• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地深水区亮点型气藏时频差异属性分析应用研究

    刘仕友 陈志宏 汪锐 闫安菊

    刘仕友, 陈志宏, 汪锐, 闫安菊, 2023. 琼东南盆地深水区亮点型气藏时频差异属性分析应用研究. 地球科学, 48(2): 465-474. doi: 10.3799/dqkx.2022.488
    引用本文: 刘仕友, 陈志宏, 汪锐, 闫安菊, 2023. 琼东南盆地深水区亮点型气藏时频差异属性分析应用研究. 地球科学, 48(2): 465-474. doi: 10.3799/dqkx.2022.488
    Liu Shiyou, Chen Zhihong, Wang Rui, Yan Anju, 2023. Application of Time⁃Frequency Difference Attribute Analysis of Bright Spot Type Gas Reservoir in Deep⁃Water Qiongdongnan Basin. Earth Science, 48(2): 465-474. doi: 10.3799/dqkx.2022.488
    Citation: Liu Shiyou, Chen Zhihong, Wang Rui, Yan Anju, 2023. Application of Time⁃Frequency Difference Attribute Analysis of Bright Spot Type Gas Reservoir in Deep⁃Water Qiongdongnan Basin. Earth Science, 48(2): 465-474. doi: 10.3799/dqkx.2022.488

    琼东南盆地深水区亮点型气藏时频差异属性分析应用研究

    doi: 10.3799/dqkx.2022.488
    基金项目: 

    十四五重大专项“南海北部深水区勘探关键技术” KJGG2022-0104

    详细信息
      作者简介:

      刘仕友(1982-),男,高级工程师,主要从事油气勘探地球物理研究工作. E-mail:liushiyou@139.com

    • 中图分类号: P618.13

    Application of Time⁃Frequency Difference Attribute Analysis of Bright Spot Type Gas Reservoir in Deep⁃Water Qiongdongnan Basin

    • 摘要: 受深水区探井少、不同流体AVO类型相近影响,利用常规P(拟合截距)、G(拟合梯度)、P×GP+G等衍生烃类检测属性已不能有效识别深水区储层的流体性质,亟需寻找适合该区有效储层的烃类检测方法. 实际上,地震波在地下地层传播过程中会产生明显的吸收衰减现象,通过含气砂岩会产生低频增加现象,因此联合谱分解和AVO技术是解决深水烃类检测的有效途径. 利用时频属性的峰值振幅和平均振幅,提出了能更好地描述流体性质变化的差异属性,可以增强深水区含气性识别的敏感度,在深水浊积岩储层烃类检测中取得良好的应用效果,有效降低深水区烃类检测的多解性.

       

    • 图  1  研究区位置

      Fig.  1.  Research area location

      图  2  过研究区中央峡谷水道地震剖面

      Fig.  2.  Seismic profile of the central canyon waterway in the deep⁃water area

      图  3  LS⁃X⁃1井不同气组AVO正演分析

      Fig.  3.  AVO forward analysis of different gas groups in the LS⁃X⁃1 well

      图  4  多分量信号

      Fig.  4.  Multi⁃component signals

      图  5  多分量信号不同Wigner⁃Ville分布时频分析方法

      a. Wigner⁃Ville分布;b.伪Wigner⁃Ville分布;c.平滑伪Wigner⁃Ville分布;d.匹配追踪Wigner⁃Ville分布

      Fig.  5.  Time⁃frequency analysis method of different Wigner⁃Ville distribution of multi⁃component signals

      图  6  地震信号频谱示意图

      Fig.  6.  Schematic diagram of the seismic signal frequency spectrum

      图  7  两个不同采样点的频谱示意图

      Fig.  7.  Schematic representation of the spectrum of the two different sampling points

      图  8  中远道时频差异属性剖面

      Fig.  8.  The time⁃frequency difference attributes profile from far⁃gather stack

      图  9  陵水Y区已钻井AVO正演分析

      Fig.  9.  Analysis of AVO forward modeling in LS⁃Y Area

      图  10  过LS⁃Y⁃1目标地震剖面及单点AVO特征

      Fig.  10.  Seismic profile and single⁃point AVO characteristics of crossing LS⁃Y⁃1

