca2+] 钙离子活度 SIc 方解石饱和指数
      (Ca2+) 钙离子摩尔当量 PCO2 二氧化碳分压
      [HCO3-] 碳酸氢根离子活度 PCO2-eq 水-气平衡时二氧化碳分压
      (HCO3-) 碳酸氢根离子摩尔当量 PCO2-sat SIc=0时的二氧化碳分压
      γCa2+ 钙离子活度系数 PCO2-cave 洞穴内大气二氧化碳分压
      γHCO3- 碳酸氢根离子活度系数 PCO2-soil 土壤二氧化碳分压
      G & D 吸气脱气直线 pH 酸碱指标
      K0 亨利气体溶解平衡常数 pHm 实际测试的pH值
      K1 碳酸的一次离解常数 pHsat SIc=0时的pH值
      K2 碳酸的二次离解常数 Model-HCO3- (-lg(PCO2-eq) vs. SIc)模型得出的HCO3-浓度
      Kc CaCO3溶解时平衡常数 Model-PCO2-sat (-lg(PCO2-eq) vs. SIc)模型得出的PCO2-sat
      下载: 导出CSV

      表  2  地下河水上下游二氧化碳分压(%)

      Table  2.   Water PCO2 in upstream and downstream water of subterranean river (%)

      日期 下游PCO2-eq 上游PCO2-eq PCO2-eq PCO2-cave PCO2-cave增加/减少量
      2013-11-02 0.14 0.15 0.01 0.39 -
      2013-11-03 0.20 0.24 0.04 0.50 0.11
      2013-11-04 0.18 0.31 0.13 0.60 0.10
      2013-11-05 0.34 0.43 0.09 0.73 0.13
      2013-11-06 0.33 0.34 0.01 0.54 -0.19
      2013-11-07 0.36 0.49 0.14 0.66 0.12
      2013-11-08 0.61 0.76 0.15 0.91 0.25
      2013-11-09 0.67 0.96 0.29 0.98 0.07
      平均值 0.35 0.46 0.11 0.70 0.09
        注:PCO2-cave为4个洞穴大气监测点的平均值;PCO2-cave增加/减少量为相邻2天数据之差.
      下载: 导出CSV
    • [1] Amundson, R., Kelly, E., 1987.The Chemistry and Mineralogy of a CO2-Rich Travertine Depositing Spring in the California Coast Range.Geochimica et Cosmochimica Acta, 51(11):2883-2890.doi: 10.1016/0016-7037(87)90364-4
      [2] Appelo, C.A.J., Postma, D., 2005.Geochemistry, Groundwater and Pollution.Taylor & Francis Press, London, 29-50.
      [3] Baldini, J.U.L., McDermott, F., Hoffmann, D.L., et al., 2008.Very High-Frequency and Seasonal Cave Atmosphere PCO2 Variability:Implications for Stalagmite Growth and Oxygen Isotope-Based Paleoclimate Records.Earth and Planetary Science Letters, 272(1):118-129.doi: 10.1016/j.epsl.2008.04.031
      [4] Boucot, A.J., Gray, J., 2001.A Critique of Phanerozoic Climatic Models Involving Changes in the CO2 Content of the Atmosphere.Earth-Science Reviews, 56(1-4):1-159.doi: 10.1016/S0012-8252(01)00066-6
      [5] Bourges, F., Genthon, P., Mangin, A., et al., 2006.Microclimates of l'Aven d'Orgnac and other French Limestone Caves (Chauvet, Esparros, Marsoulas).International Journal Climatology, 26(12):1651-1670.doi: 10.1002/joc.1327
      [6] Cuezva, S., Fernandez-Cortes, A., Benavente, D., et al., 2011.Short-Term CO2 (g) Exchange between a Shallow Karstic Cavity and the External Atmosphere during Summer:Role of the Surface Soil Layer.Atmospheric Environment, 45(7):1418-1427.doi: 10.1016/j.atmosenv.2010.12.023
      [7] Davidson, E.A., Janssens, I.A., 2006.Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change.Nature, 440(7081):165-173.doi: 10.1038/nature04514
      [8] Dreybrodt, W., Scholz, D., 2011.Climatic Dependence of Stable Carbon and Oxygen Isotope Signals Recorded in Speleothems:From Soil Water to Speleothem Calcite.Geochimica et Cosmochimica Acta, 75(3):734-752.doi: 10.1016/j.gca.2010.11.002
      [9] Faimon, J., Štelcl, J., Sas, D., 2006.Anthropogenic CO2-Flux into Cave Atmosphere and Its Environmental Impact:A Case Study in the Cíšarská Cave (Moravian Karst, Czech Republic).Science of the Total Environment, 369(1-3):231-245.doi: 10.1016/j.scitotenv.2006.04.006
