• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    藏北阿索地区早白垩世基性岩脉地球化学及年代学特征:对班公湖-怒江洋闭合时限的约束

    曾孝文 王明 范建军 于云鹏 罗安波 郝宇杰

    曾孝文, 王明, 范建军, 于云鹏, 罗安波, 郝宇杰, 2019. 藏北阿索地区早白垩世基性岩脉地球化学及年代学特征:对班公湖-怒江洋闭合时限的约束. 地球科学, 44(7): 2408-2425. doi: 10.3799/qkx.2018.394
    引用本文: 曾孝文, 王明, 范建军, 于云鹏, 罗安波, 郝宇杰, 2019. 藏北阿索地区早白垩世基性岩脉地球化学及年代学特征:对班公湖-怒江洋闭合时限的约束. 地球科学, 44(7): 2408-2425. doi: 10.3799/qkx.2018.394
    Zeng Xiaowen, Wang Ming, Fan Jianjun, Yu Yunpeng, Luo Anbo, Hao Yujie, 2019. Geochemistry and Chronological Characteristics of the Early Cretaceous Mafic Dikes in the Asa Area, North Tibet: Constraints on the Closure Time of the Bangong-Nujiang Ocean. Earth Science, 44(7): 2408-2425. doi: 10.3799/qkx.2018.394
    Citation: Zeng Xiaowen, Wang Ming, Fan Jianjun, Yu Yunpeng, Luo Anbo, Hao Yujie, 2019. Geochemistry and Chronological Characteristics of the Early Cretaceous Mafic Dikes in the Asa Area, North Tibet: Constraints on the Closure Time of the Bangong-Nujiang Ocean. Earth Science, 44(7): 2408-2425. doi: 10.3799/qkx.2018.394

    藏北阿索地区早白垩世基性岩脉地球化学及年代学特征:对班公湖-怒江洋闭合时限的约束

    doi: 10.3799/qkx.2018.394
    基金项目: 

    中国地质调查局区域地质调查项目 DD20160015

    国家自然科学基金项目 41602230

    国家自然科学基金项目 41602230

    中国地质调查局区域地质调查项目 DD20160026

    详细信息
      作者简介:

      曾孝文(1995-), 男, 硕士研究生, 构造地质学专业, 从事青藏高原区域地质与构造地质研究

      通讯作者:

      王明

    • 中图分类号: P611

    Geochemistry and Chronological Characteristics of the Early Cretaceous Mafic Dikes in the Asa Area, North Tibet: Constraints on the Closure Time of the Bangong-Nujiang Ocean

    • 摘要: 班公湖-怒江洋闭合时限是中特提斯洋演化争论的焦点之一,而基性岩脉对于识别构造环境转变具有重要意义.本文对阿索地区侵入构造混杂岩带中的基性岩脉进行了1件LA-ICP-MS锆石U-Pb年龄测定和10件全岩地球化学元素分析.辉长岩脉获得了102.90±0.86 Ma(MSWD=1.4)的谐和年龄,全岩地球化学分析显示基性岩脉属于亚碱性系列,钙碱性辉长闪长岩类,样品轻微富集轻稀土元素,富集大离子亲石元素Th、U、Pb等,亏损高场强元素Nb、Ta等.基性岩脉来源于被俯冲沉积物和板片流体改造过的亏损地幔源区,由尖晶石二辉橄榄岩高程度部分熔融形成,未经历明显的地壳混染过程.结合构造环境判别图解和前人研究结果,认为阿索地区的基性岩脉可能形成于早白垩世晚期伸展环境之中.系统收集研究区及附近120~95 Ma之间的岩浆岩数据,发现在110~100 Ma之间班公湖-怒江缝合带及两侧处于伸展环境之中,但不同区域伸展事件的时代有所不同,原因可能与班公湖-怒江洋的不均一闭合相关.班公湖-怒江洋最后的闭合时限可能在103 Ma左右.

       

    • 图  1  拉萨板块白垩纪岩浆岩分布图(a)和研究区地质构造简图(b)

      图据Zhu et al.(2013)修改;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;IYZSZ.印度雅鲁藏布缝合带

      Fig.  1.  Tectonic framework of the Lhasa terrane showing major tectonic subdivisions and localities of the Early Cretaceous magmatic rocks (a); geological map of Asa area (b)

      图  2  阿索地区辉长岩、辉绿岩野外及镜下照片

      a.辉长岩与砂岩侵入接触界线;b.辉长岩近景照片;c.辉长岩镜下显微照片(正交偏光);d.辉绿岩与蛇绿岩接触界线;e.辉绿岩镜下显微照片(左侧单偏光,右侧正交偏光);f.辉绿岩辉绿结构.Chl.绿泥石;Cpx.单斜辉石;Pl.斜长石

