• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一个由干湿交替极端气候事件主导的内陆湖盆:来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据

    李相博 刘化清 杨伟伟 张艳 CarlosZavala 吉利民 杨占龙 郝彬 黄军平 王菁

    李相博, 刘化清, 杨伟伟, 张艳, CarlosZavala, 吉利民, 杨占龙, 郝彬, 黄军平, 王菁, 2023. 一个由干湿交替极端气候事件主导的内陆湖盆:来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据. 地球科学, 48(1): 293-316. doi: 10.3799/dqkx.2022.463
    引用本文: 李相博, 刘化清, 杨伟伟, 张艳, CarlosZavala, 吉利民, 杨占龙, 郝彬, 黄军平, 王菁, 2023. 一个由干湿交替极端气候事件主导的内陆湖盆:来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据. 地球科学, 48(1): 293-316. doi: 10.3799/dqkx.2022.463
    Li Xiangbo, Liu Huaqing, Yang Weiwei, Zhang Yan, Carlos Zavala, Ji Limin, Yang Zhanlong, Hao Bin, Huang Junping, Wang Jing, 2023. A Lacustrine Basin Driven by Extreme Events of Alternate Dry-Wet Climatic Cycles: Evidence from Outcrops of Yanchang Formation in Upper Triassic, Ordos Basin. Earth Science, 48(1): 293-316. doi: 10.3799/dqkx.2022.463
    Citation: Li Xiangbo, Liu Huaqing, Yang Weiwei, Zhang Yan, Carlos Zavala, Ji Limin, Yang Zhanlong, Hao Bin, Huang Junping, Wang Jing, 2023. A Lacustrine Basin Driven by Extreme Events of Alternate Dry-Wet Climatic Cycles: Evidence from Outcrops of Yanchang Formation in Upper Triassic, Ordos Basin. Earth Science, 48(1): 293-316. doi: 10.3799/dqkx.2022.463

    一个由干湿交替极端气候事件主导的内陆湖盆:来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据

    doi: 10.3799/dqkx.2022.463
    基金项目: 

    国家自然科学基金项目 41772099

    中国石油天然气股份有限公司前瞻性技术攻关项目 2021DJ0401

    详细信息
      作者简介:

      李相博(1965-),男,教授级高级工程师,博士,研究方向为石油地质与碎屑岩沉积.ORCID:0000-0002-4525-4552. E-mail:lixiangbo911@sina.com

      通讯作者:

      张艳,E-mail:13662068695@163.com

    • 中图分类号: P618.13

    A Lacustrine Basin Driven by Extreme Events of Alternate Dry-Wet Climatic Cycles: Evidence from Outcrops of Yanchang Formation in Upper Triassic, Ordos Basin

    • 摘要: 鄂尔多斯盆地是我国陆上最主要的油气盆地之一,三叠系延长组是该盆地的主要含油层位.通过对延长组典型露头的考察与研究,结合古生物及岩性岩相资料,取得了3点新认识:(1)恢复了延长组沉积时期的古气候环境,认为其具有三分性,其中早期拉丁期为干旱环境;中期受卡尼期梅雨事件(CPE)影响气候发生突变,转变为温暖潮湿气候环境;晚期诺利—瑞替期再次转变为半干旱—半湿润气候环境.(2)CPE事件改变了延长组沉积物搬运与沉积方式,其中CPE事件之前与事件之后的干旱环境时期,主要发育暴雨洪水引发的季节性河流、决口扇、决口河道沉积;CPE事件当中及卡尼中期,陆源碎屑物质主要通过异重流、浊流及砂质碎屑流等多种途径搬运至水下环境,形成富砂质重力流事件沉积,同时受CPE事件控制,在深水环境还发育了黑色富有机质页岩事件沉积.(3)建立了延长组干旱与潮湿两种环境沉积模式,干旱环境湖泊水域面积较小,主要沉积单元为洪泛平原、季节性河道及决口扇,主要沉积方式为填平补齐、加积式沉积,不发育前积沉积现象;潮湿环境湖泊水域面积较大,发育完整的陆相河流—三角洲—湖泊—重力流沉积体系,由于具有稳定的长流水,河道相对固定,加之受湖平面变化控制,其沉积方式以前积作用为主.该认识不仅对于深入探讨鄂尔多斯延长组大型坳陷湖盆形成演化机理、沉积层序充填演化及指导油气勘探实践有积极意义,而且对揭示晚三叠世全球极端气候事件在内陆湖盆的沉积学记录有积极意义,可以填补CPE事件在古特提斯东缘泛大陆内部沉积响应研究的空白.

