• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    如何打造高精度地质时间轴?

    沈树忠 樊隽轩 王向东 张飞飞 史宇坤 张书涵

    沈树忠, 樊隽轩, 王向东, 张飞飞, 史宇坤, 张书涵, 2022. 如何打造高精度地质时间轴?. 地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
    引用本文: 沈树忠, 樊隽轩, 王向东, 张飞飞, 史宇坤, 张书涵, 2022. 如何打造高精度地质时间轴?. 地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
    Shen Shuzhong, Fan Junxuan, Wang Xiangdong, Zhang Feifei, Shi Yukun, Zhang Shuhan, 2022. How to Build a High-Resolution Digital Geological Timescale?. Earth Science, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
    Citation: Shen Shuzhong, Fan Junxuan, Wang Xiangdong, Zhang Feifei, Shi Yukun, Zhang Shuhan, 2022. How to Build a High-Resolution Digital Geological Timescale?. Earth Science, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801

    如何打造高精度地质时间轴?

    doi: 10.3799/dqkx.2022.801
    详细信息
      作者简介:

      沈树忠(1961-),男,教授,博士生导师,中国科学院院士,主要从事地层古生物学和生物宏演化等研究.E-mail:szshen@nju.edu.cn

    How to Build a High-Resolution Digital Geological Timescale?