      Fig.  2.  Field photos and photomicrographs of gabbro and diabase from Asa area

      图  3  辉长岩锆石CL图像(a);球粒陨石标准化锆石稀土曲线(b);辉长岩LA-ICP-MS谐和图与加权平均年龄(c)

      标准化数据据Sun and McDonough(1989)

      Fig.  3.  Cathodoluminescence(CL)images of representative zircon grains (a), chondrite normalized REE patterns of zircon grains from gabbros of the Asa area (b), concordia plots (c) of a Asa gabbro sample

      图  4  阿索辉长岩和辉绿岩的地球化学分类图解

      a. Zr/(TiO2×0.000 1) versus Nb/Y,据Winchester and Floyd(1977);b. SiO2 versus FeOT/MgO,拉斑系列与钙碱性系列间的界线参照Miyashiro(1974)

      Fig.  4.  Geochemical classification of mafic rocks from the Asa dikes

      图  5  阿索基性岩脉微量元素原始地幔标准化图解(a)和稀土元素球粒陨石标准化图(b)

      标准化数据据Sun and McDonough(1989)

      Fig.  5.  Primitive-mantle-normalized trace element pattern (a) and chondrite-normalized rare earth element patterns (b) for the Asa dikes

      图  6  阿索辉长岩和辉绿岩Th/Yb-Nb/Yb(a)和(La/Sm)PM-(Sm/Yb) PM(b)判别图解

      图a中百分数为地幔楔俯冲带物质含量;图b中百分数为部分熔融程度;标准化曲线据Sun and McDonough(1989)

      Fig.  6.  Nb/Yb vs. Th/Yb (a) and (Sm/Yb)PM vs. (La/Sm)PM (b) diagrams of the Asa dikes

      图  7  阿索辉长岩和辉绿岩(Hf/Sm)PM-(Ta/La)PM(a)和Th/Yb-Sr/Nd图解(b)

      图a据La Flèche et al.(1998);PM表示标准化的原始地幔数值,据Sun and McDonough(1989);图b据Woodhead et al.(2001)

      Fig.  7.  Plot of (Hf/Sm)PM vs. (Ta/La)PM of the Asa dikes (a), Th/Yb versus Sr/Nd diagram of the Asa gabbro and diabase (b)

      图  8  Zr/Y-Zr(a)和Ta/Hf-Th/Hf(b)构造环境判别图解

      a. Zr/Y-Zr图解,板内(WPB)、洋中脊(MORB)和岛弧玄武岩(IAB);据Pearce and Norry(1979);b. Th/Hf-Ta/Hf,Ⅱ2.大陆边缘岛弧+大陆边缘火山弧;Ⅳ1.陆内裂谷+大陆边缘裂谷拉斑玄武岩;Ⅳ2.陆内裂谷碱性玄武岩;Ⅳ3.大陆伸展带/初始裂谷玄武岩,据汪云亮等(2001).去申拉组火山岩数据来源于康志强等(2010)麦源君等(2018)Sui et al.(2013)

      Fig.  8.  Zr/Y vs. Zr (a) and Ta/Hf vs. Th/Hf (b) discrimination diagrams for the the Asa dikes

      图  9  南羌塘以及北拉萨板块120~95 Ma岩浆岩分布

      数据来源于Zhu et al.(2016)Chen et al.(2014)Sui et al.(2013)Liu et al.(2014b)Wu et al.(2014, 2015)以及张亮亮等(2011)吴浩等(2013, 2014)、张向飞等(2014)解龙等(2015)胡隽等(2017)闫国川等(2017)麦源君等(2018)

      Fig.  9.  Distribution of magmatic rocks during the period 120-95 Ma in the northern Lhasa and southern Qiangtang subterranes

      图  10  班公湖-怒江缝合带早白垩世晚期构造-岩浆演化示意

      ALC.古老下地壳;SCLM.陆下岩石圈地幔;JLC.新生下地壳;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿岩带;据Chen et al.(2014)

      Fig.  10.  Schematic illustration showing the geodynamic evolution around Banggong-Nujiang suture zone

      表  1  阿索辉长岩锆石稀土元素(10-6)分析结果

      Table  1.   Analytical results of the gabbro zircon REE elements(10-6)of Asa area