       

    • 图  1  鄂尔多斯盆地晚三叠世古地理位置、构造单元与延长组地层发育情况

      a.盆地现今构造单元及黑色泥页岩残留分布;露头:1.延河,2.仕望河,3.铜川衣食村,4.窟野河;①为阿尼玛卿‒商丹断裂带,②为西六盘山断层,③为东贺兰山断层. b.晚三叠世盆地位置(据Bai and Ma, 2020修改). c.延长组岩性岩相综合柱状图

      Fig.  1.  Late Triassic paleogeographic location, tectonic units and stratigraphic development of Yanchang Formation in Ordos Basin

      图  2  延河‒仕望河延长组实测柱状图(位置见图 1a)、古土壤分布及采样位置

      Fig.  2.  The measured column chart of Yanhe-Shiwanghe Yanchang Formation (see Fig. 1a), paleosol distribution and sampling locations

      图  3  延长组沉积时期孢粉植物群主要类型分布与古气候演化

      长10油层组及纸坊组中未发现孢粉化石

      Fig.  3.  Distribution of the main types of palynological flora and paleoclimate evolution during the deposition of Yanchang F ormation

      图  4  陕北地区延长组露头剖面典型古土壤层照片

      a. 干旱环境古土壤,延河剖面长9内部;b. 照片a的局部放大,土黄色粉砂质泥岩,层理杂乱,见稀疏植物根系,上覆炭质泥岩;c. 潮湿环境古土壤层,延河剖面长7顶部;d. 照片c的局部放大,黑色泥质粉砂岩,层理杂乱或不显层理构造,见大量垂直生长植物根系、虫孔等;e. 干旱环境古土壤,深褐色、杂色含钙质结核粉砂质泥岩,仕望河剖面长10中部;f. 照片e的局部解释;g. 干旱环境古土壤,延河剖面长61底部;h. 干旱环境古土壤,延河剖面长4+5中部.照片的位置见图 2

      Fig.  4.  Photos of typical paleosol layers in the outcrop profile of Yanchang Formation in northern Shaanxi

      图  5  白家河地区延长组长9油层组岩性岩相特征

      a.实测柱状图(厚度49.2 m): b.露头宏观照片: c.落石, 浅灰绿色砂岩, 其下部为块状, 向上略显交错层理, 位置见照片b; d.照片c的底面, 见大量炭化植物茎秆与叶片指示洪水事件; e照片e的顶面,见大量类似*龟甲纹状”多边形裂缝, 疑似干裂现象.CVS.决口扇; FP.洪泛平原; CCH.决口河道

      Fig.  5.  Lithologic and lithofacies characteristics of Chang 9 oil formation in Baijiahe area

      图  6  冯家村-胡家村长4+5油层组岩性岩相特征

      a.实测柱状图(厚度26 m); b.露头宏观照片; c、d.照片b的局部放大, 显示了两颗原地生长的直立树木化石, 其宿主岩石为含泥质粉细砂岩(局部见油苗), 块状层理, 底面平直, 显示为沉积速率很高的决口扇沉积.CVS.决口扇砂体

      Fig.  6.  Lithology and lithofacies characteristics of Fengjiacun- Hujiacun Chang 4+5 reservoir

      图  7  黑家堡村长3油层组岩性岩相特征

      a.实测柱状图(厚度46 m); b.露头宏观照片; c、d、e、g、h.地层中直立分布的树木化石,树木根系部分埋藏在暗红色粉砂质泥岩中,泥岩中发育垂直虫孔等大量生物遗迹化石,显示为洪泛平原微相,茎干部分宿主岩石为含泥质粉细砂岩, 块状、无层理,底面平直, 显示为沉积速率很高的决口扇沉积, 由此推测这些树木当时位于河流末端低洼处,因洪水决口掩埋而成化石,其中照片c中的树木经过了两次掩埋,其余均为一次性掩埋; f.照片e的解释.图中红色五角星指示树木化石分布地点.CVS.决口扇; FP.洪泛平原: CCH.决口河道