      图  11  过LS⁃Y⁃1目标黄流组砂顶平面属性图

      a. 全叠加分频属性及时频差异属性;b. 近道分频属性及时频差异属性;c. 远道分频属性及时频差异属性

      Fig.  11.  Plan properties of Huangliu group sandstone in LS⁃Y⁃1

    • [1] Avseth, P., Mukerji, T., Mavko, G., 2005. Quantitative Seismic Interpretation. Cambridge University Press, Cambridge
      [2] Batzle, M. L., Han, D. H., Hofmann, R., 2006. Fluid Mobility and Frequency⁃Dependent Seismic Velocity⁃Direct Measurements. Geophysics, 71(1): N1-N9. https://doi.org/10.1190/1.2159053
      [3] Batzle, M., Hofmann, R., Han, D. H., et al., 2001. Fluids and Frequency Dependent Seismic Velocity of Rocks. The Leading Edge, 20(2): 168-171. https://doi.org/10.1190/1.1438900
      [4] Castagna, J. P., Sun, S. J., Siegfried, R. W., 2003. Instantaneous Spectral Analysis: Detection of Low-Frequency Shadows Associated with Hydrocarbons. The Leading Edge, 22(2): 120-127. https://doi.org/10.1190/1.1559038
      [5] Chen, K. Y., Zhang, S. N., Ding, X. Q., et al., 2006. Gas⁃Bearing Evaluation on Tight Sandstone Reservoirs. Journal of Oil and Gas Technology, 28(4): 65-68(in Chinese with English abstract). doi: 10.3969/j.issn.1000-9752.2006.04.018
      [6] Cheng, B. J., Xu, T. J., Li, S. G., et al., 2012. Research and Application of Frequency Dependent AVO Analysis for Gas Recognition. Chinese Journal of Geophysics, 55(2): 608-613(in Chinese with English abstract).
      [7] Deng, R. J., Deng, Y. H., Yu, S. et al., 2008. Hydrocarbon Geology and Reservoir Formation Characteristics of Niger Delta Basin. Petroleum Exploration and Development, 35(6): 755-762(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2008.06.020
      [8] Fatti, J. L., Smith, G. C., Vail, P. J., et al., 1994. Detection of Gas in Sandstone Reservoirs Using AVO Analysis: A 3⁃D Seismic Case History Using the Geostack Technique. Geophysics, 59(9): 1362-1376(in Chinese with English abstract). doi: 10.1190/1.1443695
      [9] Goodway, W., Chen, T., Downton, J., 1997. Improved AVO Fluid Detection and Lithology Discrimination Using Lame Petrophysical Parameters from P and S Inversion. Extended Abstracts of 67th Annual Internat SEG, 183-186
      [10] Han, G. M., Pan, G. C., Fu, C., et al., 2016. Influence of Velocity Changing of Gas Reservoir and Seal on Seismic Response and AVO Type. Lithologic Reservoirs, 28(2): 107-113(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2016.02.015
      [11] He, T., Shi, G., Zou, C. C., et al., 2011. AVO Template of Sandstone Reservoir under Formation Condition. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(5): 837-844(in Chinese with English abstract).
      [12] He, Z. H., Wang, D., 2009. Expended Fluid Detection Factor and Its Application. Journal of Mineralogy and Petrology, 29(4): 100-103(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2009.04.015
      [13] Hedlin, K., 2000. Pore Space Modelus and Extraction Using AVO. Extended Abstracts of 70th Annual Internat SEG, 170-173.
      [14] Jiang, H. Y., Zhao, W. Z., Yan, C. Z., et al., 2008. Review on Marine Petroleum Resources and Exploration Models in the Globe. Marine Origin Petroleum Geology, 13(3): 5-10(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2008.03.002
      [15] Liu, C., Li, B. N., Zhao, X., et al., 2014. Fluid Identification Based on Frequency⁃Dependent AVO Attribute Inversion in Multi⁃Scale Fracture Media. Applied Geophysics, 11(4): 384-394. https://doi.org/10.1007/s11770-014-0454-0
      [16] Liu, X. W., Ning, J. R., Liu, P. T., et al., 2009. Seismic Time⁃Frequency Analysis for Frequency Decomposition with Applications to Seismic Sedimentology and Reservoir Imaging. Progress in Geophysics, 24(5): 1679-1688(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2009.05.018
      [17] Lü, F. L., He, X. Y., Wu, J. Y., et al., 2007. Current Situation and Tendency of Deepwater Oil and Gas Exploration in the World. China Petroleum Exploration, 12(6): 28-31(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2007.06.006
      [18] Ma, Y. Q., 2019. Application of the AVO Technique in Oil and Gas Detection in Block D, Llanos Basin, Colombia. Geophysical Prospecting for Petroleum, 58(4): 580-590(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2019.04.013
