• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    从高分辨率地震层析成像看青藏高原软流圈的物质运动

    杨文采 刘晓宇 陈召曦 江金生

    杨文采, 刘晓宇, 陈召曦, 江金生, 2022. 从高分辨率地震层析成像看青藏高原软流圈的物质运动. 地球科学, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871
    引用本文: 杨文采, 刘晓宇, 陈召曦, 江金生, 2022. 从高分辨率地震层析成像看青藏高原软流圈的物质运动. 地球科学, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871
    Yang Wencai, Liu Xiaoyu, Chen Zhaoxi, Jiang Jinsheng, 2022. Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography. Earth Science, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871
    Citation: Yang Wencai, Liu Xiaoyu, Chen Zhaoxi, Jiang Jinsheng, 2022. Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography. Earth Science, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871

    从高分辨率地震层析成像看青藏高原软流圈的物质运动

    doi: 10.3799/dqkx.2022.871
    基金项目: 

    中国地质调查项目 12120113093800

    详细信息
      作者简介:

      杨文采(1942-),男,中国科学院院士,教授,博士生导师,主要从事综合地球物理研究.E-mail:yang007@zju.edu.cn

      通讯作者:

      刘晓宇,E-mail:nbysss@126.com

    • 中图分类号: P313

    Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography

    • 摘要: 通过分辨率达到0.5°×0.5°×10 km的青藏高原地壳与上地幔三维成像,为研究青藏高原在新生代的动力学作用提供了新的认识.软流圈的波速扰动数据证实,特提斯大洋板块在拆沉后只俯冲到410 km的间断面之上,并不是所有的大洋板块都会俯冲到上地幔底部.这种大洋板块在软流圈拆沉后激发的热流体上涌,造成高原中部大规模的火山喷发,是青藏高原隆升的主要动力来源之一.根据上地幔三维地震层析成像结果定量计算了岩石圈-软流圈界面(LAB)的深度,揭示了软流圈地幔物质的上涌或者岩石圈地块下沉的作用布局,表明青藏高原的东部在新生代动力学作用过程中是一个相对独立的岩石圈地幔块体.

       

    • 图  1  研究采集地震数据的台站和地震源分布(a),研究区域地震射线(蓝色)分布(b),P波速度成像在检测板试验结果(c)

      图中红色三角形为地方地震台网的台站位置,绿色圆圈为该区域3级以上地震位置;检测板深度分别为11 km,78 km,120 km和310 km

      Fig.  1.  The seismic stations and earthquakes distributions (a), rays distribution (b); and the seismic P-wave checkerboard for different depths (c)

      图  2  青藏高原沿经度92°E的上地幔P波速度剖面

      a.2019年用分辨率1°×1°×20 km网格取得的P波速度扰动剖面图;b.2021年用分辨率0.5°×0.5°×10 km网格取得的P波速度剖面图.A-B. 标注和印度大陆岩石圈地幔俯冲有关的高速异常体;C-D.标注和特提斯大洋板块俯冲有关的高速异常体的顶面

      Fig.  2.  The seismic P-wave velocity disturbance profile computed in 2019 (a) and new velocity profile computed in 2021 (b) along 92°E in Qinghai-Tibetan Plateau

      图  3  上地幔不同深度的地震层析成像平面图

      a.波速扰动,深度120 km,岩石圈地幔;b.波速扰动,深度180 km;c.波速,深度260 km;d. 波速,深度360 km,软流圈底部

      Fig.  3.  The seismic P-wave velocity images on depth of 120 km, 180 km, 260 km and 360 km respectively

      图  4  青藏高原地壳上地幔物质运动模式

      a.晚白垩世青藏高原的地壳上地幔模型,特提斯大洋板块尚未开始俯冲;b.大约70 Ma特提斯大洋板块开始俯冲的地壳上地幔模型;c.大约35 Ma特提斯大洋完全封闭、印度大陆岩石圈开始俯冲的地壳上地幔模型,特提斯大洋板块开始拆沉;d.现今青藏高原地壳上地幔模型

      Fig.  4.  The mass-motion model of the crust and upper-mantle in Qinghai-Tibetan Plateau