      Fig.  7.  Lithology and lithofacies characteristics of Chang 3 reservoir in Heijiapu Village

      图  8  延河剖面二里畔村长7/长8地层界线附近的沉积相突变现象

      a. 露头宏观照片;b、c. 照片a的局部放大,浅灰绿色泥质粉砂岩中见炭化植物茎秆及大量垂直植物根迹等生物扰动构造,顶部发育薄层劣质煤线或炭质泥岩,指示为浅覆水沼泽或三角洲平原环境;d. 长7/长8之间的沉积相突变界线,其中界线之下长8为暴露古土壤层,界线之上长7为深湖‒半深湖相油页岩沉积,位置见照片a;e~g. 照片d的局部放大,古土壤层,厚度10~15 cm,浅灰绿色泥质粉砂岩中见原地生长的树干化石及大量垂直生长的植物根系,由于遭受生物高度扰动,岩石呈松散状,无常规层理构造;h. 照片d的局部放大

      Fig.  8.  Abrupt change of sedimentary facies near the stratigraphic boundary of Erlipan Village Chang 7/Chang 8 in Yanhe Section

      图  9  铜川剖面长8-长7段岩性剖面(实测)及典型现象露头照片

      a. 铜川地区实测岩性剖面;b. 油页岩夹薄层凝灰岩,长7中部;c. 重力流砂体夹薄层油页岩与黑色泥岩,长7上部;d. 长7/长8之间的沉积相突变界线,其中界线之下长8为三角洲洪泛平原沉积,界线之上长73底部为深湖‒半深湖相油页岩,局部夹几厘米到十几厘米厚度不等薄层凝灰岩,向上部变为重力流砂体与油页岩互层;e、f. 照片d的局部放大,浅灰绿色泥质粉砂岩中见垂直生长的植物根系及垂直生物钻孔等,由于遭受生物高度扰动,岩石呈松散状,无常规层理构造.照片的位置见图 9a

      Fig.  9.  Lithologic profile and outcrop photos of typical phenomena of Chang 8-Chang 7 members in Tongchuan Section

      图  10  鄂尔多斯盆地延长组沉积模式

      李相博等(2021a, 2021b)修改. a. 干旱时期的河流扇沉积模式:在干旱环境下,陆相盆地湖泊水域面积较小,主要沉积单元为洪泛平原、河道与决口扇(决口河道),河流扇中的“扇状沉积体系”主要由洪水期曲流河决口、改道迁移而形成,一般缺少明显前积现象;b. 潮湿时期的湖泊‒三角洲‒重力流模式:在潮湿环境下,陆相盆地湖泊水域面积大,主要沉积单元有河流、三角洲、深湖‒半深湖及重力流沉积,在三角洲前缘发育明显前积体.1.河道砂体;2.沿岸沙坝;3.近岸沙坝;4. 河口坝;5.远沙坝;6.席状砂;7.风暴岩;8.砂质碎屑流;9.浊流;10.异重流;11.底流

      Fig.  10.  Depositional model of Yanchang Formation in Ordos Basin

      表  1  延长组卡尼期岩性岩相类型、成因解释及其鉴别标志

      Table  1.   Lithologic lithofacies types, genetic interpretation and identification marks of Carnian period in Yanchang Formation

      类型划分 沉积特征 搬运与沉积过程
      岩性岩相 代码 岩石结构 沉积构造 单岩层厚度 顶底接触关系 沉积相序 典型照片 流体类型 搬运过程 沉积机制
      交错-平行层理砂岩相 L1 砂级-粉砂级-泥级,概率曲线由滚动、跳跃及悬浮三段式构成 砂岩内部发育交错层理、平行层理、沙纹层理等牵引流沉积构造,砂岩底部可见泥砾等冲刷现象 变化较大,最大可达几十米 底面为冲刷面,顶面有时为泥岩,但常为冲刷面
      B209井, 2 060.0~2 080.3 m

      B210井, 1 894.5 m
      牵引流、流体重力流(Shanmugam, 2013) 底床搬运为主(Shanmugam, 2013) 机械分异、重力沉积(Shanmugam, 2000)
      块状层理砂岩相 L2 砂级-粉砂级,概率曲线为两段式,以跳跃为主,C-M图平行于C=M基线 块状层理,砂岩内部偶见呈悬浮状零散分布泥砾, 且有拖长变形现象 一般大于0.5 m,最大可达几十米 顶底面均突变接触,其中底面平坦,顶面为不规则状
      N36井, 1 571.6~1 574.3 m