      [10] Feng, W., Banner, J.L., Guilfoyle, A.L., et al., 2012.Oxygen Isotopic Fractionation between Drip Water and Speleothem Calcite:A 10-Year Monitoring Study, Central Texas, USA.Chemical Geology, 304-305(3):53-67.doi: 10.1016/j.chemgeo.2012.02.004
      [11] Ford, D., Williams, P., 2007.Karst Hydrogeology and Geomorphology.John Wiley & Sons Inc Press, New York, 103-144.
      [12] Friend, A.D., Arneth, A., Kiang, N.Y., et al., 2007.Fluxnet and Modelling the Global Carbon Cycle.Global Change Biology, 13(3):610-633.doi: 10.1111/j.1365-2486.2006.01223.x
      [13] Frisia, S., Fairchild, I.J., Fohlmeister, J., et al., 2011.Carbon Mass-Balance Modelling and Carbon Isotope Exchange Processes in Dynamic Caves.Geochimica et Cosmochimica Acta, 75(2):380-400.doi: 10.1016/j.gca.2010.10.021
      [14] Hess, J.W., White, W.B., 1993.Groundwater Geochemistry of the Carbonate Karst Aquifer, Southcentral Kentucky, USA.Applied Geochemistry, 8(2):189-204.doi: 10.1016/0883-2927(93)90034-E
      [15] Huang, Q.B., Qing, X.Q., Liu, P.Y., et al., 2015.Impact of Acid Rainto δ13CDIC of Karst Groundwater and Carbon Sink in Dry Season in Guilin.China.Earth Science, 40(7):1237-1247 (in Chinese with English abstract).
      [16] Knorr.W., Prentice, I.C., House, J.I., et al., 2005.Long-Term Sensitivity of Soil Carbon Turnover to Warming.Nature, 433(7023):298-301.doi: 10.1038/nature03226
      [17] Kowalczk, A.J., Froelich, P.N., 2010.Cave Air Ventilation and CO2 Outgassing by Radon-222 Modeling:How Fast Do Caves Breathe?Earth and Planetary Science Letters, 289(1-2):209-219.doi: 10.1016/j.epsl.2009.11.010
      [18] Liu, Z.H., Dreybrodt, D., Han, J., et al., 2005.Equilibrium Chemistry of the CaCO3-CO2-H2O System and Discussions.Carsologica Sinica, 24(1):1-14 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-zgyr200501001.htm
      [19] Liu, Z.H., Yuan, D.X., 2000.Features of Geochemical Variation in Typical Systems of China and Their Environment Significance.Geological Review, 46(3):324-327 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200003017.htm
      [20] Liu, Z., Dreybrodt, W., 2015.Significance of Carbon Sink Produced by H2O-Carbonate-CO2-Aquatic Phototroph Interaction on Land.Science Bulletin, 60(2):182-191.doi: 10.1007/s11434-014-0682-y
      [21] Liu, Z., Li, Q., Sun, H., et al., 2007.Seasonal, Diurnal and Storm-Scale Hydrochemical Variations of Typical Epikarst Springs in Subtropical Karst Areas of SW China:Soil CO2 and Dilution Effects.Journal of Hydrology, 337(1-2):207-223.doi: 10.1016/j.jhydrol.2007.01.034
      [22] Mandić, M., Mihevc, A., Leis, A., et al., 2013.Concentration and Stable Carbon Isotopic Composition of CO2 in Cave Air of Postojnska Jama, Slovenia.International Journal of Speleology, 42(3):279-287.doi: 10.5038/1827-806X.42.3.11
      [23] Milanolo, S., Gabrovšek, F., 2009.Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina.Boundary-Layer Meteorology, 131(3):479-493.doi: 10.1007/s10546-009-9375-5
      [24] Perşoiu, A., Onac, B.P., Perşoiu, I., 2011.The Interplay between Air Temperature and Ice Mass Balance Changes in Scǎrişoara Ice Cave, Romania.Acta Carsologica, 40(3):445-456.doi: 10.3986/ac.v40i3.4
