Research Progresses and Challenges of Mercury Biogeochemical Cycling in Global Vegetation Ecosystem
-
摘要: 汞是联合国环境规划署重点管控的全球性污染物.植被是联结大气圈与土壤圈的关键纽带,在全球汞生物地球化学循环中扮演着举足轻重的角色.植被生态系统是全球大气重要的汞汇,但由于大气‒植被‒土壤的汞界面交换过程及植物组织中汞的分布、来源与迁移转化规律及驱动机制认识不清,致使当前的全球汞生物地球化学循环模型缺失植被过程模块,无法厘定全球植被的大气汞汇通量.近年来迅速发展的汞同位素地球化学、同步辐射和微气象汞通量观测等新方法,为多层次解析不同类型植被与土壤及大气界面汞交换过程,阐明植物组织中汞的分布、来源与迁移规律提升了可能,能为进一步解决当前森林生态系统汞的生物地球化学循环的研究难点提供独辟蹊径的视角.Abstract: Mercury (Hg) is a global pollutant which has been listed by the United Nations Environment Programme focusing on control. Vegetation is a foundational link between atmosphere and pedosphere, and plays an important role in global Hg cycles. Currently, vegetation has been regarded as the important global sink of atmospheric Hg. However, the distinct knowledge gaps in Hg cycling among interface of air-vegetation-soil, and Hg distribution, sources, transformation and their biogeochemical mechanisms in vegetation components, lead to the current global Hg models with the poor parameterization schemes of vegetation related Hg processes. These largely restrain the comprehensive quantification of the vegetation sink for atmospheric Hg across the globe. Recently, the quickly developing Hg isotopic chemistry, HR-XANES/micro-XANES, and micro meteorological mercury flux observation technology provides a new insight in understanding the interface Hg biogeochemical processes among vegetation-soil-air surfaces, and assessing Hg sources and transformation and translocation in vegetations, specifically in forest ecosystems.
-
Key words:
- mercury /
- vegetation /
- biogeochemical cycling /
- flux /
- geochemistry
-
图 1 当前全球汞的分布与各圈层交换通量(据Outridge et al., 2018修改)
Fig. 1. Modified by updated global Hg budget showing the anthropogenic impact on the Hg cycle since the preanthropogenic period (prior to 1450 AD) (Outridge et al., 2018)
-
[1] Agnan, Y., Le Dantec, T., Moore, C. W., et al., 2016. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database. Environ. Sci. Technol., 50(2): 507-524. https://doi.org/10.1021/acs.est.5b04013 [2] Arnold, J., Gustin, M. S., Weisberg, P. J., 2018. Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. Environmental Science & Technology, 52(3): 1174-1182. https://doi.org/10.1021/acs.est.7b04468 [3] Bergquist, B. A., Blum, J. D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050 [4] Bishop, K. H., Lee, Y. H., Munthe, J., et al., 1998. Xylem Sap as a Pathway for Total Mercury and Methylmercury Transport from Soils to Tree Canopy in the Boreal Forest. Biogeochemistry, 40: 101-113. doi: 10.1023/A:1005983932240 [5] Blackwell, B. D., Driscoll, C. T., 2015. Deposition of Mercury in Forests along a Montane Elevation Gradient. Environmental Science & Technology, 49(9): 5363-5370. https://doi.org/10.1021/es505928w [6] Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., et al., 2014. Changing Climate Alters Inputs and Pathways of Mercury Deposition to Forested Ecosystems. Biogeochemistry, 119: 215-228. doi: 10.1007/s10533-014-9961-6 [7] Chen, J. B., Hintelmann, H., Feng, X. B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, ON, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. doi: 10.1016/j.gca.2012.05.005 [8] Cui, L., Feng, X., Lin, C. J., et al., 2014. Accumulation and Translocation of 198Hg in Four Crop Species. Environmental Toxicology and Chemistry, 33(2): 334-340. https://doi.org/10.1002/etc.2443 [9] Clarkson, T. W., 1993. Mercury: Major Issues in Environmental Health. Pharmaceutical Biology, 100: 31-38. https://doi.org/10.1289/ehp.9310031 [10] Demers, J. D., Blum, J. D., Zak, D. R., 2013. Mercury Isotopes in a Forested Ecosystem: Implications for Air- Surface Exchange Dynamics and the Global Mercury Cycle. Global Biogeochemical Cycles, 27: 222-238. doi: 10.1002/gbc.20021 [11] Enrico, M., Roux, G. L., Marusczak, N., et al., 2016. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environmental Science & Technology, 50(5): 2405-2412. https://doi.org/10.1021/acs.est.5b06058 [12] Feng, X. B., Chen, J. B., Fu, X. W., et al., 2013. Progresses on Environmental Geochemistry of Mercury. Bulletin of Mineralogy, Petrology and Geochemistry, 32(5): 503-530 (in Chinese with English abstract). [13] Feng, X. B., Fu, X. W., Jonas, S., et al., 2011. Earth Surface Natural Mercury Emission: Research Progress and Perspective. Chinese Journal of Ecology, 30(5): 845-856 (in Chinese with English abstract). [14] Frescholtz, T. E., Gustin, M. S., Schorran, D. E., et al., 2003. Assessing the Source of Mercury in Foliar Tissue of Quaking Aspen. Environ. Toxicol. Chem., 22(9): 2114-2119. https://doi.org/10.1002/etc.5620220922 [15] Fu, X., Feng, X., Zhu, W., et al., 2010. Elevated Atmospheric Deposition and Dynamics of Mercury in a Remote Upland Forest of Southwestern China. Environmental Pollution (Barking, Essex : 1987), 158(6): 2324-2333. https://doi.org/10.1016/j.envpol.2010.01.032 [16] Fu, X., Heimburger, L. E., Sonke, J. E., 2014. Collection of Atmospheric Gaseous Mercury for Stable Isotope Analysis Using Iodine- and Chlorine-Impregnated Activated Carbon Traps. Journal of Analytical Atomic Spectrometry, 29: 841-852. doi: 10.1039/c3ja50356a [17] Fu, X., Zhang, H., Liu, C., et al., 2019. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. Environmental Science & Technology, 53(23): 13748-13756. https://doi.org/10.1021/acs.est.9b05016 [18] Fu, X., Zhu, W., Zhang, H., et al., 2016a. Depletion of Atmospheric Gaseous Elemental Mercury by Plant Uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 16: 12861-12873. doi: 10.5194/acp-16-12861-2016 [19] Fu, X. W., Marusczak, N., Heimburger, L. E., et al., 2016b. Atmospheric Mercury Speciation Dynamics at the High-Altitude Pic du Midi Observatory, Southern France. Atmospheric Chemistry and Physics, 16: 5623-5639. doi: 10.5194/acp-16-5623-2016 [20] Gbor, P. K., Wen, D. Y., Meng, F., et al., 2006. Improved Model for Mercury Emission, Transport and Deposition. Atmospheric Environment, 40: 973-983. doi: 10.1016/j.atmosenv.2005.10.040 [21] Grandjean, P., Pichery, C., Bellanger, M., et al., 2012. Calculation of Mercury's Effects on Neurodevelopment. Environmental Health Perspectives, 120(12): A452. https://doi.org/10.1289/ehp.1206033 [22] Hanson, P. J., Lindberg, S. E., Tabberer, T. A., et al., 1995. Foliar Exchange of Mercury Vapor: Evidence for a Compensation Point. Water Air and Soil Pollution, 80(1): 373-382. [23] Jiskra, M., Sonke, J. E., Obrist, D., et al., 2018. A Vegetation Control on Seasonal Variations in Global Atmospheric Mercury Concentrations. Nature Geoscience, 11: 244-250. doi: 10.1038/s41561-018-0078-8 [24] Kang, H. H., Liu, X. H., Guo, J. M., et al., 2019. Characterization of Mercury Concentration from Soils to Needle and Tree Rings of Schrenk Spruce (Picea Schrenkiana) of the Middle Tianshan Mountains, Northwestern China. Ecological Indicators, 104: 24-31. doi: 10.1016/j.ecolind.2019.04.066 [25] Khalizov, A. F., Viswanathan, B., Larregaray, P., et al., 2003. A Theoretical Study on the Reactions of Hg with Halogens: Atmospheric Implications. The Journal of Physical Chemistry A, 107(33): 6360-6365. https://doi.org/10.1021/jp0350722 [26] Kritee, K., Motta, L. C., Blum, J. D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056 [27] Laacouri, A., Nater, E. A., Kolka, R. K., 2013. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA. Environmental Science & Technology, 47(18): 10462-10470. https://doi.org/10.1021/es401357z [28] Leonard, T. L., Taylor, G. E., Gustin, M. S., et al., 1998. Mercury and Plants in Contaminated Soils: 1. Uptake, Partitioning, and Emission to the Atmosphere. Environmental Toxicology and Chemistry, 17: 2063-2071. doi: 10.1002/etc.5620171024 [29] Lindberg, S., Bullock, R., Ebinghaus, R., et al., 2007. A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Ambio, 36(1): 19-32. https://doi.org/10.1579/0044-7447(2007)36[19:asopau]2.0.co;2 [30] Lindberg, S. E., Jackson, D. R., Huckabee, J. W., et al., 1979. Atmospheric Emission and Plant Uptake of Mercury from Agricultural Soils near the Almaden Mercury Mine. Journal of Environmental Quality, 8: 572-578. [31] Lindberg, S. E., Kim, K. H., Munthe, J., 1995. The Precise Measurement of Concentration Gradients of Mercury in Air over Soils: A Review of Past and Recent Measurements. Water, Air, and Soil Pollution, 80(1-4): 383-392. https://doi.org/10.1007/BF01189688 [32] Liu, Y., Tao, H., Wang, Y., et al., 2021. Gaseous Elemental Mercury [Hg(0)] Oxidation in Poplar Leaves through a Two-Step Single-Electron Transfer Process. Environmental Science & Technology Letters, 8(12): 1098-1103. [33] Liu, Y. W., Liu, G. L., Wang, Z. W., et al., 2022. Understanding Foliar Accumulation of Atmospheric Hg in Terrestrial Vegetation: Progress and Challenges. Critical Reviews in Environmental Science and Technology, 54(24): 4331-4352. [34] Lucotte, M., Schetagne, R., Therien, N., et al., 1999. Mercury in the Biogeochemical Cycle Natural Environments and Hydroelectric Reservoirs of Northern Quebec (Canada). Springer, Amsterdam, 1-334. [35] Luo, Y., Duan, L., Driscoll, C. T., et al., 2016. Foliage/Atmosphere Exchange of Mercury in a Subtropical Coniferous Forest in South China. Journal of Geophysical Research-Biogeosciences, 121: 2006-2016. doi: 10.1002/2016JG003388 [36] Manceau, A., Lemouchi, C., Enescu, M., et al., 2015. Formation of Mercury Sulfide from Hg(Ⅱ)-Thiolate Complexes in Natural Organic Matter. Environmental Science & Technology, 49(16): 9787-9796. https://doi.org/10.1021/acs.est.5b02522 [37] Manceau, A., Wang, J., Rovezzi, M., et al., 2018. Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury. Environ. Sci. Technol., 52(7): 3935-3948. https://doi.org/10.1021/acs.est.7b05452 [38] Manoj, M. C., Srivastava, J., Uddandam, P. R., et al., 2020. A 2 000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India. Journal of Earth Science, 31(5): 1029-1044. doi: 10.1007/s12583-020-1336-4 [39] Mao, X., Liu, L. J., Song, L., et al., 2021. Ecological Environment Evolution and Is Influencing Factors in Baiyangdian Lake in Recent 70 Years. Earth Science, 46 (7): 2609-2620 (in Chinese with English abstract). [40] Obrist, D., Agnan, Y., Jiskra, M., et al., 2017. Tundra Uptake of Atmospheric Elemental Mercury Drives Arctic Mercury Pollution. Nature, 547(7662): 201-204. https://doi.org/10.1038/nature22997 [41] Obrist, D., Kirk, J. L., Zhang, L., et al., 2018. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio, 47(2): 116-140. https://doi.org/10.1007/s13280-017-1004-9 [42] Obrist, D., Roy, E. M., Harrison, J. L., et al., 2021. Previously Unaccounted Atmospheric Mercury Deposition in a Midlatitude Deciduous Forest. PNAS, 118(29): e2105477118. https://doi.org/10.1073/pnas.2105477118 [43] Outridge, P. M., Mason, R. P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477. [44] Pereira, E., Vale, C., Tavares, C. F., et al., 2005. Mercury in Plants from Fields Surrounding a Contaminated Channel of Ria de Aveiro, Portugal. Soil and Sediment Contamination: An International Journal, 14(6): 571-577. https://doi.org/10.1080/15320380500263774 [45] Pirrone, N., Cinnirella, S., Feng, X., et al., 2010. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmospheric Chemistry and Physics, 10(13): 5951-5964. doi: 10.5194/acp-10-5951-2010 [46] Selin, N. E., Jacob, D. J., Yantosca, R. M., et al., 2008. Global 3-D Land-Ocean-Atmosphere Model for Mercury: Present-Day versus Preindustrial Cycles and Anthropogenic Enrichment Factors for Deposition. Global Biogeochemical Cycles, 22(2): 1-13. [47] Shah, V., Jacob, D. J., Thackray, C. P., et al., 2021. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. Environmental Science & Technology, 55(21): 14445-14456. https://doi.org/10.1021/acs.est.1c03160 [48] Shetty, S. K., Lin, C. J., Streets, D. G., et al., 2008. Model Estimate of Mercury Emission from Natural Sources in East Asia. Atmospheric Environment, 42: 8674-8685. doi: 10.1016/j.atmosenv.2008.08.026 [49] Smith-Downey, N. V., Sunderl, E. M., Jacob, D. J., 2010. Anthropogenic Impacts on Global Storage and Emissions of Mercury from Terrestrial Soils: Insights from a New Global Model. Journal of Geophysical Research-Atmospheres, 115: 227-235. [50] Sommar, J., Osterwalder, S., Zhu, W., 2020. Recent Advances in Understanding and Measurement of Hg in the Environment: Surface-Atmosphere Exchange of Gaseous Elemental Mercury (Hg0). Sci. Total Environ., 721: 137648. https://doi.org/10.1016/j.scitotenv.2020.137648 [51] Sommar, J., Zhu, W., Lin, C. J., et al., 2013a. Field Approaches to Measure Hg Exchange between Natural Surfaces and the Atmosphere—A Review. Critical Reviews in Environmental Science and Technology, 43(15): 1657-1739. https://doi.org/10.1080/10643389.2012.671733 [52] Sommar, J., Zhu, W., Shang, L. H., et al., 2013b. A Whole-Air Relaxed Eddy Accumulation Measurement System for Sampling Vertical Vapour Exchange of Elemental Mercury. Tellus B: Chemical and Physical Meteorology, 65(1): 19940. https://doi.org/10.3402/tellusb.v65i0.19940 [53] St Louis, V. L., Graydon, J. A., Lehnherr, I., et al., 2019. Atmospheric Concentrations and Wet/Dry Loadings of Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada. Environmental Science & Technology, 53: 8017-8026. [54] St Louis, V. L., Rudd, J. W., Kelly, C. A., et al., 2001. Importance of the Forest Canopy to Fluxes of Methyl Mercury and Total Mercury to Boreal Ecosystems. Environmental Science & Technology, 35(15): 3089-3098. https://doi.org/10.1021/es001924p [55] Stamenkovic, J., Gustin, M. S, 2009. Nonstomatal versus Stomatal Uptake of Atmospheric Mercury. Environmental Science & Technology, 43(5): 1367-1372. https://doi.org/10.1021/es801583a [56] Stein, E. D., Cohen, Y., Winer, A. M., 1996. Environmental Distribution and Transformation of Mercury Compounds. Critical Reviews in Environmental Science and Technology, 26(1): 1-43. https://doi.org/10.1080/10643389609388485 [57] Streets, D. G., Devane, M. K., Lu, Z., et al., 2011. All-Time Releases of Mercury to the Atmosphere from Human