      N36井, 1 572.4 m
      宾汉塑性体,层流
      (Shanmugam, 2013)
      块体搬运(Shanmugam, 2013; Stow and Johansson, 2000) 整体冻结(Talling et al., 2012; Shanmugam, 2013)
      薄层正粒序砂岩相 L3 砂级-粉砂级-泥级,概率曲线为单段式,斜率小,C-M图平行于
      C=M基线
      粒序递变层理或含有粒序层理的鲍玛序列. 通常小于0.5 m 底面常见槽模等侵蚀冲刷现象,顶面为渐变界面
      N36井, 1 514.6~1 514.8 m

      N36井, 1 514.8 m
      牛顿流体,紊流(Bouma, 1962; Shanmugam, 2013) 流体搬运
      (Bouma, 1962; Shanmugam, 2013)
      悬浮析出(Shanmugam, 2013)
      正反粒序成对产出砂岩相 L4 砂级-粉砂级-泥级,概率曲线为单段式,斜率小,C-M图平行于
      C=M基线
      正粒序递变层理与反粒序递变层理成对出现,单砂层内有微冲刷现象. 单层小于20 cm 顶底面均突变接触
      JH4井, 1 446.97~1 447.36 m

      JH4井, 1 446.97~1 447.36 m
      异重流(Mulder and Alexander, 2001; Zavala and Arcuri, 2016; Yang, 2017) 悬浮搬运、底床搬运(Zavala and Arcuri, 2016; Yang, 2017) 悬浮析出与机械分异(Zavala and Arcuri, 2016; Yang, 2017)
      砂泥混搅相 L5 砂到泥级 强烈揉皱变形层理, 发育压力脊,滑坡壁,压力缝等 变化较大 顶底面均突变接触
      B414井, 1 985.0~1 988.0 m

      B280井, 1 906.6 m
      砂质滑塌、滑动(王德坪, 1991; Talling et al., 2012) 块体搬运(王德坪, 1991; Talling et al., 2012) 整体冻结(Shanmugam, 2013)
      无层理构造泥岩相 L6 泥级为主 块状,通常见疙瘩状或透镜状团块,有时见粉砂质或泥质撕裂屑 单层常小于
      30 cm
      顶底面均突变接触
      长63, 铜川剖面

      长63, 铜川剖面
      泥质碎屑流(王德坪, 1991; Talling et al., 2012) 块体搬运(王德坪, 1991; Talling et al., 2012) 絮凝或整冻结体(王德坪, 1991; Talling et al., 2012)
      水平层理泥岩相 L7 泥级为主 浅灰、灰黑或深黑色,发育水平层理,常与L1-L4相伴生,形成韵律层理 变化较大 与上、下两层呈渐变或突然接触
      长7, 铜川剖面

