• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    如何定量评估构造和气候对造山带地貌演化的贡献?

    曹凯 王国灿

    曹凯, 王国灿, 2022. 如何定量评估构造和气候对造山带地貌演化的贡献?. 地球科学, 47(10): 3837-3839. doi: 10.3799/dqkx.2022.831
    引用本文: 曹凯, 王国灿, 2022. 如何定量评估构造和气候对造山带地貌演化的贡献?. 地球科学, 47(10): 3837-3839. doi: 10.3799/dqkx.2022.831
    Cao Kai, Wang Guocan, 2022. How to Evaluate Quantitatively the Contribution of Tectonics and Climate to the Topography Evolution of the Mountains?. Earth Science, 47(10): 3837-3839. doi: 10.3799/dqkx.2022.831
    Citation: Cao Kai, Wang Guocan, 2022. How to Evaluate Quantitatively the Contribution of Tectonics and Climate to the Topography Evolution of the Mountains?. Earth Science, 47(10): 3837-3839. doi: 10.3799/dqkx.2022.831

    如何定量评估构造和气候对造山带地貌演化的贡献?

    doi: 10.3799/dqkx.2022.831
    详细信息
      作者简介:

      曹凯(1984-),副教授,主要从事构造地貌学和构造热年代学的教学与科研工作.E-mail:kai.cao@cug.edu.cn

    How to Evaluate Quantitatively the Contribution of Tectonics and Climate to the Topography Evolution of the Mountains?

    • 图  1  构造、气候和地表过程相互作用概念图(据Willett et al., 2006修改)

      图  2  造山带地貌演化的3种代表性模型

      a. Davis的地貌“侵蚀循环”理论;b. Penck修正的“侵蚀循环”理论;c. Hack的地貌“动态平衡”理论.据Burbank and Anderson(2011)修改.FAFE分别为构造和侵蚀通量(Stolar et al., 2007),侵蚀引起沉积通量

    • [1] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035
      [2] Antonelli, A., Kissling, W. D., Flantua, S. G. A., et al., 2018. Geological and Climatic Influences on Mountain Biodiversity. Nature Geoscience, 11(10): 718-725. https://doi.org/10.1038/s41561-018-0236-z
      [3] Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414(6865): 738-742. https://doi.org/10.1038/414738a
      [4] Boos, W. R., Kuang, Z. M., 2010. Dominant Control of the South Asian Monsoon by Orographic Insulation Versus Plateau Heating. Nature, 463(7278): 218-222. https://doi.org/10.1038/nature08707
      [5] Burbank, D. W., Anderson, R. S., 2011. Tectonic Geomorphology. Wiley-Blackwell, New Jersey, 480.
      [6] Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
      [7] Davis, W. M., 1899. The Geographical Cycle. The Geographical Journal, 14(5): 481-504. doi: 10.2307/1774538
      [8] Ding, W. N., Ree, R. H., Spicer, R. A., et al., 2020. Ancient Orogenic and Monsoon-Driven Assembly of the World's Richest Temperate Alpine Flora. Science, 369(6503): 578-581. https://doi.org/10.1126/science.abb4484
      [9] Egholm, D. L., Knudsen, M. F., Sandiford, M., 2013. Lifespan of Mountain Ranges Scaled by Feedbacks between Landsliding and Erosion by Rivers. Nature, 498(7455): 475-478. https://doi.org/10.1038/nature12218
      [10] Elsen, P. R., Tingley, M. W., 2015. Global Mountain Topography and the Fate of Montane Species under Climate Change. Nature Climate Change, 5(8): 772-776. https://doi.org/10.1038/nclimate2656
      [11] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. https://doi.org/10.1038/416159a
      [12] Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the U. S. Geological Survey, 1(4): 421-429.
      [13] Hack, J. T., 1975. Dynamic Equilibrium and Landscape Evolution. Theories of Landform Development: Publications in Geomorphology, 91-102. http://geomorphology.sese.asu.edu/Papers/Hack_1975.pdf
      [14] Hoorn, C., Wesselingh, F. P., ter Steege, H., et al., 2010. Amazonia through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(6006): 927-931. https://doi.org/10.1126/science.1194585
      [15] Kooi, H., Beaumont, C., 1996. Large-Scale Geomorphology: Classical Concepts Reconciled and Integrated with Contemporary Ideas via a Surface Processes Model. Journal of Geophysical Research: Solid Earth, 101(B2): 3361-3386. https://doi.org/10.1029/95jb01861
      [16] Körner, C., Jetz, W., Paulsen, J., et al., 2017. A Global Inventory of Mountains for Bio-Geographical Applications. Alpine Botany, 127(1): 1-15. https://doi.org/10.1007/s00035-016-0182-6
      [17] Molnar, P., England, P., 1990. Late Cenozoic Uplift of Mountain Ranges and Global Climate Change: Chicken or Egg? Nature, 346(6279): 29-34. https://doi.org/10.1038/346029a0
      [18] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419
      [19] Pazzaglia, F. J., Brandon, M. T., 2001. A Fluvial Record of Long-Term Steady-State Uplift and Erosion across the Cascadia Forearc High, Western Washington State. American Journal of Science, 301(4/5): 385-431. https://doi.org/10.2475/ajs.301.4-5.385
      [20] Penck, W., 1954. Morphological Analysis of Landforms. Soil Science, 77(1): 80.
      [21] Stolar, D. B., Willett, S. D., Montgomery, D. R., 2007. Characterization of Topographic Steady State in Taiwan. Earth and Planetary Science Letters, 261(3/4): 421-431. https://doi.org/10.1016/j.epsl.2007.07.045
      [22] Summerfield, M. A., 2000. Geomorphology and Global Tectonics. John Wiley & Sons Inc, 386.
      [23] Willett, S. D., 1999. Orogeny and Orography: The Effects of Erosion on the Structure of Mountain Belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. https://doi.org/10.1029/1999jb900248
      [24] Willett, S. D., Hovius, N., Brandon, M. T., et al., 2006. Introduction. Tectonics, Climate, and Landscape Evolution. Geological Society of America, Boulder, 398. https://doi.org/10.1130/2006.2398(00)
      [25] Wolf, S. G., Huismans, R. S., Braun, J., et al., 2022. Topography of Mountain Belts Controlled by Rheology and Surface Processes. Nature, 606(7914): 516-521. https://doi.org/10.1038/s41586-022-04700-6
    • 加载中
    图(2)
    计量
    • 文章访问数:  399
    • HTML全文浏览量:  120
    • PDF下载量:  260
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回