      [19] Michael, B., 2001. Optimal Hydrocarbon Indicators. Extended Abstracts of 71th Annual Internat SEG, 11697-1700.
      [20] Ning, Z. H., He, Z. H., Huang, D. J., et al., 2006. High Sensitive Fluid Identification Based on Seismic Data. Geophysical Prospecting for Petroleum, 45(3): 239-241(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2006.03.005
      [21] Pan, R. F., Chen, S. L., Zhang, L. P., et al., 2013. Semi⁃Quantitative Analysis of Gas Bearing Sand by AVO Forward Modeling. Oil Geophysical Prospecting, 48(1): 103-108(in Chinese with English abstract).
      [22] Wang, D., He, Z. H., Huang, D. J., et al., 2009. Construction of a New Fluid Identification Factor and Analysis on Its Application. Geophysical Prospecting for Petroleum, 48(2): 141-145(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2009.02.006
      [23] Wang, Z. F., Rui, H. S., 2006. Elastic Modulus in Reservoir Evaluation of Application. Journal of Yangtze University (Natural Science Edition), 3(1): 19-21(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1409-C.2006.01.008
      [24] White, R. S., 1977. Seismic Bright Spots in the Gulf of Oman. Earth and Planetary Science Letters, 37(1): 29-37. https://doi.org/10.1016/0012-821X(77)90143-1
      [25] Wilson, A., Chapman, M., Li, X. Y., 2009. Frequency⁃Dependent AVO Inversion//SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 341-345.
      [26] Yao, S. F., Ding, W. L., Zhao G., et al., 2018. The Relationship between Diagenesis and AVO Anomaly of Gas⁃Bearing Sandstone in the ZJ Formation of the Pearl River Mouth Basin, China. Geophysical Prospecting for Petroleum, 57(3): 443-451(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2018.03.014
      [27] Yue, Y. X., Zhao, Y., Huang, J. L., et al, 2016. Absorption Attenuation Gradient Detection Based on Three⁃Parameter Wavelet Transform. Progress in Geophysics, 31(4): 1725-1731(in Chinese with English abstract).
      [28] 陈克勇, 张哨楠, 丁晓琪, 等, 2006. 致密砂岩储层的含气性评价. 石油天然气学报, 28(4): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200604018.htm
      [29] 程冰洁, 徐天吉, 李曙光, 2012. 频变AVO含气性识别技术研究与应用. 地球物理学报, 55(2): 608-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202022.htm
      [30] 邓荣敬, 邓运华, 于水, 等, 2008. 尼日尔三角洲盆地油气地质与成藏特征. 石油勘探与开发, 35(6): 755-762. doi: 10.3321/j.issn:1000-0747.2008.06.020
      [31] 韩光明, 潘光超, 付琛, 等, 2016. 含气储层及盖层速度变化对地震响应和AVO类型的影响. 岩性油气藏, 28(2): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201602017.htm
      [32] 何涛, 史謌, 邹长春, 等, 2011. 地层条件下砂岩储层的AVO响应模板. 北京大学学报(自然科学版), 47(5): 837-844. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201105011.htm
      [33] 贺振华, 王栋, 2009. 扩展流体识别因子及应用. 矿物岩石, 29(4): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200904015.htm
      [34] 江怀友, 赵文智, 闫存章, 等, 2008. 世界海洋油气资源与勘探模式概述. 海相油气地质, 13(3): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200803004.htm
      [35] 乐友喜, 赵迎, 黄健良, 等, 2016. 基于三参数小波变换的吸收衰减梯度检测. 地球物理学进展, 31(4): 1725-1731.
      [36] 刘喜武, 宁俊瑞, 刘培体, 等, 2009. 地震时频分析与分频解释及频谱分解技术在地震沉积学与储层成像中的应用. 地球物理学进展, 24(5): 1679-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200905019.htm
      [37] 吕福亮, 贺训云, 武金云, 等, 2007. 世界深水油气勘探现状、发展趋势及对我国深水勘探的启示. 中国石油勘探, 12(6): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200706007.htm
      [38] 马永强, 2019. AVO技术在哥伦比亚Llanos盆地D区块油气检测中的应用研究. 石油物探, 58(4): 580-590. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201904014.htm
      [39] 宁忠华, 贺振华, 黄德济, 2006. 基于地震资料的高灵敏度流体识别因子. 石油物探, 45(3): 239-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200603005.htm
      [40] 潘仁芳, 陈思路, 张利萍, 等, 2013. 含气砂岩AVO正演的半定量分析. 石油地球物理勘探, 48(1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201301015.htm
      [41] 王栋, 贺振华, 黄德济, 2009. 新流体识别因子的构建与应用分析. 石油物探, 48(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200902009.htm
      [42] 王正付, 芮华松, 2006. 弹性模量在储集层评价中的应用. 长江大学学报(自然科学版), 3(1): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSH200601007.htm
      [43] 姚淑凡, 丁文龙, 赵刚, 等, 2018. 珠江口盆地深水区珠江组成岩作用对含气砂岩AVO特征的影响研究. 石油物探, 57(3): 443-451. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201803015.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  7
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-29
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回