      长7, 铜川剖面
      静水环境(Talling et al., 2012) 流体浮力(Talling et al., 2012) 悬浮析出(Talling et al., 2012)
      下载: 导出CSV
    • [1] Bai, Y. L., Ma, Y. H., 2020. Geology of the Chang 7 Member Oil Shale of the Yanchang Formation of the Ordos Basin in Central North China. Petroleum Geoscience, 26(2): 355-371. https://doi.org/10.1144/petgeo2018-091
      [2] Bohacs, K. M., Carroll, A. R., Neal, J. E., et al., 2000. Lake- Basin Type, Source Potential, and Hydrocarbon Character: An Integrated Sequence-Stratigraphic-Geochemical Framework. In: Gierlowski-Kordesch, Kelts, K. R., eds., Lake Basins through Space and Time. AAPG Studies in Geology, 46: 3-34.
      [3] Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam.
      [4] Cain, S. A., Mountney, N. P., 2009. Spatial and Temporal Evolution of a Terminal Fluvial Fan System: The Permian Organ Rock Formation, South-East Utah, USA. Sedimentology, 56(6): 1774-1800. https://doi.org/10.1111/j.1365-3091.2009.01057.x
      [5] Dal Corso, J., Mietto, P., Newton, R. J., et al., 2012. Discovery of a Major Negative δ13C Spike in the Carnian (Late Triassic) Linked to the Eruption of Wrangellia Flood Basalts. Geology, 40(1): 79-82. https://doi.org/10.1130/G32473.1
      [6] Demko, T. M., 1990. Depositional Environments of the Lower Mary Lee Coal Zone, Lower Pennsylvanian "Pottsville" Formation, Northwestern Alabama. In: Gastaldo, R. A., Demko, T. M., Liu, Y. J., eds., Carboniferous Coastal Environments and Paleocommunities of the Mary Lee Coal Zone, Marion and Walker Counties, Alabama. Geological Society of America, Tuscaloosa, 5-20.
      [7] Deng, X. Q., Fu, J. H., Yao, J. L., et al., 2011. Sedimentary Facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and Breakthrough in Petroleum Exploration. Journal of Palaeogeography, 13(4): 443-455 (in Chinese with English abstract).
      [8] Deng, X. Q., Li, W. H., Liu, X. S., et al., 2009. Discussion on the Stratigraphic Boundary between Middle Triassic and Upper Triassic. Acta Geologica Sinica, 83(8): 1089-1096 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.08.005
      [9] Donselaar, M. E., Gozalo, M. C., Moyano, S., 2013. Avulsion Processes at the Terminus of Low-Gradient Semi-Arid Fluvial Systems: Lessons from the Río Colorado, Altiplano Endorheic Basin, Bolivia. Sedimentary Geology, 283: 1-14. https://doi.org/10.1016/j.sedgeo.2012.10.007
      [10] Fu, J. H., Guo, Z. Q., Deng, X. Q., 2005. Sedimentary Facies of the Yanchang Formation of Upper Triassic and Petroleum Geological Implication in Southwestern Ordos Basin. Journal of Palaeogeography, 7(1): 34-44 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2005.01.004
      [11] Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 870-883 (in Chinese with English abstract).
      [12] Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo- Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 936-946 (in Chinese with English abstract).
      [13] Gani, M. R., Bhattacharya, J. P., Giosan, L., 2005. Bedding Correlation vs. Facies Correlation in Deltas: Lessons for Quaternary Stratigraphy. In: Giosan, L., Bhattacharya, J. P., eds., River Deltas: Concepts, Models and Examples. SEPM Special Publication, 83: 31-47.
      [14] Hartley, A. J., Weissmann, G. S., Nichols, G. J., et al., 2010. Large Distributive Fluvial Systems: Characteristics, Distribution, and Controls on Development. Journal of Sedimentary Research, 80(2): 167-183. https://doi.org/10.2110/jsr.2010.016
      [15] Hornung, T., Brandner, R., 2005. Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): Local Black Shale Events Controlled by Regional Tectonics, Climatic Change and Plate Tectonics. Facies, 51(1): 460-479. https://doi.org/10.1007/s10347-005-0061-x
      [16] Hornung, T., Krystyn, L., Brandner, R., et al., 2007. A Tethys-Wide Mid-Carnian (Upper Triassic) Carbonate Productivity Crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)? Journal of Asian Earth Sciences, 30(2): 285-302. https://doi.org/10.1016/j.jseaes.2006.10.001