      点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
      NT70-01 0.04 12.64 0.37 7.99 15.20 4.33 65.20 22.02 289.30 96.56 469.27 109.69 1 519.78 0.04
      NT70-02 0.04 21.10 0.28 5.57 12.52 1.03 63.58 22.78 316.41 109.88 537.89 115.22 1 485.13 0.04
      NT70-03 0.03 3.95 0.05 1.45 3.44 0.94 20.33 7.44 107.86 39.72 205.25 48.74 630.12 0.03
      NT70-04 30.42 86.94 12.65 86.87 28.36 1.61 54.24 15.25 184.78 60.60 283.18 60.51 736.34 30.42
      NT70-05 0.04 6.95 0.18 3.94 8.31 1.54 39.54 14.04 189.97 64.60 315.01 72.46 955.06 0.04
      NT70-06 0.07 22.22 0.56 10.76 23.11 2.29 135.65 48.95 667.80 235.96 1 143.38 230.20 2 757.54 0.07
      NT70-07 0.26 81.04 0.47 9.08 17.95 2.06 92.23 32.35 426.17 146.30 712.89 159.75 2 140.54 0.26
      NT70-08 0.06 5.92 0.26 3.90 6.74 2.17 26.78 9.11 119.00 40.51 193.71 45.39 582.10 0.06
      NT70-09 0.02 10.38 0.24 4.52 9.61 1.42 57.08 20.47 280.16 97.26 456.68 98.07 1 275.18 0.02
      NT70-10 0.03 5.07 0.23 3.44 6.06 1.58 24.39 8.63 114.79 38.81 192.81 45.30 593.71 0.03
      NT70-11 0.03 4.55 0.05 1.26 3.78 0.69 22.64 8.61 117.55 41.77 199.01 45.93 581.55 0.03
      下载: 导出CSV

      表  2  阿索辉长岩LA-ICP-MS锆石U-Pb定年结果

      Table  2.   LA-ICP-MS zircon U-Pb dating results of Asa gabbro

      测点 Th U Th/U 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ
      (10-6 (Ma)
      NT70-01 550 294 1.87 0.048 04 0.001 56 0.104 93 0.003 42 0.015 84 0.000 19 101 54 101 3 101 1
      NT70-02 485 364 1.33 0.055 6 0.001 42 0.122 72 0.003 14 0.016 01 0.000 19 47 111 99 5 101 1
      NT70-03 181 143 1.27 0.088 63 0.002 74 0.206 85 0.006 31 0.016 92 0.000 22 94 164 102 7 103 1
      NT70-04 167 291 0.57 0.098 86 0.001 34 3.569 28 0.051 11 0.261 82 0.003 01 1 603 12 1 543 11 1 499 15
      NT70-05 238 179 1.33 0.048 06 0.001 9 0.107 53 0.004 24 0.016 22 0.000 21 102 66 104 4 104 1
      NT70-06 888 507 1.75 0.048 04 0.001 04 0.105 63 0.002 32 0.015 95 0.000 19 101 30 102 2 102 1
      NT70-07 2 750 1 309 2.10 0.048 07 0.001 26 0.107 39 0.002 83 0.016 2 0.000 2 103 39 104 3 104 1
      NT70-08 329 171 1.93 0.048 06 0.002 62 0.107 62 0.005 84 0.016 24 0.000 22 102 96 104 5 104 1
      NT70-09 580 390 1.49 0.048 08 0.002 37 0.107 19 0.005 25 0.016 17 0.000 22 103 85 103 5 103 1
      NT70-10 242 159 1.52 0.048 09 0.001 62 0.107 18 0.003 62 0.016 16 0.000 2 104 56 103 3 103 1
      NT70-11 202 179 1.12 0.048 14 0.001 22 0.107 44 0.002 73 0.016 19 0.000 2 106 37 104 3 104 1
      下载: 导出CSV

      表  3  阿索基性岩脉主量元素(%)和微量元素(10-6)分析结果

      Table  3.   Analytical results of major(%) and trace elements(10-6)for Asa dikes

      样品 N17T70H1 N17T70H2 N17T70H3 N17T70H4 N17T70H5 N17T61H1 N17T61H2 N17T61H3 N17T61H4 N17T61H5
      SiO2 51.73 54.32 51.02 52.68 52.76 56.30 56.21 51.76 52.96 51.35
      TiO2 0.84 0.84 0.82 0.81 0.78 0.59 0.59 0.75 0.65 0.60
      Al2O3 20.28 18.96 19.81 16.69 18.53 13.28 13.61 15.21 14.82 15.29
      Fe2O3T 5.26 5.04 5.67 6.97 5.67 7.55 7.53 8.79 8.61 8.75
      MnO 0.10 0.09 0.11 0.13 0.11 0.13 0.14 0.15 0.15 0.15
      MgO 5.52 5.13 6.28 6.92 6.16 8.20 8.04 9.46 9.28 10.31
      CaO 11.78 10.81 11.76 8.99 11.28 5.63 5.69 6.63 6.71 7.38
      Na2O 3.58 3.43 3.46 3.79 3.50 4.74 4.79 4.41 4.12 3.83
      K2O 0.27 0.25 0.23 0.41 0.25 0.16 0.15 0.25 0.21 0.29
      P2O5 0.13 0.12 0.10 0.09 0.09 0.06 0.07 0.07 0.08 0.06
      LOI 1.136 1.40 1.39 2.72 1.35 2.92 2.77 2.51 2.30 2.07
      Total 100.65 100.40 100.65 100.23 100.49 99.56 99.58 100.0 99.90 100.0
      Mg# 71.0 70.4 72.1 69.8 71.7 71.7 71.3 71.5 71.5 73.3
      Li 14.0 13.1 14.3 42.4 15.6 22.2 22.2 24.1 20.5 22.2
      P 553 524 435 410 431 472 444 509 359 472
      K 1 836 1 740 1 671 3 564 2 034 1 785 2 732 2 388 2 851 1 785
      Sc 29.1 26.3 31.9 33.3 34.9 37.1 38.2 39.6 40.6 37.1
      Ti 6 750 6 546 6 386 5 996 6 422 4 334 5 232 4 764 4 142 4 334
      V 176 165 184 192 193 224 276 258 258 224
      Cr 178 156 200 173 208 505 482 502 573 505
      Mn 716 693 777 926 804 1 129 1 231 1 265 1 199 1 129
      Co 23.9 22.9 26.5 29.5 26.7 33.5 36.9 38.3 37.4 33.5
      Ni 48.3 44.5 53.8 52.4 53.7 174 172 169 199 174
      Cu 58.2 54.2 58.4 102 62.9 40.2 70.1 31.6 17.9 40.2
      Zn 39.1 35.2 39.3 55.5 38.9 63.8 56.1 62.4 75.7 63.8
      Ga 16.5 16.0 15.8 14.7 15.4 12.2 13.5 13.8 13.2 12.2
      Rb 1.79 1.75 1.41 14.4 2.80 4.52 8.78 7.06 9.51 4.52
      Sr 194 184 174 283 186 175 221 211 212 175
      Y 17.5 17.3 17.6 20.3 18.0 16.7 16.2 16.6 14.3 16.7
      Zr 70.7 70.4 73.6 79.3 68.9 57.7 54.5 54.0 42.9 57.7
      Nb 1.99 2.09 1.90 1.95 1.86 1.66 1.57 1.58 1.17 1.67
      Cs 0.679 0.682 0.675 6.87 0.681 1.13 2.95 2.43 3.37 1.13
      Ba 25.6 24.4 23.5 61.9 29.9 65.3 84.2 74.4 84.2 65.3
      La 5.38 4.47 4.35 4.6 4.07 5.28 4.58 4.72 3.88 5.28
      Ce 13.7 10.8 10.3 11.1 9.82 13.2 11.7 12.0 9.28 13.2
      Pr 1.84 1.63 1.58 1.72 1.53 1.73 1.56 1.60 1.23 1.73
      Nd 8.67 7.97 7.71 8.50 7.57 7.35 6.68 6.83 5.38 7.35
      Sm 2.42 2.31 2.3 2.58 2.31 2.10 1.95 2.00 1.67 2.10
      Eu 0.951 0.894 0.892 0.921 0.913 0.689 0.660 0.678 0.609 0.688
      Gd 2.94 2.81 2.83 3.28 2.86 2.46 2.32 2.41 2.06 2.46
      Tb 0.524 0.510 0.517 0.599 0.524 0.438 0.419 0.431 0.370 0.438
      Dy 3.25 3.15 3.274 3.81 3.33 2.84 2.78 2.81 2.43 2.84
      Ho 0.664 0.648 0.678 0.785 0.688 0.628 0.599 0.617 0.532 0.621
      Er 1.95 1.91 1.98 2.33 2.03 1.79 1.73 1.76 1.55 1.79
      Tm 0.270 0.267 0.276 0.325 0.286 0.274 0.262 0.270 0.231 0.274
      Yb 1.72 1.69 1.76 2.07 1.81 1.72 1.63 1.67 1.44 1.72
      Lu 0.261 0.257 0.270 0.318 0.279 0.262 0.248 0.253 0.219 0.262
      Hf 1.64 1.65 1.70 1.92 1.63 1.39 1.30 1.30 1.06 1.39
      Ta 0.109 0.162 0.109 0.115 0.111 0.104 0.098 0.102 0.089 0.104
      Pb 1.15 0.911 0.905 1.01 0.999 0.330 0.312 0.477 0.403 0.330
      Th 1.32 0.808 0.83 0.832 0.738 1.020 1.013 0.996 0.857 1.020
      U 0.219 0.134 0.133 0.151 0.143 0.169 0.170 0.161 0.152 0.169
      注:FeOT=Fe2O3T×0.89;Mg#=(MgO/40.3)/(MgO/40.3+Fe2O3T×0.89/71.9×0.85)×100.
      下载: 导出CSV

      表  4  班公湖-怒江缝合带西段及邻区早白垩世晚期岩浆岩形成时代

      Table  4.   Age of late Early Cretaceous magmatic rocks of western Banggong-Nujiang suture and near area

      地区 岩性 构造背景 测试技术 年龄(Ma) 资料来源
      达查 双峰式火山岩 区域伸展 锆石LA-ICP-MS 104.9±0.4 吴浩等,2014
      中仓 流纹岩 同碰撞 锆石LA-ICP-MS 103.0±0.8 吴浩等,2013
      达查 富镁安山岩 区域伸展 锆石LA-ICP-MS 104.1±0.4 吴浩等,2014
      达查 埃达克质花岗岩 板片断离 锆石LA-ICP-MS 100.0±1.0 Wu et al., 2014
      达查 埃达克质花岗岩 板片断离 锆石LA-ICP-MS 105.0±1.0 Wu et al., 2014
      达查 埃达克质花岗岩 板片断离 锆石LA-ICP-MS 104.0±1.0 Wu et al., 2015
      改则 去申拉组火山岩 板内 锆石LA-ICP-MS 107.8±0.4 麦源君等,2018
      改则 去申拉组火山岩 碰撞 锆石LA-ICP-MS 103.8±0.4 Chen et al., 2017
      洞错 去申拉组粗安岩 板内 锆石LA-ICP-MS 102.0±1.9 闫国川等,2017
      盐湖 玄武岩 板内 锆石LA-ICP-MS 108.9±1.1 Sui et al., 2013
      阿翁错 花岗闪长岩 俯冲消减 锆石LA-ICP-MS 104.0+1.0/-6.6 胡隽等,2014
      日松 花岗岩 俯冲消减 锆石LA-ICP-MS 108.4±2.1 关俊雷等,2014
      日土 埃达克质花岗岩 俯冲消减 锆石LA-ICP-MS 101.0±1.1 Liu et al., 2014b
      日土 埃达克质花岗岩 俯冲消减 锆石LA-ICP-MS 101.3±1.1 Liu et al., 2014b
      噶尔 花岗岩 区域伸展 锆石LA-ICP-MS 103.8±1.0 解龙等,2015
      物玛 闪长岩 俯冲消减 锆石LA-ICP-MS 108.3±1.4 魏永峰等,2017
      物玛 闪长岩 俯冲消减 锆石LA-ICP-MS 107.7±1.3 魏永峰等,2017
      阿索 辉长岩 区域伸展 锆石LA-ICP-MS 102.9±0.8 本文
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Barbey, P., Allé, P., Brouand, M., et al., 1995. Rare-Earth Patterns in Zircons from the Manaslu Granite and Tibetan Slab Migmatites (Himalaya) : Insights in the Origin and Evolution of a Crustally-Derived Granite Magma. Chemical Geology, 125(1-2): 1-17. https://doi.org/10.1016/0009-2541(95)00068-w
      [3] Chen, W. W., Zhang, S. H., Ding, J. K., et al., 2017. Combined Paleomagnetic and Geochronological Study on Cretaceous Strata of the Qiangtang Terrane, Central Tibet. Gondwana Research, 41: 373-389. https://doi.org/10.1016/j.gr.2015.07.004
      [4] Chen, L., Xu, J., Su, L., 2005. Characteristics of Cathode Fluorescence Spectrometer on Field Emission Environmental Scanning Electron Microscopy and Its Application in Zircon Research. Progress in Natural Science, 15(11): 1403-1408 (in Chinese with English abstract).
      [5] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered Ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463. https://doi.org/10.1016/j.gr.2013.06.005
      [6] Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy & Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      [7] Davidson, J. P., 1987. Crustal Contamination Versus Subduction Zone Enrichment: Examples from the Lesser Antilles and Implications for Mantle Source Compositions of Island Arc Volcanic Rocks. Geochimica et Cosmochimica Acta, 51(8): 2185-2198. https://doi.org/10.1016/0016-7037(87)90268-7
      [8] Duretz, T., Gerya, T. V., May, D. A., 2011. Numerical Modelling of Spontaneous Slab Breakoff and Subsequent Topographic Response. Tectonophysics, 502(1-2): 244-256. https://doi.org/10.1016/j.tecto.2010.05.024
      [9] Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639
      [10] Fan, J. J., Li, C., Wang, M., et al., 2017. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249. https://doi.org/10.1007/s00531-017-1487-4
      [11] Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1
      [12] Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4): 197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
      [13] Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463
      [14] Guan, J. L., Geng, Q. R., Wang, G. Z., et al., 2014. Zircon U-Pb Dating and Hf Isotope Compositions of the Risong Granite in North Gangdese, Tibet. Acta Geologica Sinica, 88(1):36-52 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201401004
      [15] Geng, Q. R., Zhang, Z., Peng, Z. M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77: 163-175. https://doi.org/10.1016/j.oregeorev.2016.02.018
      [16] Han, B. F., Wang, S. G., Kagami, H., 1999. Trace Element and Nd-Sr Isotope Constraints on Origin of the Chifeng Flood Basalts, North China. Chemical Geology, 155(3-4): 187-199. https://doi.org/10.1016/s0009-2541(98)00172-7
      [17] He, X. X., Xiao, L., Wang, G. C., et al., 2015. Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar. Earth Science, 40(5):777-796 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.064
      [18] Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
      [19] Hu, J., Wan, Y. W., Tao, Z., et al., 2014. New Geochemistry and Geochronology Evidences Related to Southward Subduction of Tethys Ocean Basin in West Segment of Bangonghu-Nujiang Suture Belt. Journal of Chengdu University of Technology (Science & Technology Edition), 41(4):506-515 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201404014
      [20] Hu, J., Wu, X. S., Wan, Y. W., et al., 2016. Geochemistry and Geochronology Characteristics, and Tectonic Setting of the IntrusiveRocks in the Bangong Co-Nujiang suture, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(6):737-750 (in Chinese with English abstract).
      [21] Hu, X. C., Xia, B., Huang, Q. T., et al., 2016. Geochemistry, Geochronology, and Petrogenesis of Mid-Cretaceous Talabuco Volcanic Rocks, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 59(4): 484-501. https://doi.org/10.1080/00206814.2016.1230524
      [22] Huang, Q. T., Li, J. F., Xia, B., et al., 2015. Petrology, Geochemistry, Chronology and Geological Significance of Jiang Tso Ophiolite in Middle Segment of Bangonghu-Nujiang Suture Zone, Tibet. Earth Science, 40(1):34-48 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.003
      [23] Huang, Q. T., Cai, Z. R., Xia, B., et al., 2015. Geochronology, Geochemistry, and Sr-Nd-Pb Isotopes of Cretaceous Granitoids from Western Tibet: Petrogenesis and Tectonic Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 58(1): 95-111. https://doi.org/10.1080/00206814.2015.1056257
      [24] Jung, C., Jung, S., Hoffer, E., et al., 2006. Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany. Journal of Petrology, 47(8): 1637-1671. https://doi.org/10.1093/petrology/egl023
      [25] Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/s0016-7037(96)00349-3
      [26] Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ceb08474eb2a74f4063e6d367cf5f048&encoded=0&v=paper_preview&mkt=zh-cn
      [27] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. https://doi.org/10.1130/b26033.1
      [28] La Flèche, M. R. L., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3
      [29] LassiterJ. C., DepaoloD. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, John Wiley & Sons, New York.
      [30] Leat, P. T., Riley, T. R., Wareham, C. D., et al., 2002. Tectonic Setting of Primitive Magmas in Volcanic Arcs: An Example from the Antarctic Peninsula. Journal of the Geological Society, 159(1): 31-44. https://doi.org/10.1144/0016-764900-132
      [31] Li, S. M., Zhu, D. C., Wang, Q., et al., 2016. Slab-Derived Adakites and Subslab Asthenosphere-Derived OIB-Type Rocks at 156±2 Ma from the North of Gerze, Central Tibet: Records of the Bangong-Nujiang Oceanic Ridge Subduction during the Late Jurassic. Lithos, 262: 456-469. https://doi.org/10.1016/j.lithos.2016.07.029
      [32] Liu, W. L., Xia, B., Zhong, Y., et al., 2014a. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447. https://doi.org/10.1080/00206814.2013.873356
      [33] Liu, D. L., Huang, Q. S., Fan, S. Y., et al., 2014b. Subduction of the Bangong-Nujiang Ocean: Constraints from Granites in the Bangong Co Area, Tibet. Geological Journal, 49(2): 188-206. https://doi.org/10.1002/gj.2510
      [34] Liu, Y., Wang, M., Li, C., et al., 2018. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination beneath the Qiangtang-Lhasa Collision Zone. International Geology Review, 61(5): 562-583. https://doi.org/10.1080/00206814.2018.1437789
      [35] Ludwig, K. R., 2000. ISOPLOT/Ex, Version 2.2, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley.
      [36] Lustrino, M., 2005. How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism. Earth-Science Reviews, 72(1-2): 21-38. https://doi.org/10.1016/j.earscirev.2005.03.004
      [37] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      [38] Mai, Y. J., Yang, W. G., Zhu, L. D., et al., 2018. Zircon U-Pb Age and Geochemistry of Volcanic Rocks From the Qushenla Formation in the Chagelong Area of Southern Margin of Qiangtang, Tibet—Restriction on the Evolution Time Limit of the Ban Gong Lake Nu River Ocean Basin. Journal of Mineralogy and Petrology, 38(2):70-79 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201802009
      [39] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
      [40] Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      [41] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [42] Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization Beneath the South Sandwich Island Arc. Journal of Petrology, 36(4): 1073-1109. https://doi.org/10.1093/petrology/36.4.1073
      [43] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      [44] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust, In: Heinrich, D. H., Karl, K. T., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