      图  5  岩石圈-软流圈界面(LAB)深度平面图(a)和立体图(b)

      字母A~F标记软流圈物质的上涌区,字母P~R标记岩石圈物质的下沉运动区.A.柴达木东;B.东昆仑;C.羌塘;D.当惹雍错;E.滇南印支;F.六盘-关中;P.中印度;Q.东印-缅甸;R.青海东部地区

      Fig.  5.  The calculated plane map (a) and stereoscopic chart (b) of the lithosphere-asthenosphere boundary depth in Qinghai-Tibetan Plateau

    • [1] Bao, X. W., Song, X. D., Li, J. T., 2015. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth and Planetary Science Letters, 417: 132-141. https://doi.org/10.1016/j.epsl.2015.02.024
      [2] Chen, M., Niu, F. L., Liu, Q. Y., et al., 2015. Multi-Parameter Adjoint Tomography of the Crust and Upper Mantle beneath East Asia-Part I: Model Construction and Comparisons. Journal of Geophysical Research: Solid Earth, 120(3): 1762-1786. https://doi.org/10.1002/2014JB011638
      [3] Hall, R., 2012. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570/571: 1-41. https://doi.org/10.1016/j.tecto.2012.04.021
      [4] Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111: B09305. https://doi.org/10.1029/2005JB004066
      [5] James, D. E., 1989. Encyclopedia of Solid Earth Geophysics. Van Nostrand Reinhold Co., New York.
      [6] Jolivet, L., Hataf, H. C., 2001. Geodynamics. Lisse, A. A., Balkema, Pub., James, D. E., 1989. Encyclopedia of Solid Earth Geophysics. Van Nostrand Reinhold Co., New York.
      [7] Laske, G., Masters, G., Ma, Z., et al., 2012. CRUST1.0: An Updated Global Model of Earth's Crust. EGU General Assembly Conference, Vienna, Austria.
      [8] Ma, L. F., et al., 2005. Acta of Chinese Geology. Geology Publishing House, Beijing (in Chinese).
      [9] Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook. Cambridge University Press, Cambridge.
      [10] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-Induced Asthenospheric Mantle Flow. Special Paper of the Geological Society of America, 409: 507-530.
      [11] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2007. Migration of the Tibetan Cenozoic Potassic Volcanism and Its Transition to Eastern Basaltic Province: Implications for Crustal and Mantle Flow. Geoscience, 21(2): 255-264(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2007.02.010
      [12] Mooney, W. D., Laske, G., Masters, T. G., et al., 1998. CRUST 5.1: A Global Crustal Model at 5×5 Degrees. Journal of Geophysical Research: Solid Earth, 103(B1): 727-747. https://doi.org/10.1029/97JB02122
      [13] Qu, C., Liu, X. Y., Yu, C. Q., et al., 2020. S Wave Velocity and Poisson's Ratio Tomography of the Tibetan Plateau. Chinese Journal of Geophysics, 63(10): 3640-3652(in Chinese with English abstract). doi: 10.6038/cjg2020N0236
      [14] Qu, C., Yang, W. C., Yu, C. Q., 2013. Seismic Velocity Tomography and Poisson's Ratio Imaging in Tarim Basin. Earth Science Frontiers, 20(5): 196-206(in Chinese with English abstract).
      [15] Rogers, J. J., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, Oxford.
      [16] Wang, C. Y., Lou, H., Lü, Z. Y., et al., 2008. S-Wave Velocity Structure of Crust and Upper Mantle in Eastern Qinghai-Tibet Plateau: Deep Environment of Lower Crust Flow. Science in China (Series D: Earth Sciences), 38(1): 22-32(in Chinese with English abstract). doi: 10.3321/j.issn:1006-9267.2008.01.003
      [17] Woodhouse, J. H., Dziewonski, A. M., 1984. Mapping the Upper Mantle: Three-Dimensional Modeling of Earth Structure by Inversion of Seismic Waveforms. Journal of Geophysical Research: Solid Earth, 89(B7): 5953-5986. https://doi.org/10.1029/jb089ib07p05953