      [25] Peyraube, N., Lastennet, R., Denis, A., 2012.Geochemical Evolution of Groundwater in the Unsaturated Zone of a Karstic Massif, Using the PCO2-SIc Relationship.Journal of Hydrology, 430-431(14):13-24.doi: 10.1016/j.jhydrol.2012.01.003
      [26] Pu, J., Yuan, D, Zhao, H., et al., 2014.Hydrochemical and PCO2 Variations of a Cave Stream in a Subtropical Karst Area, Chongqing, SW China:Piston Effects, Dilution Effects, Soil CO2 and Buffer Effects.Environmental Earth Sciences, 71(9):4039-4049.doi: 10.1007/s12665-013-2787-z
      [27] Schimel, D.S., 1995.Terrestrial Ecosystems and the Carbon Cycle.Global Change Biology, 1(1):77-91.doi: 10.1111/j.1365-2486.1995.tb00008.x
      [28] Sherwin, C.M., Baldini, J.U.L., 2011.Cave Air and Hydrological Controls on Prior Calcite Precipitation and Stalagmite Growth Rates:Implications for Palaeoclimate Reconstructions Using Speleothems.Geochimica et Cosmochimica Acta, 75(14):3915-3929.doi: 10.1016/j.gca.2011.04.020
      [29] Wang, A.Y., 2010.Study on Operation Regularity and Environment Information Reservation of Cave Karst Dynamic System (Dissertation).Southwest University, Chongqing, 15-17(in Chinese with English abstract).
      [30] Wang, A.Y., Pu, J.B., Shen, L.C., et al., 2010.Natural and Human Factors of CO2 Concentration Variations in Xueyu Cave, Chongqing.Tropical Geography, 30(3):272-277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201003011.htm
      [31] Wang, X.X., 2014.The Character of Carbon Variation and Source of CO2 in Xueyu Cave (Dissertation).Southwest University, Chongqing, 17-36 (in Chinese with English abstract).
      [32] Wang, X.X., Yin, J.J., Xu, S.Q., et al., 2013.The Variations of Soil CO2 and Hydrochemistry of Epikarst Spring above Xueyu Cave.Journal of Water and Soil Conservation, 27(2):85-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQS201302018.htm
      [33] Were, A., Serrano-Ortiz, P., Moreno de Jong, C., et al., 2010.Ventilation of Subterranean CO2 and Eddy Covariance Incongruities over Carbonate Ecosystems.Biogeosciences, 7(3):859-867.doi: 10.5194/bg-7-859-2010
      [34] Wu, K.Y., Shen, L.C., Zhang, T., et al., 2015.Links between Host Rock, Water, and Speleothems of Xueyu Cave in Southwestern China:Lithology, Hydrochemistry, and Carbonate Geochemistry.Arabian Journal of Geosciences, 8(11):8999-9013.doi: 10.1007/s12517-015-1876-6
      [35] Xu, S.Q., Yang, P.H., Jin, J.J., et al., 2013.Research on the Sensitivity of Geochemical of Underground River in Chongqing Xueyu Cave.Environment Science, 34(1):77-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HJKZ201301014.htm
      [36] Xu, S.Q., Yin, J.J., Yang, P.H., et al., 2012.Impacts of Tourism Activities on Cave Environments and Self-Purification Ability of the Cave:A Case Study of Xueyu Cave, Chongqing.Tropical Geography, 32(3):286-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201203015.htm
      [37] Yuan, D.X., 1999.Progress in the Study on Karst Processes and Carbon Cycle.Advance in Earth Sciences, 14(5):425-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ199905000.htm
      [38] Yuan, D.X., Cai, G.H., 1988.Karst Enviroment.Chongqing Press, Chongqing, 23-126 (in Chinese).
