• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大地幔楔如何影响深部地幔过程和大陆岩石圈演化?

    章军锋 许文良

    章军锋, 许文良, 2022. 大地幔楔如何影响深部地幔过程和大陆岩石圈演化?. 地球科学, 47(10): 3784-3786. doi: 10.3799/dqkx.2022.808
    引用本文: 章军锋, 许文良, 2022. 大地幔楔如何影响深部地幔过程和大陆岩石圈演化?. 地球科学, 47(10): 3784-3786. doi: 10.3799/dqkx.2022.808
    Zhang Junfeng, Xu Wenliang, 2022. How does Big Mantle Wedge Affect Deep Mantle Processes and Evolution of the Continental Lithosphere?. Earth Science, 47(10): 3784-3786. doi: 10.3799/dqkx.2022.808
    Citation: Zhang Junfeng, Xu Wenliang, 2022. How does Big Mantle Wedge Affect Deep Mantle Processes and Evolution of the Continental Lithosphere?. Earth Science, 47(10): 3784-3786. doi: 10.3799/dqkx.2022.808

    大地幔楔如何影响深部地幔过程和大陆岩石圈演化?

    doi: 10.3799/dqkx.2022.808
    基金项目: 

    国家自然科学基金项目 41888101

    国家自然科学基金项目 41730210

    详细信息
      作者简介:

      章军锋(1977-),男,教授,博士生导师,主要从事壳幔矿物和岩石的变形与实验岩石学研究.E-mail:jfzhang@cug.edu.cn

    How does Big Mantle Wedge Affect Deep Mantle Processes and Evolution of the Continental Lithosphere?

    • [1] Chen, L., Ai, Y. S., 2009. Discontinuity Structure of the Mantle Transition Zone beneath the North China Craton from Receiver Function Migration. Journal of Geophysical Research, 114(B6): B06307. https://doi.org/10.1029/2008jb006221
      [2] Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction-Transition Zone Interaction: A Review. Geosphere, 13(3): 644-664. https://doi.org/10.1130/ges01476.1
      [3] Guo, Z., Cao, Y. L., Wang, X. G., et al., 2014. Crust and Upper Mantle Structures beneath Northeast China from Receiver Function Studies. Earthquake Science, 27(3): 265-275. https://doi.org/10.1007/s11589-014-0076-x
      [4] Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research, 111(B9): B09305. https://doi.org/10.1029/2005jb004066
      [5] Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4(10): 713-716. https://doi.org/10.1038/ngeo1250
      [6] Li, J., Wang, X., Wang, X. J., et al., 2013. P and SH Velocity Structure in the Upper Mantle beneath Northeast China: Evidence for a Stagnant Slab in Hydrous Mantle Transition Zone. Earth and Planetary Science Letters, 367: 71-81. https://doi.org/10.1016/j.epsl.2013.02.026
      [7] Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111-120. https://doi.org/10.1093/nsr/nww070
      [8] Li, S. W., Weng, A. H., Li, J. P., et al., 2020. Deep Origin of Cenozoic Volcanoes in Northeast China Revealed by 3-D Electrical Structure. Science China Earth Sciences, 63(4): 533-547. https://doi.org/10.1007/s11430-018-9537-2
      [9] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: a Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [10] Liu, Z., Park, J., Karato, S. I., 2016. Seismological Detection of Low-Velocity Anomalies Surrounding the Mantle Transition Zone in Japan Subduction Zone. Geophysical Research Letters, 43(6): 2480-2487. https://doi.org/10.1002/2015gl067097
      [11] Shen, X. Z., Yuan, X. H., Li, X. Q., 2014. A Ubiquitous Low-Velocity Layer at the Base of the Mantle Transition Zone. Geophysical Research Letters, 41(3): 836-842. https://doi.org/10.1002/2013gl058918
      [12] Tauzin, B., Kim, S., Kennett, B. L. N., 2017. Pervasive Seismic Low-Velocity Zones within Stagnant Plates in the Mantle Transition Zone: Thermal or Compositional Origin? Earth and Planetary Science Letters, 477: 1-13. https://doi.org/10.1016/j.epsl.2017.08.006
      [13] Tian, Y., Zhu, H. X., Zhao, D. P., et al., 2016. Mantle Transition Zone Structure beneath the Changbai Volcano: Insight into Deep Slab Dehydration and Hot Upwelling near the 410 km Discontinuity. Journal of Geophysical Research: Solid Earth, 121(8): 5794-5808. https://doi.org/10.1002/2016jb012959
      [14] Wang, X., Zhang, J., Wang, C., et al., 2022. Experimental Constraint on Ca‐Rich Carbonatite Melt‐Peridotite Interaction and Implications for Lithospheric Mantle Modification beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024769. https://doi.org/10.1029/2022jb024769
      [15] Wang, Z. C., Cheng, H., Zong, K. Q., et al., 2020. Metasomatized Lithospheric Mantle for Mesozoic Giant Gold Deposits in the North China Craton. Geology, 48(2): 169-173. https://doi.org/10.1130/g46662.1
      [16] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [17] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      [18] Xia, Q. K., Liu, J., Kovács, I., et al., 2019. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. National Science Review, 6(1): 125-144. https://doi.org/10.1093/nsr/nwx016
      [19] Xu, W. L., Chen, J. H., Weng, A., et al., 2020. Stagnant Slab Front within the Mantle Transition Zone Controls the Formation of Cenozoic Intracontinental High-Mg Andesites in Northeast Asia. Geology, 49 : 19-24.
      [20] Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. https://doi.org/10.1016/j.jseaes.2013.04.003
      [21] Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430-017-9192-y
      [22] Ye, L. L., Li, J., Tseng, T. L., et al., 2011. A Stagnant Slab in a Water-Bearing Mantle Transition Zone beneath Northeast China: Implications from Regional SH Waveform Modelling. Geophysical Journal International, 186(2): 706-710. https://doi.org/10.1111/j.1365-246X.2011.05063.x
      [23] Zhao, D. P., 2017. Big Mantle Wedge, Anisotropy, Slabs and Earthquakes beneath the Japan Sea. Physics of the Earth and Planetary Interiors, 270: 9-28. https://doi.org/10.1016/j.pepi.2017.06.009
      [24] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430-017-9160-3
      [25] Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
    • 加载中
    计量
    • 文章访问数:  343
    • HTML全文浏览量:  160
    • PDF下载量:  305
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回