      [17] Hui, X., Hou, Y. C., Yu, J., et al., 2022. Progradational Seismic Strata Features and Distribution of Sandstone in the Deep-Water Area of a Large-Scale Lacustrine Depression Basin: A Case Study of the Middle Yanchang Formation in Longdong, Ordos Basin. Acta Sedimentologica Sinica, 40(3): 787-800 (in Chinese with English abstract).
      [18] Ji, L. M., Wang, S. F., Xu, J. L., 2006a. Acritarch Assemblage in Yanchang Formation in Eastern Gansu Province and Its Environmental Implications. Earth Science, 31(6): 798-806 (in Chinese with English abstract).
      [19] Ji, L. M., Wu, T., Li, L. T., 2006b. Paleoclimatic Characteristics during Sedimentary Period of Main Source Rocks of Yanchang Formation (Triassic) in Eastern Gansu. Acta Sedimentologica Sinica, 24(3): 426-431 (in Chinese with English abstract).
      [20] Ji, L. M., Zhu, Y. H., 2013. Sporo-Pollen Assemblages and Paleoclimate of the Yanchang Formation in the Xifeng Area, Southwestern Ordos Basin, Gansu Province, NW China. Acta Micropalaeontologica Sinica, 30(4): 367-378 (in Chinese with English abstract).
      [21] Jin, X., Shi, Z. Q., Wang, Y. Y., et al., 2015. Mid-Carnian (Late Triassic) Extreme Climate Event: Advances and Unsolved Problems. Acta Sedimentologica Sinica, 33(1): 105-115 (in Chinese with English abstract).
      [22] Li, J. G., 2018. Sedimentary Model of Fine-Grained Dryland Meandering River Terminus Systems in a Semi-Arid or Arid Endorheic Basin. Earth Science, 43(S1): 264-276 (in Chinese with English abstract).
      [23] Li, J. G., Bristow, C. S., 2015. Crevasse Splay Morphodynamics in a Dryland River Terminus: Río Colorado in Salar de Uyuni Bolivia. Quaternary International, 377: 71-82. https://doi.org/10.1016/j.quaint.2014.11.066
      [24] Li, S. T., Wang, D. Y., Wang, B., et al., 2008. Identification of Sedimentary Slope Breaks in the Margin of a down Warped Lake Basin's Ramp Belt: A Case from Triassic Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 19(1): 83-88 (in Chinese with English abstract).
      [25] Li, S. X., Niu, X. B., Liu, G. D., et al., 2020. Formation and Accumulation Mechanism of Shale Oil in the 7th Member of Yanchang Formation, Ordos Basin. Oil & Gas Geology, 41(4): 719-729 (in Chinese with English abstract).
      [26] Li, X. B., Chen, Q. L., Liu, H. Q., et al., 2011. Features of Sandy Debris Flows of the Yanchang Formation in the Ordos Basin and Its Oil and Gas Exploration Significance. Acta Geologica Sinica (English Edition), 85(5): 1187-1202. doi: 10.1111/j.1755-6724.2011.00550.x
      [27] Li, X. B., Fu, J. H., Chen, Q. L., et al., 2011. The Concept of Sandy Debris Flow and Its Application in the Yanchang Formation Deep Water Sedimentation of the Ordos Basin. Advances in Earth Science, 26(3): 286-294 (in Chinese with English abstract).
      [28] Li, X. B., Liu, H. Q., Deng, X. Q., et al., 2021a. The Concept of Fluvial Fans in an Arid Environment: A New Explanation of the Origin of "Sand-Filled Basins" in the Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 39(5): 1208-1221 (in Chinese with English abstract).
      [29] Li, X. B., Liu, H. Q., Huang, J. P., et al., 2021b. Alternation of Arid-Humid Climate and Formation and Distribution of Fluvial Fan Sand in the Central Area of Inland Lake Basin—Taking Yanchang Formation in Ordos Basin as an Example. Acta Geologica Sinica, 1-17 (in Chinese with English abstract).
      [30] Li, X. B., Liu, H. Q., Pan, S. X., et al., 2018. Subaqueous Sandy Mass-Transport Deposits in Lacustrine Facies of the Upper Triassic Yanchang Formation, Ordos Basin, Central China. Marine and Petroleum Geology, 97: 66-77. https://doi.org/10.1016/j.marpetgeo.2018.06.019
      [31] Li, X. B., Yang, Z. L., Wang, J., et al., 2016. Mud-Coated Intraclasts: A Criterion for Recognizing Sandy Mass-Transport Deposits—Deep-Lacustrine Massive Sandstone of the Upper Triassic Yanchang Formation, Ordos Basin, Central China. Journal of Asian Earth Sciences, 129: 98-116. https://doi.org/10.1016/j.jseaes.2016.06.007
      [32] Liu, H. Q., Li, X. B., Chen, Q. L., et al., 2013. Analysis of Several Petroleum Geological Problems in Yanchang Formation of Ordos Basin. Science Press, Beijing (in Chinese).
