How to Form the Famous South China W-Sn Province?
-
-
[1] Audétat, A., 2019. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. Economic Geology, 114(6): 1033-1056. https://doi.org/10.5382/econgeo.4673 [2] Audétat, A., Günther, D., Heinrich, C. A., 1998. Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions. Science, 279(5359): 2091-2094. https://doi.org/10.1126/science.279.5359.2091 [3] Carocci, E., Truche, L., Cathelineau, M., et al., 2022. Tungsten (VI) Speciation in Hydrothermal Solutions up to 400 ℃ as Revealed by In-Situ Raman Spectroscopy. Geochimica et Cosmochimica Acta, 317: 306-324. https://doi.org/10.1016/j.gca.2021.11.004 [4] Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402/403: 105756. https://doi.org/10.1016/j.lithos.2020.105756 [5] Li, Q., Zhao, K. D., Palmer, M. R., et al., 2021. Exploring Volcanic-Intrusive Connections and Chemical Differentiation of High Silica Magmas in the Early Cretaceous Yanbei Caldera Complex Hosting a Giant Tin Deposit, Southeast China. Chemical Geology, 584: 120501. https://doi.org/10.1016/j.chemgeo.2021.120501 [6] Mao, J. W., Ouyang, H., Song, S., et al., 2019. Geology and Metallogeny of Tungsten and Tin Deposits in China. Society of Economic Geologists Special Publications, 22: 411-482. [7] Schmidt, C., 2018. Formation of Hydrothermal Tin Deposits: Raman Spectroscopic Evidence for an Important Role of Aqueous Sn(IV) Species. Geochimica et Cosmochimica Acta, 220: 499-511. https://doi.org/10.1016/j.gca.2017.10.011 [8] Wolf, M., Romer, R. L., Franz, L., et al., 2018. Tin in Granitic Melts: The Role of Melting Temperature and Protolith Composition. Lithos, 310/311: 20-30. https://doi.org/10.1016/j.lithos.2018.04.004 [9] Yuan, S. D., Williams-Jones, A. E., Romer, R. L., et al., 2019. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Economic Geology, 114(5): 1005-1012. https://doi.org/10.5382/econgeo.4669 [10] Zhang, Q., Zhao, K. D., Li, W. Q., et al., 2022. Timing and Tectonic Setting of Tin Mineralization in Southern Myanmar: Constraints from Cassiterite and Wolframite U-Pb Ages. Mineralium Deposita, 57(6): 977-999. https://doi.org/10.1007/s00126-021-01083-y [11] Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2021a. Magmatic-Hydrothermal Mineralization Processes at the Yidong Tin Deposit, South China: Insights from in Situ Chemical and Boron Isotope Changes of Tourmaline. Economic Geology, 116(7): 1625-1647. https://doi.org/10.5382/econgeo.4868 [12] Zhao, K. D., Zhang, L. H., Palmer, M. R., et al., 2021b. Chemical and Boron Isotopic Compositions of Tourmaline at the Dachang Sn-Polymetallic Ore District in South China: Constraints on the Origin and Evolution of Hydrothermal Fluids. Mineralium Deposita, 56(8): 1589-1608. https://doi.org/10.1007/s00126-021-01045-4 [13] Zhao, P. L., Chu, X., Williams-Jones, A. E., et al., 2022a. The Role of Phyllosilicate Partial Melting in Segregating Tungsten and Tin Deposits in W-Sn Metallogenic Provinces. Geology, 50(1): 121-125. https://doi.org/10.1130/g49248.1 [14] Zhao, P. L., Zajacz, Z., Tsay, A., et al., 2022b. Magmatic-Hydrothermal Tin Deposits Form in Response to Efficient Tin Extraction Upon Magma Degassing. Geochimica et Cosmochimica Acta, 316: 331-346. https://doi.org/10.1016/j.gca.2021.09.011 [15] 蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm
点击查看大图
计量
- 文章访问数: 332
- HTML全文浏览量: 107
- PDF下载量: 264
- 被引次数: 0