Activities. Environ. Sci. Technol., 45(24): 10485-10491. https://doi.org/10.1021/es202765m [58] Streets, D. G., Horowitz, H. M., Jacob, D. J., et al., 2017. Total Mercury Released to the Environment by Human Activities. Environmental Science & Technology, 51(11): 5969-5977. https://doi.org/10.1021/acs.est.7b00451 [59] UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, UN-Environment Programme, Switzerland. [60] UNEP, 2018. Global Mercury Assessment 2018. Chemicals and Health Branch, UN-Environment Programme, Switzerland. [61] Wang, B., Yuan, W., Wang, X., et al., 2022a. Canopy-Level Flux and Vertical Gradients of Hg0 Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-around Net Hg0 Deposition. Environmental Science & Technology, 56(9): 5950-5959. https://doi.org/10.1021/acs.est.2c00778 [62] Wang, J., Man, Y., Yin, R., et al., 2022b. Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia Cordata Colonizing Historically Contaminated Soil. Environmental Science & Technology, 56(12): 7997-8007. https://doi.org/10.1021/acs.est.2c00909 [63] Wang, X., Yuan, W., Lin, C. J., et al., 2022c. Mercury Cycling and Isotopic Fractionation in Global Forests. Critical Reviews in Environmental Science and Technology, 52(21): 3763-3786. https://doi.org/10.1080/10643389.2021.1961505 [64] Wang, J., Shaheen, S. M., Anderson, C. W. N., et al., 2020a. Nanoactivated Carbon Reduces Mercury Mobility and Uptake by Oryza Sativa L: Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. Environ. Sci. Technol., 54(5): 2698-2706. https://doi.org/10.1021/acs.est.9b05685 [65] Wang, J. J., Guo, Y. Y., Guo, D. L., et al., 2012. Fine Root Mercury Heterogeneity: Metabolism of Lower- Order Roots as an Effective Route for Mercury Removal. Environ. Sci. Technol., 46(2): 769-777. https://doi.org/10.1021/es2018708 [66] Wang, X., Luo, J., Yuan, W., et al., 2020b. Global Warming Accelerates Uptake of Atmospheric Mercury in Regions Experiencing Glacier Retreat. PNAS, 117(4): 2049-2055. https://doi.org/10.1073/pnas.1906930117 [67] Wang, X., Yuan, W., Lin, C. J., et al., 2020c. Underestimated Sink of Atmospheric Mercury in a Deglaciated Forest Chronosequence. Environmental Science & Technology, 54(13): 8083-8093. https://doi.org/10.1021/acs.est.0c01667 [68] Wang, X., Bao, Z., Lin, C. J., et al., 2016. Assessment of Global Mercury Deposition through Litterfall. Environmental Science & Technology, 50(16): 8548-8557. https://doi.org/10.1021/acs.est.5b06351 [69] Wang, X., Luo, J., Yin, R., et al., 2017a. Using Mercury Isotopes to Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. Environ. Sci. Technol., 51(2): 801-809. https://doi.org/10.1021/acs.est.6b03806 [70] Wang, X., Yuan, W., Feng, X., 2017b. Global Review of Mercury Biogeochemical Processes in Forest Ecosystems. Progress in Chemistry, 29: 970-980. [71] Wang, X., Yuan, W., Lin, C. J., et al., 2019. Climate and Vegetation as Primary Drivers for Global Mercury Storage in Surface Soil. Environmental Science & Technology, 53(18): 10665-10675. https://doi.org/10.1021/acs.est.9b02386 [72] Wang, X., Yuan, W., Lin, C. J., et al., 2021. Stable Mercury Isotopes Stored in Masson Pinus Tree Rings as Atmospheric Mercury Archives. J. Hazard. Mater., 415: 125678. https://doi.org/10.1016/j.jhazmat.2021.125678 [73] Wei, Y., Yang, B., Xia, H. D., et al., 2021. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861 (in Chinese with English abstract). [74] Wohlgemuth, L., Rautio, P., Ahrends, B., et al., 2022. Physiological and Climate Controls on Foliar Mercury Uptake by European Tree Species. Biogeosciences, 19: 1335-1353. doi: 10.5194/bg-19-1335-2022 [75] Wright, L. P., Zhang, L., Marsik, F. J., 2016. Overview of Mercury Dry Deposition, Litterfall, and Throughfall Studies. Atmospheric Chemistry and Physics, 16: 13399-13416. doi: 10.5194/acp-16-13399-2016 [76] Yang, Y., Yanai, R. D., Montesdeoca, M., et al., 2017. Measuring Mercury in Wood: Challenging But Important. International Journal of Environmental Analytical Chemistry, 97(5): 456-467. https://doi.org/10.1080/03067319.2017.1324852 [77] Yuan, S. L., Chen, J. B., Hintelmann, H., et al., 2022. Event-Based Atmospheric Precipitation Uncovers Significant Even and Odd Hg Isotope Anomalies Associated with the Circumpolar Vortex. Environmental Science & Technology, 56(17): 12713-12722. https://doi.org/10.1021/acs.est.2c02613 [78] Yuan, W., Sommar, J., Lin, C. J., et al., 2019. Stable Isotope Evidence Shows Re-Emission of Elemental Mercury Vapor Occurring after Reductive Loss from Foliage. Environ. Sci. Technol., 53(2): 651-660. https://doi.org/10.1021/acs.est.8b04865 [79] Zeng, S., Wang, X., Yuan, W., et al., 2022. Mercury Accumulation and Dynamics in Montane Forests along an Elevation Gradient in Southwest China. Journal of Environmental Sciences (China), 119: 1-10. https://doi.org/10.1016/j.jes.2021.10.015 [80] Zhang, Y., Song, Z., Huang, S., et al., 2021. Global Health Effects of Future Atmospheric Mercury Emissions. Nature Communications, 12(1): 3035. https://doi.org/10.1038/s41467-021-23391-7 [81] Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/DOC Ratio. Geochimica et Cosmochimica Acta, 73: 6704-6715. doi: 10.1016/j.gca.2009.08.016 [82] Zheng, W., Hintelmann, H., 2010. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348 [83] Zheng, W., Obrist, D., Weis, D., et al., 2016. Mercury Isotope Compositions across North American Forests. Global Biogeochemical Cycles, 30: 1475-1492. doi: 10.1002/2015GB005323 [84] Zhou, J., Obrist, D., 2021. Global Mercury Assimilation by Vegetation. Environmental Science & Technology, 55(20): 14245-14257. https://doi.org/10.1021/acs.est.1c03530 [85] Zhou, J., Obrist, D., Dastoor, A., et al., 2021. Vegetation Uptake of Mercury and Impacts on Global Cycling. Nature Reviews Earth & Environment, 2(4): 269-284. [86] Zhu, W., Lin, C. J., Wang, X., et al., 2016. Global Observations and Modeling of Atmosphere-Surface Exchange of Elemental Mercury: A Critical Review. Atmospheric Chemistry and Physics, 16: 4451-4480. [87] Zhu, W., Sommar, J., Lin, C. J., et al., 2015a. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part I: Data Comparability and Method Characteristics. Atmospheric Chemistry and Physics, 15: 685-702. doi: 10.5194/acp-15-685-2015 [88] Zhu, W., Sommar, J., Lin, C. J., et al., 2015b. Mercury Vapor Air-Surface Exchange Measured by Collocated Micrometeorological and Enclosure Methods-Part Ⅱ: Bias and Uncertainty Analysis. Atmospheric Chemistry and Physics, 15: 5359-5376. doi: 10.5194/acp-15-5359-2015 [89] 冯新斌, 陈玖斌, 付学吾, 等, 2013. 汞的环境地球化学研究进展. 矿物岩石地球化学通报, 32(5): 503-530. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201305001.htm [90] 冯新斌, 付学吾, Jonas, S., 等, 2011. 地表自然过程排汞研究进展及展望. 生态学杂志, 30(5): 845-856. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201105002.htm [91] 毛欣, 刘林敬, 宋磊, 等, 2021. 白洋淀近70年生态环境演化过程及影响因素. 地球科学, 46(7): 2609-2620. doi: 10.3799/dqkx.2020.203 [92] 韦一, 杨兵, 夏浩东, 等, 2021. 抚顺盆地中-晚始新世古植被与古气候. 地球科学, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142