      [33] Liu, H. Q., Li, X. B., Wanyan, R., et al., 2011. Palaeogeographic and Sedimentological Characteristics of the Triassic Chang 8, Ordos Basin, China. Acta Sedimentologica Sinica, 29(6): 1086-1095 (in Chinese with English abstract).
      [34] Liu, Z. L., Shen, F., Zhu, X. M., et al., 2015. Progress of Shallow-Water Delta Research and a Case Study of Continental Lake Basin. Oil & Gas Geology, 36(4): 596-604 (in Chinese with English abstract).
      [35] Lü, Q. Q., Luo, S. S., Fu, J. H., et al., 2017. Outcrop-Based Analysis of a Deep-Water Gravity Flow Sediments in Lake: A Case Study from the Chang 7 of Yaoqu Section, Ordos Basin. Acta Geologica Sinica, 91(3): 617-628 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.03.009
      [36] Meng, Q. T., Bruch, A. A., Sun, G., et al., 2018. Quantitative Reconstruction of Middle and Late Eocene Paleoclimate Based on Palynological Records from the Huadian Basin, Northeastern China: Evidence for Monsoonal Influence on Oil Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 63-77. https://doi.org/10.1016/j.palaeo.2017.11.036
      [37] Mueller, S., Krystyn, L., Kürschner, W. M., et al., 2016. Climate Variability during the Carnian Pluvial Phase—A Quantitative Palynological Study of the Carnian Sedimentary Succession at Lunz Am See, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 198-211. https://doi.org/10.1016/j.palaeo.2015.06.008
      [38] Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, 48(2): 269-299. https://doi.org/10.1046/j.1365-3091.2001.00360.x
      [39] Nakada, R., Ogawa, K., Suzuki, N., et al., 2014. Late Triassic Compositional Changes of Aeolian Dusts in the Pelagic Panthalassa: Response to the Continental Climatic Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 393: 61-75. https://doi.org/10.1016/j.palaeo.2013.10.014
      [40] Nichols, G. J., Hirst, J. P., 1998. Alluvial Fans and Fluvial Distributary Systems, Oligo-Miocene, Northern Spain; Contrasting Processes and Products. Journal of Sedimentary Research, 68(5): 879-889. https://doi.org/10.2110/jsr.68.879
      [41] North, C. P., Warwick, G. L., 2007. Fluvial Fans: Myths, Misconceptions, and the End of the Terminal-Fan Model. Journal of Sedimentary Research, 77(9): 693-701. https://doi.org/10.2110/jsr.2007.072
      [42] Ogg, J. G., 2015. The Mysterious Mid-Carnian "Wet Intermezzo" Global Event. Journal of Earth Science, 26(2): 181-191. https://doi.org/10.1007/s12583-015-0527-x
      [43] Pan, S. Q., Zou, C. N., Li, Y., et al., 2021. Major Biological Events and Fossil Energy Formation: On the Development of Energy Science under the Earth System Framework. Petroleum Exploration and Development, 48(3): 498-509 (in Chinese with English abstract).
      [44] Pan, S. X., Wei, P. S., Wang, T. Q., et al., 2012. Sedimentary Characteristics of Flood-Overlake in Large Depression Basin—Taking the 4th Member, Quantou Formation, Lower Cretaceous, in Southern Songliao Basin as an Example. Geological Review, 58(1): 41-52 (in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.01.004
      [45] Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English abstract).
      [46] Shi, Z. Q., Qian, L. J., Zeng, D. Y., et al., 2010a. Geological Records of Late Triassic Carnian Carbonate Productivity Crisis in Eastern Tethys Region (SW China). Geological Review, 56(3): 321-328 (in Chinese with English abstract).
      [47] Shi, Z. Q., Zhang, H., Zeng, D. Y., et al., 2010b. Characters of Carnian in the Frontal Area of Mt. Longmenshan: Implications for Palaeoenvironment and Paleoclimate. Journal of Chengdu University of Technology (Science & Technology Edition), 37(4): 424-431 (in Chinese with English abstract).
      [48] Shanmugam, G., 2013. New Perspectives on Deep-Water Sandstones: Implications. Petroleum Exploration and Development, 40(3): 316-324. https://doi.org/10.1016/S1876-3804(13)60038-5
      [49] Shunk, A. J., Driese, S. G., Farlow, J. O., et al., 2009. Late Neogene Paleoclimate and Paleoenvironment Reconstructions from the Pipe Creek Sinkhole, Indiana, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 274(3-4): 173-184. https://doi.org/10.1016/j.palaeo.2009.01.008
