LA-ICPMS U-Pb Zircon Dating for Felsic Granulite, Huangtuling Area, North Dabieshan: Constraints on Timing of Its Protolith and Granulite-Facies Metamorphism, and Thermal Events in Its Provenance
-
摘要: 本研究应用激光剥蚀技术测定了北大别黄土岭高温-高压长英质麻粒岩锆石3个结构域的U-Pb年龄.变质锆石成因的碎屑锆石域的207Pb/206Pb年龄范围为(2493±54) Ma~(2500±180) Ma, 岩浆成因的碎屑锆石域的207Pb/206Pb年龄范围为2628~2690Ma, 其最大的206Pb/238U年龄为(2790±150) Ma, 变质增生或变质重结晶锆石域的不一致线上交点年龄为(2044.7±29.3) Ma.长英质麻粒岩的矿物组合成分、主量元素地球化学, 尤其是锆石副矿物内部结构特征显示其原岩为沉积岩.这表明, 麻粒岩原岩物质来自具有复杂热历史的蚀源区, 该蚀源区曾发生过~2.8Ga的岩浆作用和~2.5Ga变质作用, 因此其原岩的沉积年龄不应早于2.5Ga.高温-高压麻粒岩相变质作用的精确年龄为(2.04±0.03) Ga, 表明黄土岭麻粒岩是一个晚古元古代超高温变质岩之残块.
-
关键词:
- 激光锆石U-Pb定年 /
- 原岩和麻粒岩相变质年龄 /
- 蚀源区 /
- 长英质麻粒岩 /
- 北大别.
Abstract: LA-ICPMS U-Pb dating was conducted on three textural domains in zircon from a high-temperature high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yielded a 207Pb/206Pb age in the range of (2 493±54) - (2 500±180) Ma. The magmatic genesis-derived detrital zircon domain gave a 207Pb/206Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206Pb/238U age of (2 790±150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yielded a discordia with an upper intercept age of (2 044.7±29.3) Ma. Compositions of the mineral assemblage, major element geochemistry, and an especially complex interior texture of zircon suggest that the protolith of the felsic granulite is of sedimentary origin. The protolith material of the granulite came from a provenance with a complex thermal history, i.e. 2.8 Ga magmatism and 2.5 Ga metamorphism, and deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of the Paleoproterozoic UHT metamorphosed slab. -
图 1 大别造山带东段地质和构造单元简图(据Chen and Jahn, 1998; Wang et al., 1998; Hacker et al., 1998,略作修改)
UAF-GF.高角闪岩相-麻粒岩相带; LAF.低角闪岩相带; EAF.绿帘角闪岩相带
Fig. 1. Schetch geological map showing tectonic units in eastern Dabie orogen
图 2 (al+fm)-(c+alk)-Si图解(Simonen, 1953)
Fig. 2. (al+fm)-(c+alk)-Si discrimination diagram
表 1 黄土岭长英质麻粒岩岩石化学成分
Table 1. Petrochemical composition of the felsic granulite from Huangtuling
表 2 锆石U-Pb同位素分析和年龄计算结果
Table 2. U-Pb zircon dating and isotope analysis
-
[1] Chen, J. F., Jahn, B. M., 1998. Crustal evolution of south eastern China: Nd and Sr isotopic evidence. Tectonophysics, 284: 101-133. doi: 10.1016/S0040-1951(97)00186-8 [2] Chen, N. S., You, Z. D., Suo, S. T., et al., 1996. Zircon Zircon U-Pb ages of felsic granulite and deformed granite from Dabie Mountains, Central China. Chinese Science Bulletin, 41: 1886-1890. [3] Chen, N. S., Sun, M., You, Z. D., et al., 1998. Well-preserved garnet growth zoning in granulite from the Dabie Mountains, Central China. Journal of Metamorphic Geology, 16: 213-222. doi: 10.1111/j.1525-1314.1998.00074.x [4] Chen, N. S., Li, H. M., He, L., et al., 2002. Polygonal rule for assessing the discordant U-Pb data of single grain zircon by TIMS: Taking high-grade metamorphic rocks from Dabie and East Kunlun Mountains as examples. Geological Scienceand Technology Information, 21 (3): 24-29 (in Chinese with English abstract). [5] Cooke, R. A., OBrien, P. J., Carswell, D. A., 2000. Garnet zoning and the identification of equilibrium mineral compositions in high-pressure-temperature granulites from the Moldanubian, Austria. Journal of Metamorphic Geology, 18: 551-569. doi: 10.1046/j.1525-1314.2000.00273.x [6] Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archaean metasediments from the Kongling high grade terrain of the Yangtze craton: Evidence for cratonic evolution and Rredistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta, 63: 2071-2088. doi: 10.1016/S0016-7037(99)00153-2 [7] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb zircon ages constrain the architecture of the ultra-high-pressure Qingling Dabie Orogen, China. Earthand Planet. Sci. Lett., 161: 215-230. doi: 10.1016/S0012-821X(98)00152-6 [8] Hoskin, P. W. D., Black, L. P., 2000. Metamorphic zircon form ation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18: 423-439. doi: 10.1046/j.1525-1314.2000.00266.x [9] Hou, Z. H., 2000. Study on geochemistry and chronology of granulites and TTG gneisses from northern part of Dabieorogen (Dissertation). University of Sciences and Technology of China, Anhui (in Chinese). [10] Indares, A., 1995. Metamorphic interpretation of high-pressure temperature metapelites with preserved growth zoning in garnet, eastern Grenville Province, Canadian Shield. Journal of Metamorphic Geology, 13: 475-485. doi: 10.1111/j.1525-1314.1995.tb00235.x [11] Jian, P., Yang, W. R., Zhang, Z. C., 1999. 207Pb/206Pb zircon dating of the Huangtuling hypersthene-garne-tbiotite gneiss from the Dabie Mountains, Luotiancounty, Hubei Province, China: New evidence for Early Precambrian evolution. Acta Geologica Sinica, 73: 78-83. doi: 10.1111/j.1755-6724.1999.tb00813.x [12] Ling, W. L., Gao, S., Zhang, B. R., et al., 2001. The recognizing of ca. 1.95Ga tectono-the rmal event in Konglingn ucleus and its significance for the evolution of Yangtze block, South China. Chinese Science Bulletin, 46: 326-329. [13] Ludwig, R. K., 1998. ISOPLOT—A plotting and regression program for radiogenic-isotope data, Version 2.96. Revision of the U. S. Geological Survey Open File Report. 91-445, 1-49. [14] Ma, C. Q., Ehlers, C., Xu, C. H., et al., 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: Constraints fro mgeochemistry and Nd-Sr isotope systematics. Precambrian Research, 102: 279-301. doi: 10.1016/S0301-9268(00)00069-3 [15] Niggle, P., 1954. Rocks and mineral deposits. Freeman, San Francisco. [16] OBrien, P. J., Rtzler, J., 2003. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21: 3-20. doi: 10.1046/j.1525-1314.2003.00420.x [17] Qin, Y., Gao, S., Manaughton, N. J., et al., 2000. > 3.0Ga continental crust in the Yangtze craton, South China: SHRIMP U-Pb zircon and Nd isotopic evidence. Geology, 28: 11. [18] Rubatto, D., 2002. Zircon trace element geochemistry : Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184: 123-138. doi: 10.1016/S0009-2541(01)00355-2 [19] Rubatto, D., Gebauer, D., 2000. Use of cathodo luminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Pagel, M., Barbin, P., Ohnenstetter, D., eds., Cathodo