• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东菲律宾海新型富铁锰结壳的古海洋环境记录

    徐兆凯 李安春 蒋富清 李铁刚

    徐兆凯, 李安春, 蒋富清, 李铁刚, 2006. 东菲律宾海新型富铁锰结壳的古海洋环境记录. 地球科学, 31(3): 301-308.
    引用本文: 徐兆凯, 李安春, 蒋富清, 李铁刚, 2006. 东菲律宾海新型富铁锰结壳的古海洋环境记录. 地球科学, 31(3): 301-308.
    XU Zhao-kai, LI An-chun, JIANG Fu-qing, LI Tie-gang, 2006. Paleoenvironments Recorded in a New-Type Ferromanganese Crust from the East Philippine Sea. Earth Science, 31(3): 301-308.
    Citation: XU Zhao-kai, LI An-chun, JIANG Fu-qing, LI Tie-gang, 2006. Paleoenvironments Recorded in a New-Type Ferromanganese Crust from the East Philippine Sea. Earth Science, 31(3): 301-308.

    东菲律宾海新型富铁锰结壳的古海洋环境记录

    基金项目: 

    中国科学院知识创新工程重要方向项目 KZCX3SW223

    详细信息
      作者简介:

      徐兆凯(1978-), 男, 博士研究生, 主要从事海洋沉积和矿物学研究.E-mail: xuzhaokai@ms.qdio.ac.cn

      通讯作者:

      李安春, Tel: 0532-82898521;E-mail: acli@ms.qdio.ac.cn

    • 中图分类号: P736

    Paleoenvironments Recorded in a New-Type Ferromanganese Crust from the East Philippine Sea

    • 摘要: 尝试恢复东菲律宾海新型深水水成富铁锰结壳典型样品生长过程中所记录的古海洋环境.通过对其微间距取样样品的地球化学和铀系年代学综合研究, 得到了该结壳的3个主要生长阶段及其对应的古海洋环境.第一阶段为晚中新世晚期-早上新世的结壳快速生长期, 壳层结构疏松并含有较多的火山碎屑物质, 对应着中中新世初期-上新世早期的南极底流活跃和降温; 第二阶段为早、中上新世的结壳生长间断期, 形成深海粘土沉积, 表明此时南极底流的减弱和升温; 第三阶段为中上新世以来的结壳缓慢生长期, 指示着南极底流的再次活跃和强降温, 其强度和范围均超过第一阶段, 更利于致密和高纯壳层的发育.研究区的这段古海洋学历史在以往研究中一直不甚明了.

       

    • 图  1  富铁锰结壳表层230Thex与深度关系

      Fig.  1.  Relationship between excessive 230Th and depth of the surface part of the ferromanganese crust

      图  2  结壳常量元素含量和微量元素含量深度剖面图

      Fig.  2.  Depth profiles of major and trace elements contents in the crust

      图  3  结壳不同生长阶段的稀土元素北美页岩标准化配分模式

      Fig.  3.  NASC-normalized REE pattern of different crust periods

      表  1  表 1结壳常量元素和微量元素含量

      Table  1.   Major, minor and trace element abundances of the ferromanganese crust