      [50] Simms, M. J., Ruffell, A. H., 1989. Synchroneity of Climatic Change and Extinctions in the Late Triassic. Geology, 17(3): 265-268. https://doi.org/10.1130/0091-7613(1989)017<0265:SOCCAE>2.3.CO;2 doi: 10.1130/0091-7613(1989)017<0265:SOCCAE>2.3.CO;2
      [51] Stow, D. A. V., Johansson, M., 2000. Deep-Water Massive Sands: Nature, Origin and Hydrocarbon Implications. Marine and Petroleum Geology, 17(2): 145-174. https://doi.org/10.1016/S0264-8172(99)00051-3
      [52] Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444: 88-100. https://doi.org/10.1016/j.epsl.2016.03.037
      [53] Talling, P. J., Masson, D. G., Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 59(7): 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
      [54] Tong, J. N., Chu, D. L., Liang, L., et al., 2019. Triassic Integrative Stratigraphy and Timescale of China. Scientia Sinica Terrae, 49(1): 194-226 (in Chinese). doi: 10.1360/N072018-00012
      [55] Wang, D. P., 1991. The Sedimentation and Formation Mechanism of Lacustrine Endogenic Debris Flow. Acta Geologica Sinica, 65(4): 299-316, 387 (in Chinese with English abstract).
      [56] Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al., 2010. Fluvial Form in Modern Continental Sedimentary Basins: Distributive Fluvial Systems. Geology, 38(1): 39-42. https://doi.org/10.1130/G30242.1
      [57] Wu, F. L., Li, W. H., Li, Y. H., et al., 2004. Delta Sediments and Evolution of the Yanchang Formation of Upper Triassic in Ordos Basin. Journal of Palaeogeography, 6(3): 307-315 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2004.03.005
      [58] Yang, H., Deng, X. Q., 2013. Deposition of Yanchang Formation Deep-Water Sandstone under the Control of Tectonic Events, Ordos Basin. Petroleum Exploration and Development, 40(5): 513-520 (in Chinese with English abstract).
      [59] Yang, J. J., 2002. Tectonic Evolution and Oil-Gas Reservoir Distribution in Ordos Basin. Petroleum Industry Press, Beijing (in Chinese).
      [60] Yang, J. S., Wang, Y., Yin, J. H., et al., 2022. Progress and Prospects in the Reconstruction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959 (in Chinese with English abstract).
      [61] Yang, R. C., Jin, Z. J., Sun, D. S., et al., 2015. Discovery of Hyperpycnal Flow Deposits in the Late Triassic Lacustrine Ordos Basin. Acta Sedimentologica Sinica, 33(1): 10-20 (in Chinese with English abstract).
      [62] Yang, R. C., Jin, Z. J., Van Loon, A. J. T., et al., 2017. Climatic and Tectonic Controls of Lacustrine Hyperpycnite Origination in the Late Triassic Ordos Basin, Central China: Implications for Unconventional Petroleum Development. AAPG Bulletin, 101(1): 95-117. https://doi.org/10.1306/06101615095
      [63] Yang, R. C., Yin, W., Fan, A. P., et al., 2017. Fine-Grained, Lacustrine Gravity-Flow Deposits and Their Hydrocarbon Significance in the Triassic Yanchang Formation in Southern Ordos Basin. Journal of Palaeogeography (Chinese Edition), 19(5): 791-806 (in Chinese with English abstract).
      [64] Zavala, C., 2020. Hyperpycnal (over Density) Flows and Deposits. Journal of Palaeogeography, 9(3): 267-287. https://doi.org/10.1186/s42501-020-00065-x
      [65] Zavala, C., Arcuri, M., 2016. Intrabasinal and Extrabasinal Turbidites: Origin and Distinctive Characteristics. Sedimentary Geology, 337: 36-54. https://doi.org/10.1016/j.sedgeo.2016.03.008
      [66] Zavala, C., Freije, R. H., 2001. On the Understanding of Aeolian Sequence Stratigraphy: An Example from Miocene-Pliocene Deposits in Patagonia, Argentina. Rivista Italiana Di Paleontologia e Stratigrafia, 107(2): 251-264. https://doi.org/10.54103/2039-4942/16129
      [67] Zeng, J. L., Zhang, T. S., Yang, W., et al., 2022. Carnian Pluvial Episode: Advances in Climate-Environment Change and Marine Ecological Effects. Acta Geologica Sinica, 96(3): 729-743 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.03.001
      [68] Zhang, C. L., Gao, A. L., Liu, Z., et al., 2011. Study of Character on Sedimentary Water and Palaeoclimate for Chang7 Oil Layer in Ordos Basin. