• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    前寒武-寒武纪重大转折期生物礁是如何演化的?

    李杨凡 李飞

    李杨凡, 李飞, 2022. 前寒武-寒武纪重大转折期生物礁是如何演化的?. 地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
    引用本文: 李杨凡, 李飞, 2022. 前寒武-寒武纪重大转折期生物礁是如何演化的?. 地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
    Li Yangfan, Li Fei, 2022. How did Reefs Evolve During the Precambrian-Cambrian Transition?. Earth Science, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
    Citation: Li Yangfan, Li Fei, 2022. How did Reefs Evolve During the Precambrian-Cambrian Transition?. Earth Science, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838

    前寒武-寒武纪重大转折期生物礁是如何演化的?

    doi: 10.3799/dqkx.2022.838
    详细信息
      作者简介:

      李飞(1986—),男,博士,副研究员,主要从事碳酸盐沉积学和沉积地球化学方面研究.E-mail:lifei@swpu.edu.cn

    How did Reefs Evolve During the Precambrian-Cambrian Transition?

    • 图  1  寒武纪早期生物礁分布及特征(以上扬子北缘汉南-米仓山地区为例)

      a.研究区寒武纪第二世第三期古地理图;b.大型叠置状生物礁,龙头山,仙女洞组中部;c.小型隆起状古杯礁,杨家沟,仙女洞组下部;d.钙质微生物-古杯礁,大河坝,仙女洞组上部;e.含古杯大型钙质微生物礁,福成,仙女洞组中部;f.古杯(红色箭头)和钙质微生物组构(黄色箭头),大河坝,仙女洞组上部;g.古杯(红色箭头)和共生的陆源细碎屑组分,杨家沟,仙女洞组下部;h.古杯礁近景(红色箭头),小神山,仙女洞组中部

    • [1] Grotzinger, J. P., James, N. P., 2000. Precambrian Carbonates: Evolution of Understanding. In: Grotzinger, J. P., James, N. P., eds., Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM (Society for Sedimentary Geology), 3-20. https://doi.org/10.2110/pec.00.67.0003
      [2] Li, H., Li, F., Li, X., et al., 2021a. Development and Collapse of the Early Cambrian Shallow-Water Carbonate Factories in the Hannan-Micangshan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110665. https://doi.org/10.1016/j.palaeo.2021.110665
      [3] Li, F., Deng, J. T., Kershaw, S., et al., 2021b. Microbialite Development through the Ediacaran-Cambrian Transition in China: Distribution, Characteristics, and Paleoceanographic Implications. Global and Planetary Change, 205: 103586. https://doi.org/10.1016/j.gloplacha.2021.103586
      [4] Penny, A. M., Wood, R., Curtis, A., et al., 2014. Ediacaran Metazoan Reefs from the Nama Group, Namibia. Science, 344(6191): 1504-1506. https://doi.org/10.1126/science.1253393
      [5] Riding, R., 1992. Temporal Variation in Calcification in Marine Cyanobacteria. Journal of the Geological Society, 149(6): 979-989. https://doi.org/10.1144/gsjgs.149.6.0979
      [6] Riding, R., 2006. Cyanobacterial Calcification, Carbon Dioxide Concentrating Mechanisms, and Proterozoic-Cambrian Changes in Atmospheric Composition. Geobiology, 4(4): 299-316. https://doi.org/10.1111/j.1472-4669.2006.00087.x
      [7] Tucker, M. E., 1992. The Precambrian-Cambrian Boundary: Seawater Chemistry, Ocean Circulation and Nutrient Supply in Metazoan Evolution, Extinction and Biomineralization. Journal of the Geological Society, 149(4): 655-668. https://doi.org/10.1144/gsjgs.149.4.0655
      [8] Wood, R. A., Zhuravlev, A. Y., Sukhov, S. S., et al., 2017. Demise of Ediacaran Dolomitic Seas Marks Widespread Biomineralization on the Siberian Platform. Geology, 45(1): 27-30. https://doi.org/10.1130/g38367.1
    • 加载中
    图(1)
    计量
    • 文章访问数:  276
    • HTML全文浏览量:  140
    • PDF下载量:  190
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回