      [45] Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 3-1-3-38. https://doi.org/10.1029/2001rg000108
      [46] Sun, S. J., Zhang, L. P., Ding, X., et al., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [47] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [48] Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of Ca. 110 Ma Magmatism in the Northern Lhasa Terrane, Tibet: Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169: 144-159. https://doi.org/10.1016/j.lithos.2013.01.012
      [49] Tang, Y., Zhai, Q. G., Liu, T., et al., 2015. LA-ICP-MS Zircon U-Pb Dating, Geochemical Fea-Tures and Geological Significance of the Daru Co Granite Porphyry in Baingoin County, Tibet. Geological Bulletin of China, 34(10):1802-1811 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201510004
      [50] van Hunen, J., Miller, M. S., 2015. Collisional Processes and Links to Episodic Changes in Subduction Zones. Elements, 11(2): 119-124. https://doi.org/10.2113/gselements.11.2.119
      [51] Wang, S. M., Ma, C. Q., Wang, L. Y., et al., 2010. SHRIMP Zircon U-Pb Dating, Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen. Earth Science, 35(4):572-584 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.073
      [52] Wang, M., Li, C., Wu, Y. W., et al., 2013. Geochronology, Geochemistry, Hf Isotopic Compositions and Formation Mechanism of Radial Mafic Dikes in Northern Tibet. International Geology Review, 56(2): 187-205. https://doi.org/10.1080/00206814.2013.825076
      [53] Wang, X. C., Wilde, S. A., Xu, B., et al., 2016. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination. Lithos, 261: 5-45. https://doi.org/10.1016/j.lithos.2015.12.014
      [54] Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
      [55] Weaver, B., Kar, A., Davidson, J., et al., 1996. Geochemical Characteristics of Volcanic Rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449-470. https://doi.org/10.1016/0375-6505(96)00014-4
      [56] Wei, Y. F., Deng, Z. J., Zhao, Z. Q., et al., 2017. LA-ICP-MS Ziron U-Pb Dating, Geochemical Characteristics and Geoglogical Implication of Late Early Cretaceous Diorite in Bieruozecuo Area. Xinjiang Geology, 35(3):228-234 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201703001
      [57] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [58] Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
      [59] Wu, H., Li, C., Hu, P. Y., et al., 2013. The Discovery of Qushenla Volcanic Rocks in Tasepule Area of Nyima Country, Tibet, and Its Geological Significance. Geological Bulletin of China, 32(7):1014-1026 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201307007
      [60] Wu, H., Li, C., Hu, P. Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201411016
      [61] Wu, H., Li, C., Hu, P. Y., et al., 2014. Early Cretaceous (100-105 Ma) Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for the Bangong-Nujiang Ocean Subduction and Slab Break-Off. International Geology Review, 57(9/10): 1172-1188. https://doi.org/10.1080/00206814.2014.886152
      [62] Wu, H., Li, C., Xu, M. J., et al., 2015. Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for Slab Roll-Back and Subsequent Slab Break-Off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97: 51-66. https://doi.org/10.1016/j.jseaes.2014.10.014
      [63] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
      [64] Xie, L., Dun, D., Zhu, L. D., et al., 2015. Zircon U-Pb Geochronology, Geochemistry and Geological Significance of the Zhaduding A-Type Granites in Northern Gangdise, Tibet. Geology in China, 42(5): 1214-1227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505004
      [65] Yan, G. C., Wang, B. D., Liu, H., et al., 2017. LA-ICP-MS Zircon U-Pb Ages of Adakitic Rocks in Dongco Area, Tibet, and Their Tectonic Implications. Geological Bulletin of China, 36(10):1772-1782 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201710009
      [66] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [67] Yuan, H. L., Gao, S., Liu, X. M., et al., 2010. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      [68] Yogodzinski, G. M., Lees, J. M., Churikova, T. G., et al., 2001. Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges. Nature, 409(6819): 500-504. https://doi.org/10.1038/35054039