      [39] Zhang, C., 2011.Carbonate Rock Dissolution Rates in Different Landuses and Their Carbon Sink Effect.Chinese Science Bulletin, 56(26):2174-2180 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw201135005&dbname=CJFD&dbcode=CJFQ
      [40] Zhou, X.P., Lan, J.C., Zhang, X.W., et al., 2013.CO2 Outgassing and Precipitation of Calcium Carbonate in Karst Stream:A Case Study in Baishuwan Spring in Nanchuan, Chongqing.Acta Sedimentologica Sinica, 31(6):1014-1021 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201306008.htm
      [41] 黄奇波, 覃小群, 刘朋雨, 等, 2015.酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响.地球科学, 40(7):1237-1247. http://earth-science.net/WebPage/Article.aspx?id=3114
      [42] 刘再华, Dreybrodt, W., 韩军, 等, 2005.CaCO3-CO2-H2O岩溶系统的平衡化学及其分析.中国岩溶, 24(1):1-14. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgyr200501001&dbname=CJFD&dbcode=CJFQ
      [43] 刘再华, 袁道先, 2000.中国典型表层岩溶系统的地球化学动态特征及其环境意义.地质论评, 46(3): 324-327. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200003017.htm
      [44] 王翱宇, 2010. 洞穴岩溶动力系统运行规律与环境信息保存的研究(硕士学位论文). 重庆: 西南大学, 15-17. http://cdmd.cnki.com.cn/article/cdmd-10635-2010095370.htm
      [45] 王翱宇, 蒲俊兵, 沈立成, 等, 2010.重庆雪玉洞CO2浓度变化的自然与人为因素探讨.热带地理, 30(3): 272-277. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rddd201003011&dbname=CJFD&dbcode=CJFQ
      [46] 王晓晓, 2014. 雪玉洞洞穴系统碳的变化特征及洞内CO2来源研究(硕士学位论文). 重庆: 西南大学, 17-36. http://cdmd.cnki.com.cn/Article/CDMD-10635-1014264654.htm
      [47] 王晓晓, 殷建军, 徐尚全, 等, 2013.雪玉洞上覆土壤CO2变化及对表层岩溶泉水化学特征的影响.水土保持学报, 27(2): 85-89. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs201302018&dbname=CJFD&dbcode=CJFQ
      [48] 徐尚全, 杨平恒, 殷建军, 等, 2013.重庆雪玉洞岩溶地下河地球化学敏感性研究.环境科学, 34(1): 77-83. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201301014.htm
      [49] 徐尚全, 殷建军, 杨平恒, 等, 2012.旅游活动对洞穴环境的影响及洞穴的自净能力研究——以重庆雪玉洞为例.热带地理, 32(3): 286-292. http://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201203015.htm
      [50] 袁道先, 1999."岩溶作用与碳循环"研究进展.地球科学进展, 14(5): 425-432. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200001015.htm
      [51] 袁道先, 蔡桂鸿, 1988.岩溶环境学.重庆:重庆出版社, 23-126.
      [52] 章程, 2011.不同土地利用下的岩溶作用强度及其碳汇效应.科学通报, 56(26): 2174-2180. http://cdmd.cnki.com.cn/Article/CDMD-10635-1012342332.htm
      [53] 周小萍, 蓝家程, 张笑微, 等, 2013.岩溶溪流的脱气作用及碳酸钙沉积——以重庆市南川区柏树湾泉溪流为例.沉积学报, 31(6): 1014-1021. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306008.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3774
    • HTML全文浏览量:  1663
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-29
    • 刊出日期:  2016-08-15

    目录

      /

      返回文章
      返回