luminescence in geosciences. Springer, Berlin, Heidelberg, New York, 373-400. [20] Shaw, D. M., 1972. The origin of Apsley gneiss, Ontario. Canadian Journal of Earth Science, (9): 18-35. [21] Simonen, A., 1953. Stratigraphy and sedimentation of the Svecofennidic, Early Archaean supracrustal rocks in southwestern Finland. Bull. Comm. Geol. Finland, 160: 1-64. [22] Thompson, A. B., England, P. C., 1984. Pressure temperature time paths of regional metamorphism Ⅱ Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology, 25929-955. [23] Vavra, G., Gebauer, D., Schmid, R., et al., 1996. Multiple growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122: 337-358. doi: 10.1007/s004100050132 [24] Wang, X., Neubauer, F., Genser, J., et al., 1998. The Dabie UHP unit, Central China: A Cretaceous extensional allochthon superposed on a Triassic orogen. Terra Nova, (10): 260-267. [25] Wang, J. H., Chang, X. Y., Zhuo, H. W., 1996. Characteristics of corona textures in the Huangtuling granulite in the Dabie complex, China, and their implications for tectonic settings. Acta Mineralogica Sinica, 16: 118-125 (in Chinese with English abstract). [26] Wu, Y. B., Chen, D. G., Xia, Q. K., et al., 2002. SIMS dating of zircons in granulite of Huangtuling from northern Dabieshan. Acta Petrologica Sinica, 18: 378-382 (in Chinese with English abstract). [27] Xia, X. P., Sun, M., Zhao, G. C., et al., 2004. Spot zircon U-Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213nm) Nd-YAG laser system. Geochemical Journal, (38): 191-200. doi: 10.2343/geochemj.38.191 [28] Xu, P., Guan, H., Sun, M., et al., 1999. Further discussion on analy tical methodology and calibration strategies for U-Pb isotope analysis of zircon by LA-ICPMS. Geochimica, 28: 136-144 (in Chinese with English abstract). [29] You, Z. D., Wang, F. Z., 1988. Lectures on metamorphic petrology. China University of Geosciences Press, Wuhan (in Chinese). [30] Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, (186): 281-299. [31] Zheng, Y. F., Fu, B., Li, Y. L., 2001. Oxygen isotopic composition of granulites from Dabie in eastern China and its implication for geodynamics of Yangtze plate subduction. Physicsand Chemistryof the Earth, (26): 673-689. [32] Zhou, H. W., Li, X. H., Liu, Y., et al., 1999. Age of granulite from Huangtuling, Dabie Mountain: Pb-Pb dating of garnet by a stepwise dissolution technique. Chinese Science Bulletin, 44: 941-944. doi: 10.1007/BF02885071 [33] 陈能松, 李惠民, 何蕾, 等, 2002. 热离子质谱测定的颗粒级锆石U-Pb不一致年龄数据处理的多边形准则———以大别山和东昆仑山深变质岩为例. 地质科技情报, 21 (3): 24-29. doi: 10.3969/j.issn.1000-7849.2002.03.005 [34] 侯振辉, 2002. 大别造山带北部麻粒岩和TTG片麻岩的地球化学和年代学研究(硕士论文). 安徽: 中国科学技术大学. [35] 王江海, 常向阳, 周汉文, 1996. 湖北大别山黄土岭麻粒岩中冠状体结构特征及其地质意义. 矿物学报, 16: 118-125. doi: 10.3321/j.issn:1000-4734.1996.02.004 [36] 吴元保, 陈道公, 夏群科, 等, 2002. 北大别黄土岭麻粒岩锆石U-Pb离子探针定年. 岩石学报, 18: 378-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203012.htm [37] 徐平, 关鸿, 孙敏, 等, 1999. 激光探针等离子体质谱用于锆石Pb Pb定年的分析和校正方法的进一步讨论. 地球化学, 28: 136-144. doi: 10.3321/j.issn:0379-1726.1999.02.004 [38] 游振东, 王方正, 1988. 变质岩岩石学教程. 武汉: 中国地质大学出版社.