    • 图  1  建立国际高精度数字化地质时间轴的概念与方法

    • [1] Aubry, M. P., Ouda, K., Dupuis, C., et al., 2007. The Global Standard Stratotype-Section and Point (GSSP) for the Base of the Eocene Series in the Dababiya Section (Egypt). Episodes, 30(4): 271-286. https://doi.org/10.18814/epiiugs/2007/v30i4/003
      [2] Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth's most Severe Extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
      [3] Chen, J. T., Montañez, I. P., Zhang, S., et al., 2022. Marine Anoxia Linked to Abrupt Global Warming during Earth's Penultimate Icehouse. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2115231119. https://doi.org/10.1073/pnas.2115231119
      [4] Chlupáč, I., Jaeger, H., Zikmundova, J., 1972. The Silurian-Devonian Boundary in the Barrandian. Bulletin of Canadian Petroleum Geology, 20(1): 104-174.
      [5] Davydov, V. I., 2020. Shift in the Paradigm for GSSP Boundary Definition. Gondwana Research, 86: 266-286. https://doi.org/10.1016/j.gr.2020.06.005
      [6] Deng, Y. Y., Fan, J. X., Zhang, S. H., et al., 2021. Timing and Patterns of the Great Ordovician Biodiversification Event and Late Ordovician Mass Extinction: Perspectives from South China. Earth-Science Reviews, 220: 103743. https://doi.org/10.1016/j.earscirev.2021.103743
      [7] Fan, J. X., Chen, Q., Melchin, M. J., et al., 2013. Quantitative Stratigraphy of the Wufeng and Lungmachi Black Shales and Graptolite Evolution during and after the Late Ordovician Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 96-114. https://doi.org/10.1016/j.palaeo.2013.08.005
      [8] Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      [9] Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2020. Geologic Time Scale 2020, Volumes1, 2. Elsevier, Amsterdam, Oxford, Cambridge.
      [10] Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam.
      [11] Guo, H. D., 2017. Big Data Drives the Development of Earth Science. Big Earth Data, 1(1-2): 1-3. https://doi.org/10.1080/20964471.2017.1405925
      [12] Gutjahr, M., Ridgwell, A., Sexton, P. F., et al., 2017. Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669): 573-577. https://doi.org/10.1038/nature23646
      [13] Hou, M. C., Chen, A. Q., Ogg, J. G., et al., 2019. China Paleogeography: Current Status and Future Challenges. Earth-Science Reviews, 189: 177-193. https://doi.org/10.1016/j.earscirev.2018.04.004
      [14] Hou, Z. S., Fan, J. X., Henderson, C. M., et al., 2020. Dynamic Palaeogeographic Reconstructions of the Wuchiapingian Stage (Lopingian, Late Permian) for the South China Block. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109667. https://doi.org/10.1016/j.palaeo.2020.109667
      [15] Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. https://doi.org/10.1130/g37970.1
      [16] Ma, X. G., Carranza, E. J. M., Wu, C. L., et al., 2012. Ontology-Aided Annotation, Visualization, and Generalization of Geological Time-Scale Information from Online Geological Map Services. Computers & Geosciences, 40: 107-119. https://doi.org/10.1016/j.cageo.2011.07.018
      [17] Molina, E., Alegret, L., Arenillas, I., et al., 2006. The Global Boundary Stratotype Section and Point for the Base of the Danian Stage (Paleocene, Paleogene, "Tertiary", Cenozoic) at El Kef, Tunisia-Original Definition and Revision. Episodes, 29(4): 263-273. https://doi.org/10.18814/epiiugs/2006/v29i4/004
      [18] Penn, J. L., Deutsch, C., 2022. Avoiding Ocean Mass Extinction from Climate Warming. Science, 376(6592): 524-526. https://doi.org/10.1126/science.abe9039
      [19] Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
      [20] Sadler, P. M., Cooper, R. A., Melchin, M., 2009. High-Resolution, Early Paleozoic (Ordovician-Silurian) Time Scales. Geological Society of America Bulletin, 121(5-6): 887-906. https://doi.org/10.1130/b26357.1
      [21] Schmitz, B., Pujalte, V., Molina, E., et al., 2011. The Global Stratotype Sections and Points for the Bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) Stages at Zumaia, Spain. Episodes, 34(4): 220-243. https://doi.org/10.18814/epiiugs/2011/v34i4/002
      [22] Schneer, C., 1989. Geology, Time and History. Earth Sciences History, 8(2): 103-105. https://doi.org/10.17704/eshi.8.2.n871088718k50220
      [23] Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13C Carb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156-165. https://doi.org/10.1016/j.epsl.2013.05.020
      [24] Suganuma, Y., Okada, M., Head, M. J., et al., 2021. Formal Ratification of the Global Boundary Stratotype Section and Point (GSSP) for the Chibanian Stage and Middle Pleistocene Subseries of the Quaternary System: The Chiba Section, Japan. Episodes, 44(3): 317-347. https://doi.org/10.18814/epiiugs/2020/020080
      [25] Wang, C. S., Hazen, R. M., Cheng, Q. M., et al., 2021. The Deep-Time Digital Earth Program: Data-Driven Discovery in Geosciences. National Science Review, 8(9): nwab027. https://doi.org/10.1093/nsr/nwab027
      [26] Wang, T. T., Ramezani, J., Wang, C. S., et al., 2016. High-Precision U-Pb Geochronologic Constraints on the Late Cretaceous Terrestrial Cyclostratigraphy and Geomagnetic Polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters, 446: 37-44. https://doi.org/10.1016/j.epsl.2016.04.007
      [27] Weissert, H., Joachimski, M., Sarnthein, M., 2008. Chemostratigraphy. Newsletters on Stratigraphy, 42(3): 145-179. https://doi.org/10.1127/0078-0421/2008/0042-0145
      [28] Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
      [29] Zhang, M., Qin, H. F., He, K., et al., 2021. Magnetostratigraphy across the End-Permian Mass Extinction Event from the Meishan Sections, Southeastern China. Geology, 49(11): 1289-1294. https://doi.org/10.1130/g49072.1
      [30] Zhong, Y. T., Huyskens, M. H., Yin, Q. Z., et al., 2021. High-Precision Geochronological Constraints on the Duration of 'Dinosaur Pompeii' and the Yixian Formation. National Science Review, 8(6): nwab063. https://doi.org/10.1093/nsr/nwab063
      [31] Zhu, J., Poulsen, C. J., Tierney, J. E., 2019. Simulation of Eocene Extreme Warmth and High Climate Sensitivity through Cloud Feedbacks. Science Advances, 5(9): eaax1874. https://doi.org/10.1126/sciadv.aax1874
      [32] 汪品先, 田军, 黄恩清, 2018. 地球系统与演变. 北京: 科学出版社, 565.
    • 加载中
    图(1)
    计量
    • 文章访问数:  759
    • HTML全文浏览量:  303
    • PDF下载量:  390
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回