Sedimentary Evolution and Hydrocarbon Exploration Prospect of the Quaternary Central Canyon System in the Qiongdongnan Basin
-
摘要: 基于琼东南盆地中央峡谷已有钻井和高品质新地震资料,对第四纪中央峡谷体系的外部形态、内部构成、沉积演化过程及其主控因素等进行了系统梳理和研究,明确中央峡谷体系经历了晚中新世侵蚀充填期(Ⅰ期),早上新世平静充填期(Ⅱ期)和第四纪早期回春充填期(Ⅲ期)3期演化阶段,提出控制中央峡谷体系前两期形成的负地貌和物源供给在第四纪峡谷西段仍然存在.进一步研究表明西段早期多物源体系在第四纪变为昆嵩隆起秋盆河单物源,进积型陆坡控制了半限制型负地貌和砂质沉积逐渐向南东迁移,并在第四纪早期(S14)填平峡谷.在此认识指导下首次在峡谷西段浅层发现了3期第四纪半限制型海底扇群,具备"深浅双源供烃-优势通道复合输导-浅层水合物地层封盖-海底扇成藏"的成藏模式,是下一步深水区浅层寻找大中型气田的有利新领域.Abstract: Based on the drilling data and new high⁃quality seismic data of the Central Canyon in Qiongdongnan Basin, the morphology, internal composition, sedimentary evolution process, and main controlling factors of the Quaternary Central Canyon System are systematically studied. The results indicate that the Central Canyon System went through 3 stages of evolution: the erosion and filling stage in the early Upper Miocene(Ⅰstage), the calm filling stage in the early Pliocene(Ⅱstage), the rejuvenation stage in early Quaternary(Ⅲ stage), and the evolution of the Canyon System was jointly controlled by tectonic activity and source supply. The negative paleogeomorphy and provenance supply that controlled the formation of the Central Canyon System in the first two stages still existed in the western segment of the Quaternary canyon. The early multi⁃provenance system in the western segment changed to the single provenance of the Qiupenhe River in the Con Son Swell in the Quaternary, and the provenance supply was sufficient. The progradational continental slope controlled the semi⁃restricted negative landform and sandy deposition to migrate gradually to the southeast, and the Canyon was filled up in the early Quaternary (S14). Under the guidance of this understanding, three⁃stage semi⁃restricted⁃scale submarine fan groups in the shallow strata of the western segment of the Quaternary canyon are discovered for the first time. These submarine fan groups have superior conditions for reservoir formation and have the new hydrocarbon accumulation model of "shallow⁃deep dual hydrocarbon source supplying, multiple preferential pathways conducting, shallow gas hydrate sealing, submarine fan below the hydrate stable zone controlling accumulation", and are new fields of large⁃middle scale oilfield exploration with broad prospects.
-
图 4 琼东南盆地中央峡谷峡谷形态特征
地震剖面位置见图 1
Fig. 4. Morphological characteristics of Central Canyon in the Qiongdongnan Basin
图 12 峡谷西段西部昆嵩隆起陆坡区多波束海底地形图
据Wang et al.(2015)
Fig. 12. Multibeam submarine topographic map of Con Son Swell continental slope area in the western segment of the Canyon
-
[1] Cao, L. C., Jiang, T., Wang, Z. F., et al., 2015. Provenance of Upper Miocene Sediments in the Yinggehai and Qiongdongnan Basins, Northwestern South China Sea: Evidence from REE, Heavy Minerals and Zircon U⁃Pb Ages. Marine Geology, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007 [2] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep⁃Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z [3] Crossey, L. J., Ficher, T. P., Jonathan⁃Patchett P., et al., 2006. Dissected Hydrologic System at the Grand Canyon: Interaction between Deeply Derived Fluids and Plateau Aquifer Waters in Modern Springs and Travertine. Geology, 34(1): 25-28. doi: 10.1130/G22057.1 [4] Fan, C. W., Jiang, T., Liu, K., et al., 2018. Genesis of Miocene Litho⁃Stratigraphic Trap and Hydrocarbon Accumulation in the Qiongdongnan Basins, Northwestern South China Sea. Geoscience Letters, 5(1): 1-3. doi: 10.1186/s40562-018-0101-3 [5] Jiang, T., Cao, L. C., Xie, X. N., et al., 2015. Insights from Heavy Minerals and Zircon U⁃Pb Ages into the Middle Miocene⁃Pliocene Provenance Evolution of the Yinggehai Basin, Northwestern South China Sea. Sedimentary Geology, 327: 32-42. https://doi.org/10.1016/j.sedgeo.2015.07.011 [6] Jiang, T., Zhang, Y. Z., Tang, S. L., et al., 2014. CFD Simulation on the Generation of Turbidites in Deepwater Areas: a Case Study of Turbidity Current Processes in Qiongdongnan Basin, Northern South China Sea. Acta Oceanologica Sinica, 33(12): 127-137. https://doi.org/10.1007/s13131-014-0582-7 [7] Li, L., Wang, Y. M., Zhang, L. M., et al., 2010. Identification and Evolution of Mass Transport Complexes and Its Significance for Oil and Gas Exploration. Acta Sedimentologica Sinica, 28(1): 76-82(in Chinese with English abstract). [8] Mayall, M., Jones, E., Casey, M., 2006. Turbidite Channel Reservoirs: Key Elements in Facies Prediction and Effective Development. Marine and Petroleum Geology, 23(8): 821-841. https://doi.org/10.1016/j.marpetgeo.2006.08.001 [9] Shao, L., Li, A., Wu, G. X., et al., 2010. Evolution of Sedimentary Environment and Provenance in Qiongdongnan Basin in the Northern South China Sea. Acta Petrolei Sinica, 31(4): 548-552(in Chinese with English abstract). [10] Su, M., Li, J. L., Jiang, T., et al., 2009. Morphological Features and Formation Mechanism of Central Canyon in the Qiongdongnan Basin, Northern South China Sea. Marine Geology & Quaternary Geology, 29(4): 85-93(in Chinese with English abstract). [11] Su, M., Xie, X. N., Wang, Z. F., et al., 2013. Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea. Acta Petrolei Sinica, 34(3): 467-478(in Chinese with English abstract). [12] Su, M., Zhang, C., Xie, X. N., et al., 2014. Controlling Factors on the Submarine Canyon System: a Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Science China Earth Sciences, 57(10): 2457-2468. https://doi.org/10.1007/s11430-014-4878-4 [13] Wang, D. W., Wu, S. G, Yao, G. S., et al., 2015. Architecture and Evolution of Deep⁃Water Cyclic Deposits in the Qiongdongnan Basin, South China Sea: Relationship with the Pleistocene Climate Events. Marine Geology, 370: 43-54. doi: 10.1016/j.margeo.2015.10.002 [14] Wang, D. W., Wu, S. G., Qing, Z. L., et al., 2009. Rchitecture and Identification of Large Quaternary Mass Transport Depositions in the Slope Of South China Sea. Marine Geology & Quaternary Geology, 29(5): 65-72(in Chinese with English abstract). [15] Wang, Y. H., Zhang, D. J., Zhao, P. X., et al., 2016. a New Considertion on the Genetic Mechanism of the Central Canyon in the Qiongdongnan Basin, the Norther South China Sea. Haiyang Xuebao, 38(11): 97-104(in Chinese with English abstract). [16] Weimer, P., Slatt, R. M., 2006. Introduction to Petroleum Geology of Deepwater Settings. AAPG, Tulsa. [17] Xie, X. N., Cheng, Z. H., Sun, Z. P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South China Sea. Earth Science, 37(4): 627-634(in Chinese with English abstract). [18] Xie, Y. H., 2020. Sedimentary Characteristics and Hydroarbon exploration Potential of the Upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins. Bulletin of Geological Science and Technology, 39(5): 69-78(in Chinese with English abstract). [19] You, L., Zhong, J., Zhang, Y. Z., et al., 2018. Petrography⁃Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea. Earth Science, 43(2): 514-524(in Chinese with English abstract). [20] Yuan, S. Q., 2009. Sedimengary Sysytem of Deepwater Channel, the Slop Area of Northern South China Sea. Doctoral Dissertation. Institute of Oceanography, Cninese Academy of Sciences, QingDao, 1-121. [21] Zhang, D. J., Zhang, Y. Z., Shao, L., et al., 2017. Sedimentary Provemance in the Central Canyon of Qiongdongnan Basin in the Northern South China Sea. Natural Gas Geoscience, 28(10): 1574-1581(in Chinese with English abstract). [22] Zhu, J. T., Deng, Y., Guo, M. G., et al., 2020. Mineralization Conditions and Accumulation Pattern of the Gas Hydrate in Qiongdongnan Basin Floor Plain. China Offshore Oil and Gas, 32(3): 10-19(in Chinese with English abstract). [23] Zhu, W. L., Zhang, G. C., Gao, L., 2008. Geological Characteristics and Exploration Objectives of Hydrocarbons in the Northern Continental Margin Basin of South China Sea. Acta Petrolei Sinica, 29(1): 1-9(in Chinese with English abstract). doi: 10.1111/j.1745-7254.2008.00742.x [24] 李磊, 王英明, 张莲美, 等, 2010. 块体流搬运复合体的识别、演化及其油气勘探意义. 沉积学报, 28(1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001011.htm [25] 邵磊, 李昂, 吴国瑄, 等, 2010. 琼东南盆地沉积环境及物源演变特征. 石油学报, 31(4): 548-552. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004004.htm [26] 苏明, 解习农, 王振峰, 等, 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm [27] 苏明, 李俊良, 姜涛, 等. 2009. 琼东南盆地中央峡谷的形态及成因. 海洋地质与第四纪地质, 29(4): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200904017.htm [28] 苏明, 张成, 解习农, 等, 2014. 深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例. 中国科学: 地球科学, 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm [29] 王大伟, 吴时国, 秦志亮, 等, 2009. 南海陆坡大型块体搬运体系的结构与识别特征. 海洋地质与第四纪地质, 29(5): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200905014.htm [30] 王亚辉, 张道军, 赵鹏肖, 等, 2016. 南海北部琼东南盆地中央峡谷成因新认识. 海洋学报, 38(11): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201611009.htm [31] 解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072 [32] 谢玉洪, 2020. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景. 地质科技通报, 39(5): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005010.htm [33] 尤丽, 钟佳, 张迎朝, 等, 2018. 南海北部中央峡谷水道的岩相-地球化学特征及其源区性质. 地球科学, (2): 514-524. doi: 10.3799/dqkx.2017.588 [34] 袁圣强, 2009. 南海北部陆坡区深水水道沉积体系研究博士学位论文. 青岛: 中国科学院海洋研究所, 1-121. [35] 张道军, 张迎朝, 邵磊, 等, 2017. 琼东南盆地中央峡谷沉积物源探讨. 天然气地球科学, 28(10): 1574-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710012.htm [36] 朱继田, 邓勇, 郭明刚, 等, 2020. 琼东南盆地平原区天然气水合物成矿条件及成藏模式. 中国海上油气, 32(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003002.htm [37] 朱伟林, 张功成, 高乐, 2008. 南海北部大陆边缘盆地油气地质特征与勘探方向. 石油学报, 29(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200801002.htm