      [18] Xu, Y., Liu, F. T., Liu, J. H., et al., 2002. Crust and Upper Mantle Structure beneath Western China from P Wave Travel Time Tomography. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 4-1-ESE 4-15. https://doi.org/10.1029/2001JB000402
      [19] Xu, Y., Liu, J. S., Huang, Z. X., et al., 2014. Upper Mantle Velocity Structure and Dynamic Features of the Tibetan Plateau. Chinese Journal of Geophysics, 57(12): 4085-4096(in Chinese with English abstract). doi: 10.6038/cjg20141220
      [20] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. The Orogenic Tibetan Plateau. Geology Publishing House, Beijing (in Chinese).
      [21] Yang, W. C., 1986. Computed Tomography for Seismic Body Waves and Earth Imaging. Earthquake Research in China, 2(3): 1-13(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD198603002&dbcode=CJFD&year=1986&dflag=pdfdown
      [22] Yang, W. C., 1989. Geophysical Inversion and Seismic Tomography. Geological Publishing House, Beijing(in Chinese).
      [23] Yang, W. C., 2013. Reflection Seismology: Theory, Data Processing and Interpretation. Elsevier, Waltham.
      [24] Yang, W. C., Zeng, X. Z., 2020a. Continental Dynamics with Cognition of Earth Matter Movement. Geological Review, 66(1): 1-12(in Chinese with English abstract).
      [25] Yang, W. C., 2020b. On Composition, Attributes Andphases of the Shallow-Mantle System. Geological Review, 66(2): 263-275(in Chinese with English abstract).
      [26] Yang, W. C., 2020c. On Dynamic Processes of the Shallow-Mantle System. Geological Review, 66(3): 521-532(in Chinese with English abstract).
      [27] Yang, W. C., Jin, S., Zhang, L. L., et al., 2020d. The Three-Dimensional Resistivity Structures of the Lithosphere beneath the Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 63(3): 817-827(in Chinese with English abstract).
      [28] Yang, W. C., Du, J. Y., 1993. Approaches to Solve Nonlinear Problems of the Seismic Tomography. Acoustical Imaging. Springer US, Boston, MA: 591-603. https://doi.org/10.1007/978-1-4615-2958-3_81
      [29] Yang, W. C., Hou, Z. Z., Xu, Y. X., et al., 2017. A Study on Thermal Deformation and Lower Crust Channel Flows in Qinghai-Xizang(Tibet) Plateau. Geological Review, 63(5): 1141-1152(in Chinese with English abstract).
      [30] Yang, W. C., Hou, Z. Z., Yu, C. Q., 2015a. Three-Dimensional Density Structure of the Tibetan Plateau and Crustal Mass Movement. Chinese Journal of Geophysics, 58(11): 4223-4234(in Chinese with English abstract).
      [31] Yang, W. C., Sun, Y. Y., Yu, C. Q., 2015b. Crustal Density Deformation Zones of Qinghai-Tibet Plateau and Their Geological Implications. Chinese Journal of Geophysics, 58(11): 4115-4128(in Chinese with English abstract).
      [32] Yang, W. C., Qu, C., Ren, H. R., et al., 2019a. Crustal P-Wave Seismic Tomography of the Qinghai-Xizang(Tibetan) Plateau. Geological Review, 65(1): 2-14(in Chinese with English abstract).
      [33] Yang, W. C., Jiang, J. S., Qu, C., et al., 2019b. A Study on Origin of Cenozoic Rifts in Qinghai-Xizang(Tibetan) Plateau. Geological Review, 65(2): 267-279(in Chinese with English abstract).
      [34] Yang, W. C., Qu, C., Ren, H. R., et al., 2019c. The Asthenosphere of the Qinghai-Xizang (Tibetan) Plateau and Subduction of the Tethys Ocean. Geological Review, 65(3): 521-532 (in Chinese with English abstract).
