How Microbes in Glacier and Permafrost Record and Influence Climate Change?
-
-
[1] Jansson, J. K., Hofmockel, K. S., 2020. Soil Microbiomes and Climate Change. Nature Reviews Microbiology, 18(1): 35-46. https://doi.org/10.1038/s41579-019-0265-7 [2] Legendre, M., Bartoli, J., Shmakova, L., et al., 2014. Thirty-Thousand-Year-Old Distant Relative of Giant Icosahedral DNA Viruses with a Pandoravirus Morphology. Proceedings of the National Academy of Sciences of the United States of America, 111(11): 4274-4279. https://doi.org/10.1073/pnas.1320670111 [3] Liu, Y. Q., Ji, M. K., Yu, T., et al., 2022. A Genome and Gene Catalog of Glacier Microbiomes. Nature Biotechnology, 40(9): 1341-1348. https://doi.org/10.1038/s41587-022-01367-2 [4] Mu, C. C., Abbott, B. W., Norris, A. J., et al., 2020. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Science Reviews, 211: 103433. https://doi.org/10.1016/j.earscirev.2020.103433 [5] Wang, T. H., Yang, D. W., Yang, Y. T., et al., 2020. Permafrost Thawing Puts the Frozen Carbon at Risk over the Tibetan Plateau. Science Advances, 6(19): eaaz3513. https://doi.org/10.1126/sciadv.aaz3513 [6] Woodcroft, B. J., Singleton, C. M., Boyd, J. A., et al., 2018. Genome-Centric View of Carbon Processing in Thawing Permafrost. Nature, 560(7716): 49-54. https://doi.org/10.1038/s41586-018-0338-1 [7] Wu, M. H., Chen, S. Y., Chen, J. W., et al., 2021. Reduced Microbial Stability in the Active Layer is Associated with Carbon Loss under Alpine Permafrost Degradation. Proceedings of the National Academy of Sciences of the United States of America, 118(25): e2025321118. https://doi.org/10.1073/pnas.2025321118 [8] Wu, M. H., Xue, K., Wei, P. J., et al., 2022. Soil Microbial Distribution and Assembly are Related to Vegetation Biomass in the Alpine Permafrost Regions of the Qinghai-Tibet Plateau. The Science of the Total Environment, 834: 155259. https://doi.org/10.1016/j.scitotenv.2022.155259 [9] Wu, R. N., Trubl, G., Taş, N., et al., 2022. Permafrost as a Potential Pathogen Reservoir. One Earth, 5(4): 351-360. https://doi.org/10.1016/j.oneear.2022.03.010 [10] 王宁练, 姚檀栋, 徐柏青, 等, 2019. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响. 中国科学院院刊, 34(11): 1220-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201911006.htm [11] 姚檀栋, 陈发虎, 崔鹏, 等, 2017. 从青藏高原到第三极和泛第三极. 中国科学院院刊, 32(9): 924-931. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709007.htm [12] 姚檀栋, 秦大河, 王宁练, 等, 2020. 冰芯气候环境记录研究: 从科学到政策. 中国科学院院刊, 35(4): 466-474. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202004013.htm [13] 赵林, 胡国杰, 邹德富, 等, 2019. 青藏高原多年冻土变化对水文过程的影响. 中国科学院院刊, 34(11): 1233-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201911007.htm
点击查看大图
计量
- 文章访问数: 279
- HTML全文浏览量: 102
- PDF下载量: 149
- 被引次数: 0