      表  2  结壳稀土元素含量

      Table  2.   Rare earth element(REE)abundances of the ferromanganese crust

    • [1] Banakar, V. K., Borole, D. V., 1991. Depth profiles of 230Thexcess, transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for paleoceanographic influence on crust genesis. Chem. Geol., 94: 33-44. doi: 10.1016/S0009-2541(10)80015-4
      [2] Banakar, V.K., Galy, A., Sukumaran, N.P., et al., 2003. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth Planet. Sci. Lett., 205: 337-348. doi: 10.1016/S0012-821X(02)01062-2
      [3] Banakar, V. K., Hein, J. R., 2000. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Mar. Geol., 162: 529-540. doi: 10.1016/S0025-3227(99)00077-8
      [4] Banakar, V. K., Pattan, J. N., Mudholkar, A. V., 1997. Palaeoceanographic conditions during the formation of a ferromanganese curst from the Afanasiy-Nikitin seamount, North Central Indian Ocean: Geochemical evidence. Mar. Geol., 136: 299-315. doi: 10.1016/S0025-3227(96)00065-5
      [5] Cai, Y.H., Huang, Y.P., 2002. Advances on studies of geochemistry and paleoceanography of the Co-rich crust. Journal of Oceanography in Taiwan Strait, 21(2): 258-264(in Chinese with English abstract).
      [6] Chabaux, F., Cohen, A. S., O'Nions, R. K., et al., 1995. 238U-234U-230Th chronometry of Fe-Mn crust: Growth processes and recovery of thorium isotopic ratios of seawater. Geochim. Cosmochim. Acta, 59: 633-638. doi: 10.1016/0016-7037(94)00379-Z
      [7] De Carlo, E.H., 1991. Paleoceanographic implication of rare earth element variability in a marine Fe-Mn crust from the Hawaiian Archipelago. Mar. Geol., 98: 449-467. doi: 10.1016/0025-3227(91)90116-L
      [8] Eisenhauer, A., Gogen, K., Pernicka, E., et al., 1992. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth Planet. Sci. Lett., 109: 25-36. doi: 10.1016/0012-821X(92)90071-3
      [9] Friedrich, G., Schmitz-Wiechowski, A., 1980. Mineralogy and chemistry of a ferromanganese crust from a deepsea hill, Central Pacific, " Valdivia" Cruise VA 13 /2. Mar. Geol., 37: 71-90. doi: 10.1016/0025-3227(80)90012-2
      [10] German, C., Elderfield, H., 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833. doi: 10.1029/PA005i005p00823
      [11] Hein, J.R., Bohrson, W.A., Schulz, M.J., et al., 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 7: 63-77. doi: 10.1029/91PA02936
      [12] Hein, J.R., Schwab, W.C., Davis, A.S., 1988. Cobalt and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Mar. Geol., 78: 255-283. doi: 10.1016/0025-3227(88)90113-2
      [13] Huang, Y.Y., Yang, H.N., Kuang, Y.Q., et al., 1997. Controlling of the formation and distribution for polymetallic nodules by the seafloor sediment types and its geochemical environment. China University of Geosciences Press, Wuhan, 3-72(in Chinese).
      [14] Hussong, D.M., Uyeda, S., 1982. Tectonic process and the history of the Marina Arc: A synthesis of the results of deep sea drilling project Leg 60. In: Hussong, D.M., Uyeda, S., eds., Initial Reports of the Deep Sea Drilling Project, 60: 909-929.
      [15] Manheim, F.T., 1986. Marine cobalt resources. Science, 232: 600-608. doi: 10.1126/science.232.4750.600
      [16] McMurtry, G. M., Vonderhaar, D. L., Eisenhauer, A., et al., 1994. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth Planet. Sci. Lett., 125: 105 118. doi: 10.1016/0012-821X(94)90209-7
      [17] Neumann, T., Stueben, D., 1991. Detailed geochemical study and growth history of some ferromanganese crusts from the Tuamotu Archipelago. Mar. Min., 10: 29-48.
      [18] Savin, S.M., 1977. The history of the earth's surface temperature during the last 100 million years. Ann. Rev. Earth Planet. Sci., 5: 319-355. doi: 10.1146/annurev.ea.05.050177.001535
      [19] Scott, R., Kroenke, L., Zakariadze, G., et al., 1981. Evolution of the South Philippine Sea: Deep sea drilling project Leg 59 results. In: Kroenke, L., Scott, R., Balshaw, K., et al., eds., Initial Reports of the Deep Sea Drilling Project, 59: 803-815.
      [20] Shackleton, N. J., Kennett, J. P., 1975. Palaeotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. In: Kennett, J.P., Houtz, R.E., eds., Initial Reports of the Deep Sea Drilling Project, 29: 743-755.
      [21] Shi, Y.Z., Hu, C.Y., Fang, N.Q., et al., 2004. Carbon isotopic composition of organic matter in Co-rich ferromanganese crusts and its implication for paleoceanography. Earth ScienceJournal of China University of Geosciences, 29(2): 148-150, 156(in Chinese with English abstract).
      [22] Ujiie, H., 1975. Planktonic foraminiferal biostratigraphy in the Western Philippine Sea, Leg 31 of DSDP. In: Karig, D.E., Ingle, J.C. Jr., eds., Initial Reports of the Deep Sea Drilling Project, 31: 677-691.
      [23] Wen, X., De Carlo, E.H., Li, Y.H., 1997. Interelement relationships in ferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis. Mar. Geol., 136: 277-297. doi: 10.1016/S0025-3227(96)00064-3
      [24] Xu, D.Y., 1997. Paleo-ocean events and mineralization in the Pacific. In: Proceedings of the 30th International Geological Congress, 13: 129-144.
      [25] 蔡毅华, 黄奕普, 2002. 富钴结壳地球化学与古海洋学研究进展. 台湾海峡, 21(2): 258-264. doi: 10.3969/j.issn.1000-8160.2002.02.020
      [26] 黄永样, 杨慧宁, 匡耀求, 等, 1997. 海底沉积物类型及其地球化学环境对多金属结核形成与分布的控制作用. 武汉: 中国地质大学出版社, 3-72.
      [27] 史跃中, 胡超涌, 方念乔, 等, 2004. 富钴结壳中有机碳同位素组成特征及其古海洋意义. 地球科学———中国地质大学学报, 29(2): 148-150, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402004.htm
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  3907
    • HTML全文浏览量:  87
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 刊出日期:  2006-05-25

    目录

      /

      返回文章
      返回