      [35] Yang, W. C., 2019d. A New Mode for Continental Accretion Induced by Interaction between the Lithosphere and Asthenosphere. Geological Review, 65(5): 1039-1053(in Chinese with English abstract).
      [36] Yang, W. C., Song, H. B., Yang, W. Y., 2008. Crustal Structure and Evolution of the Sichuan-Gansu-Qinghai Flysch Basin. Acta Geologica Sinica, 82(9): 1169-1177(in Chinese with English abstract).
      [37] Yang, W. C., Yu, C. Q., 2014. Continental Collision Process Reveled by Worldwide Comparison of Crust and Upper Mantle Structures(I). Geological Review, 60(2): 237-259(in Chinese with English abstract).
      [38] 马丽芳等, 2005. 中国地质图集. 北京: 地质出版社.
      [39] 莫宣学, 赵志丹, 邓晋福, 等, 2007. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示. 现代地质, 21(2): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702011.htm
      [40] 瞿辰, 刘晓宇, 于常青, 等, 2020. 青藏高原S波和泊松比的层析成像. 地球物理学报, 63(10): 3640-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010005.htm
      [41] 瞿辰, 杨文采, 于常青, 2013. 塔里木盆地地震波速扰动及泊松比成像. 地学前缘, 20(5): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305021.htm
      [42] 王椿镛, 楼海, 吕智勇, 等, 2008. 青藏高原东部地壳上地幔S波速度结构: 下地壳流的深部环境. 中国科学(D辑: 地球科学), 38(1): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801003.htm
      [43] 胥颐, 刘劲松, 黄忠贤, 等, 2014. 青藏高原上地幔速度结构及其动力学性质. 地球物理学报, 57(12): 4085-4096. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201412021.htm
      [44] 许志琴, 杨经绥, 李海兵, 等, 2007. 造山的高原-青藏高原的地体拼合、碰撞造山及隆升机制. 北京: 地质出版社.
      [45] 杨文采, 1986. 应用地震体波的CT技术和地球探查. 中国地震, 2(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198603002.htm
      [46] 杨文采, 1989. 地球物理反演与地震层析成像. 北京: 地质出版社.
      [47] 杨文采, 曾祥芝, 2020a. 认知地球物质运动的大陆动力学方法. 地质论评, 66(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001001.htm
      [48] 杨文采, 2020b. 浅地幔系统的组成和属性相态. 地质论评, 66(2): 263-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002002.htm
      [49] 杨文采, 2020c. 浅地幔系统的动力学作用. 地质论评, 66(3): 521-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003001.htm
      [50] 杨文采, 金胜, 张罗磊, 等, 2020d. 青藏高原岩石圈三维电性结构. 地球物理学报, 63(3): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003005.htm
      [51] 杨文采, 侯遵泽, 徐义贤, 等, 2017. 青藏高原下地壳热变形和管道流研究. 地质论评, 63(5): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705003.htm
      [52] 杨文采, 侯遵泽, 于常青, 2015a. 青藏高原地壳的三维密度结构和物质运动. 地球物理学报, 58(11): 4223-4234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511029.htm
      [53] 杨文采, 孙艳云, 于常青, 2015b. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11): 4115-4128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511020.htm
      [54] 杨文采, 瞿辰, 任浩然, 等, 2019a. 青藏高原地壳地震纵波速度的层析成像. 地质论评, 65(1): 2-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901002.htm
      [55] 杨文采, 江金生, 瞿辰, 等, 2019b. 西藏新生代裂谷系成因的探讨. 地质论评, 65(2): 267-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201902001.htm
      [56] 杨文采, 瞿辰, 任浩然, 等, 2019c. 青藏高原软流圈与特提斯洋板块俯冲. 地质论评, 65(3): 521-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201903001.htm
      [57] 杨文采, 2019d. 岩石圈—软流圈物质循环促进大陆增生的新方式. 地质论评, 65(5): 1039-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201905001.htm
      [58] 杨文采, 宋海斌, 杨午阳, 2008. 川甘青复理石盆地地壳结构与演化. 地质学报, 82(9): 1169-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200809002.htm
      [59] 杨文采, 于常青, 2014. 从地壳上地幔构造看大陆碰撞作用(上). 地质论评, 60(2): 237-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402001.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  508
    • HTML全文浏览量:  278
    • PDF下载量:  206
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-14
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回