[1] |
Aubry, M. P., Ouda, K., Dupuis, C., et al., 2007. The Global Standard Stratotype-Section and Point (GSSP) for the Base of the Eocene Series in the Dababiya Section (Egypt). Episodes, 30(4): 271-286. https://doi.org/10.18814/epiiugs/2007/v30i4/003
|
[2] |
Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth's most Severe Extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
|
[3] |
Chen, J. T., Montañez, I. P., Zhang, S., et al., 2022. Marine Anoxia Linked to Abrupt Global Warming during Earth's Penultimate Icehouse. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2115231119. https://doi.org/10.1073/pnas.2115231119
|
[4] |
Chlupáč, I., Jaeger, H., Zikmundova, J., 1972. The Silurian-Devonian Boundary in the Barrandian. Bulletin of Canadian Petroleum Geology, 20(1): 104-174.
|
[5] |
Davydov, V. I., 2020. Shift in the Paradigm for GSSP Boundary Definition. Gondwana Research, 86: 266-286. https://doi.org/10.1016/j.gr.2020.06.005
|
[6] |
Deng, Y. Y., Fan, J. X., Zhang, S. H., et al., 2021. Timing and Patterns of the Great Ordovician Biodiversification Event and Late Ordovician Mass Extinction: Perspectives from South China. Earth-Science Reviews, 220: 103743. https://doi.org/10.1016/j.earscirev.2021.103743
|
[7] |
Fan, J. X., Chen, Q., Melchin, M. J., et al., 2013. Quantitative Stratigraphy of the Wufeng and Lungmachi Black Shales and Graptolite Evolution during and after the Late Ordovician Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 96-114. https://doi.org/10.1016/j.palaeo.2013.08.005
|
[8] |
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
|
[9] |
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2020. Geologic Time Scale 2020, Volumes1, 2. Elsevier, Amsterdam, Oxford, Cambridge.
|
[10] |
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam.
|
[11] |
Guo, H. D., 2017. Big Data Drives the Development of Earth Science. Big Earth Data, 1(1-2): 1-3. https://doi.org/10.1080/20964471.2017.1405925
|
[12] |
Gutjahr, M., Ridgwell, A., Sexton, P. F., et al., 2017. Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669): 573-577. https://doi.org/10.1038/nature23646
|
[13] |
Hou, M. C., Chen, A. Q., Ogg, J. G., et al., 2019. China Paleogeography: Current Status and Future Challenges. Earth-Science Reviews, 189: 177-193. https://doi.org/10.1016/j.earscirev.2018.04.004
|
[14] |
Hou, Z. S., Fan, J. X., Henderson, C. M., et al., 2020. Dynamic Palaeogeographic Reconstructions of the Wuchiapingian Stage (Lopingian, Late Permian) for the South China Block. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109667. https://doi.org/10.1016/j.palaeo.2020.109667
|
[15] |
Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. https://doi.org/10.1130/g37970.1
|
[16] |
Ma, X. G., Carranza, E. J. M., Wu, C. L., et al., 2012. Ontology-Aided Annotation, Visualization, and Generalization of Geological Time-Scale Information from Online Geological Map Services. Computers & Geosciences, 40: 107-119. https://doi.org/10.1016/j.cageo.2011.07.018
|
[17] |
Molina, E., Alegret, L., Arenillas, I., et al., 2006. The Global Boundary Stratotype Section and Point for the Base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic) at El Kef, Tunisia-Original Definition and Revision. Episodes, 29(4): 263-273. https://doi.org/10.18814/epiiugs/2006/v29i4/004
|
[18] |
Penn, J. L., Deutsch, C., 2022. Avoiding Ocean Mass Extinction from Climate Warming. Science, 376(6592): 524-526. https://doi.org/10.1126/science.abe9039
|
[19] |
Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
|
[20] |
Sadler, P. M., Cooper, R. A., Melchin, M., 2009. High-Resolution, Early Paleozoic (Ordovician-Silurian) Time Scales. Geological Society of America Bulletin, 121(5-6): 887-906. https://doi.org/10.1130/b26357.1
|
[21] |
Schmitz, B., Pujalte, V., Molina, E., et al., 2011. The Global Stratotype Sections and Points for the Bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) Stages at Zumaia, Spain. Episodes, 34(4): 220-243. https://doi.org/10.18814/epiiugs/2011/v34i4/002
|
[22] |
Schneer, C., 1989. Geology, Time and History. Earth Sciences History, 8(2): 103-105. https://doi.org/10.17704/eshi.8.2.n871088718k50220
|
[23] |
Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13C Carb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156-165. https://doi.org/10.1016/j.epsl.2013.05.020
|
[24] |
Suganuma, Y., Okada, M., Head, M. J., et al., 2021. Formal Ratification of the Global Boundary Stratotype Section and Point (GSSP) for the Chibanian Stage and Middle Pleistocene Subseries of the Quaternary System: The Chiba Section, Japan. Episodes, 44(3): 317-347. https://doi.org/10.18814/epiiugs/2020/020080
|
[25] |
Wang, C. S., Hazen, R. M., Cheng, Q. M., et al., 2021. The Deep-Time Digital Earth Program: Data-Driven Discovery in Geosciences. National Science Review, 8(9): nwab027. https://doi.org/10.1093/nsr/nwab027
|
[26] |
Wang, T. T., Ramezani, J., Wang, C. S., et al., 2016. High-Precision U-Pb Geochronologic Constraints on the Late Cretaceous Terrestrial Cyclostratigraphy and Geomagnetic Polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 446: 37-44. https://doi.org/10.1016/j.epsl.2016.04.007
|
[27] |
Weissert, H., Joachimski, M., Sarnthein, M., 2008. Chemostratigraphy. Newsletters on Stratigraphy, 42(3): 145-179. https://doi.org/10.1127/0078-0421/2008/0042-0145
|
[28] |
Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
|
[29] |
Zhang, M., Qin, H. F., He, K., et al., 2021. Magnetostratigraphy across the End-Permian Mass Extinction Event from the Meishan Sections, Southeastern China. Geology, 49(11): 1289-1294. https://doi.org/10.1130/g49072.1
|
[30] |
Zhong, Y. T., Huyskens, M. H., Yin, Q. Z., et al., 2021. High-Precision Geochronological Constraints on the Duration of 'Dinosaur Pompeii' and the Yixian Formation. National Science Review, 8(6): nwab063. https://doi.org/10.1093/nsr/nwab063
|
[31] |
Zhu, J., Poulsen, C. J., Tierney, J. E., 2019. Simulation of Eocene Extreme Warmth and High Climate Sensitivity through Cloud Feedbacks. Science Advances, 5(9): eaax1874. https://doi.org/10.1126/sciadv.aax1874
|
[32] |
汪品先, 田军, 黄恩清, 2018. 地球系统与演变. 北京: 科学出版社, 565.
|