      [69] Zeng, X. W., Wang, M., Fan, J. J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet: Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321: 192-206. https://doi.org/10.1016/j.lithos.2018.09.013
      [70] Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
      [71] Zhang, L. L., Zhu, D. C., Zhao, Z. D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet: Evidence of Slab Break-Off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      [72] Zhang, X. F., Li, Y. G., Cao, X. M., et al., 2014. LA-ICP-MS zircon U-Pb Age and Geochemical Charac-teristics of the Acid intrusive rocks in the western part of Bangong Lake-Nujiang River Suture Zone. Geological Bulletin of China, 33(7):984-994 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201407006
      [73] Zhong, Y., Hu, X. C., Liu, W. L., et al., 2017. Age and Nature of the Jurassic-Early Cretaceous Mafic and Ultramafic Rocks from the Yilashan Area, Bangong-Nujiang Suture Zone, Central Tibet: Implications for Petrogenesis and Tectonic Evolution. International Geology Review, 60(10): 1244-1266. https://doi.org/10.1080/00206814.2017.1385033
      [74] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7-8): 979-993. https://doi.org/10.1130/b30062.1
      [75] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [76] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [77] Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record: Method and Examples. Science China Earth Sciences, 60(6): 1040-1056. https://doi.org/10.1007/s11430-016-9041-x
      [78] 陈莉, 徐军, 苏犁, 2005.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用.自然科学进展, 15(11): 1403-1408. doi: 10.3321/j.issn:1002-008X.2005.11.019
      [79] 关俊雷, 耿全如, 王国芝, 等, 2014.北冈底斯带日松花岗岩体的锆石U-Pb测年和Hf同位素组成.地质学报, 88(1):36-52. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201401004
      [80] 贺新星, 肖龙, 王国灿, 等, 2015.西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义.地球科学, 40(5):777-796. http://earth-science.net/WebPage/Article.aspx?id=3082
      [81] 胡隽, 万永文, 陶专, 等, 2014.班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据.成都理工大学学报(自然科学版), 41(4):506-515. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201404014
      [82] 胡隽, 吴小双, 万永文, 等, 2017.班公湖-怒江缝合带侵入岩地球化学和年代学特征及形成构造背景.成都理工大学学报(自然科学版), 43(6):737-750. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201606012
      [83] 黄强太, 李建峰, 夏斌, 等, 2015.西藏班公湖-怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义.地球科学, 40(1):34-48. http://earth-science.net/WebPage/Article.aspx?id=3014
      [84] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
      [85] 麦源君, 杨文光, 朱利东, 等, 2018.西藏羌塘南缘查格隆去申拉组火山岩锆石U-Pb年龄、地球化学特征——对班公湖-怒江洋盆演化时限的制约.矿物岩石, 38(2):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201802009
      [86] 孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7):2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [87] 唐跃, 翟庆国, 刘通, 等, 2015.西藏班戈县达如错花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义.地质通报, 34(10):1802-1811. doi: 10.3969/j.issn.1671-2552.2015.10.004
      [88] 王世明, 马昌前, 王琳燕, 等, 2010.大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因.地球科学, 35(4):572-584. http://earth-science.net/WebPage/Article.aspx?id=2001
      [89] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3): 413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
      [90] 魏永峰, 邓泽锦, 赵志强, 等, 2017.别若则错地区早白垩世晚期闪长岩LA-ICP-MS锆石U-Pb测年、地球化学特征及地质意义.新疆地质, 35(3) :228-234. http://d.old.wanfangdata.com.cn/Periodical/xjdz201703001
      [91] 吴浩, 李才, 胡培远, 等, 2013.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义.地质通报, 32(7): 1014-1026. doi: 10.3969/j.issn.1671-2552.2013.07.007
      [92] 吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11): 1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016
      [93] 解龙, 顿都, 朱利东, 等, 2015.西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义.中国地质, 42(5):1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004
      [94] 闫国川, 王保弟, 刘函, 等, 2017.西藏洞错埃达克质火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报, 36(10):1772-1782. doi: 10.3969/j.issn.1671-2552.2017.10.009
      [95] 张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7):581–588. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
      [96] 张向飞, 李佑国, 曹晓民, 等, 2014.班公湖-怒江缝合带西段酸性侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.地质通报, 33(7):984-994. doi: 10.3969/j.issn.1671-2552.2014.07.006
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  5042
    • HTML全文浏览量:  1622
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-30
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回