Paleoenvironments Recorded in a New-Type Ferromanganese Crust from the East Philippine Sea
-
摘要: 尝试恢复东菲律宾海新型深水水成富铁锰结壳典型样品生长过程中所记录的古海洋环境.通过对其微间距取样样品的地球化学和铀系年代学综合研究, 得到了该结壳的3个主要生长阶段及其对应的古海洋环境.第一阶段为晚中新世晚期-早上新世的结壳快速生长期, 壳层结构疏松并含有较多的火山碎屑物质, 对应着中中新世初期-上新世早期的南极底流活跃和降温; 第二阶段为早、中上新世的结壳生长间断期, 形成深海粘土沉积, 表明此时南极底流的减弱和升温; 第三阶段为中上新世以来的结壳缓慢生长期, 指示着南极底流的再次活跃和强降温, 其强度和范围均超过第一阶段, 更利于致密和高纯壳层的发育.研究区的这段古海洋学历史在以往研究中一直不甚明了.Abstract: We attempt to recover the paleoenvironments recorded in the accretion of a typical new-type hydrogenetic ferromanganese crust from the deep water areas of the East Philippine Sea. From detailed geochemical and U-series chronological studies, three major accretion periods and corresponding paleoenvironments can be ascertained. The first period is a faster accretion period in the terminal Late Miocene to the Early Pliocene with looser structure and higher volcanic detritus contents, corresponding to the active Antarctic bottom waters and depressed temperature from the intermediate Middle Miocene to the Early Pliocene. The second period is a pulse of pelagic clay deposition at the Early to Middle Pliocene, reflecting the shrinkage of the Antarctic bottom waters and the global temperature elevation of this period. The third period is a slower accretion period from the Middle Pliocene, which indicates the more violent activity of Antarctic bottom waters once again and more depressed temperature than the first period, facilitating the accretion of a more compact and pure ferromanganese zone. The paleoceanographic histories of these studied areas had not been made clear in previous research.
-
Key words:
- new-type ferromanganese crust /
- paleoenvironment /
- geochemistry /
- East Philippine Sea
-
表 1 表 1结壳常量元素和微量元素含量
Table 1. Major, minor and trace element abundances of the ferromanganese crust
表 2 结壳稀土元素含量
Table 2. Rare earth element(REE)abundances of the ferromanganese crust
-
[1] Banakar, V. K., Borole, D. V., 1991. Depth profiles of 230Thexcess, transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for paleoceanographic influence on crust genesis. Chem. Geol., 94: 33-44. doi: 10.1016/S0009-2541(10)80015-4 [2] Banakar, V.K., Galy, A., Sukumaran, N.P., et al., 2003. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth Planet. Sci. Lett., 205: 337-348. doi: 10.1016/S0012-821X(02)01062-2 [3] Banakar, V. K., Hein, J. R., 2000. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Mar. Geol., 162: 529-540. doi: 10.1016/S0025-3227(99)00077-8 [4] Banakar, V. K., Pattan, J. N., Mudholkar, A. V., 1997. Palaeoceanographic conditions during the formation of a ferromanganese curst from the Afanasiy-Nikitin seamount, North Central Indian Ocean: Geochemical evidence. Mar. Geol., 136: 299-315. doi: 10.1016/S0025-3227(96)00065-5 [5] Cai, Y.H., Huang, Y.P., 2002. Advances on studies of geochemistry and paleoceanography of the Co-rich crust. Journal of Oceanography in Taiwan Strait, 21(2): 258-264(in Chinese with English abstract). [6] Chabaux, F., Cohen, A. S., O'Nions, R. K., et al., 1995. 238U-234U-230Th chronometry of Fe-Mn crust: Growth processes and recovery of thorium isotopic ratios of seawater. Geochim. Cosmochim. Acta, 59: 633-638. doi: 10.1016/0016-7037(94)00379-Z [7] De Carlo, E.H., 1991. Paleoceanographic implication of rare earth element variability in a marine Fe-Mn crust from the Hawaiian Archipelago. Mar. Geol., 98: 449-467. doi: 10.1016/0025-3227(91)90116-L [8] Eisenhauer, A., Gogen, K., Pernicka, E., et al., 1992. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth Planet. Sci. Lett., 109: 25-36. doi: 10.1016/0012-821X(92)90071-3 [9] Friedrich, G., Schmitz-Wiechowski, A., 1980. Mineralogy and chemistry of a ferromanganese crust from a deepsea hill, Central Pacific, " Valdivia" Cruise VA 13 /2. Mar. Geol., 37: 71-90. doi: 10.1016/0025-3227(80)90012-2 [10] German, C., Elderfield, H., 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833. doi: 10.1029/PA005i005p00823 [11] Hein, J.R., Bohrson, W.A., Schulz, M.J., et al., 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 7: 63-77. doi: 10.1029/91PA02936 [12] Hein, J.R., Schwab, W.C., Davis, A.S., 1988. Cobalt and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Mar. Geol., 78: 255-283. doi: 10.1016/0025-3227(88)90113-2 [13] Huang, Y.Y., Yang, H.N., Kuang, Y.Q., et al., 1997. Controlling of the formation and distribution for polymetallic nodules by the seafloor sediment types and its geochemical environment. China University of Geosciences Press, Wuhan, 3-72(in Chinese). [14] Hussong, D.M., Uyeda, S., 1982. Tectonic process and the history of the Marina Arc: A synthesis of the results of deep sea drilling project Leg 60. In: Hussong, D.M., Uyeda, S., eds., Initial Reports of the Deep Sea Drilling Project, 60: 909-929. [15] Manheim, F.T., 1986. Marine cobalt resources. Science, 232: 600-608. doi: 10.1126/science.232.4750.600 [16] McMurtry, G. M., Vonderhaar, D. L., Eisenhauer, A., et al., 1994. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth Planet. Sci. Lett., 125: 105 118. doi: 10.1016/0012-821X(94)90209-7 [17] Neumann, T., Stueben, D., 1991. Detailed geochemical study and growth history of some ferromanganese crusts from the Tuamotu Archipelago. Mar. Min., 10: 29-48. [18] Savin, S.M., 1977. The history of the earth's surface temperature during the last 100 million years. Ann. Rev. Earth Planet. Sci., 5: 319-355. doi: 10.1146/annurev.ea.05.050177.001535 [19] Scott, R., Kroenke, L., Zakariadze, G., et al., 1981. Evolution of the South Philippine Sea: Deep sea drilling project Leg 59 results. In: Kroenke, L., Scott, R., Balshaw, K., et al., eds., Initial Reports of the Deep Sea Drilling Project, 59: 803-815. [20] Shackleton, N. J., Kennett, J. P., 1975. Palaeotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. In: Kennett, J.P., Houtz, R.E., eds., Initial Reports of the Deep Sea Drilling Project, 29: 743-755. [21] Shi, Y.Z., Hu, C.Y., Fang, N.Q., et al., 2004. Carbon isotopic composition of organic matter in Co-rich ferromanganese crusts and its implication for paleoceanography. Earth Science—Journal of China University of Geosciences, 29(2): 148-150, 156(in Chinese with English abstract). [22] Ujiie, H., 1975. Planktonic foraminiferal biostratigraphy in the Western Philippine Sea, Leg 31 of DSDP. In: Karig, D.E., Ingle, J.C. Jr., eds., Initial Reports of the Deep Sea Drilling Project, 31: 677-691. [23] Wen, X., De Carlo, E.H., Li, Y.H., 1997. Interelement relationships in ferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis. Mar. Geol., 136: 277-297. doi: 10.1016/S0025-3227(96)00064-3 [24] Xu, D.Y., 1997. Paleo-ocean events and mineralization in the Pacific. In: Proceedings of the 30th International Geological Congress, 13: 129-144. [25] 蔡毅华, 黄奕普, 2002. 富钴结壳地球化学与古海洋学研究进展. 台湾海峡, 21(2): 258-264. doi: 10.3969/j.issn.1000-8160.2002.02.020 [26] 黄永样, 杨慧宁, 匡耀求, 等, 1997. 海底沉积物类型及其地球化学环境对多金属结核形成与分布的控制作用. 武汉: 中国地质大学出版社, 3-72. [27] 史跃中, 胡超涌, 方念乔, 等, 2004. 富钴结壳中有机碳同位素组成特征及其古海洋意义. 地球科学———中国地质大学学报, 29(2): 148-150, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402004.htm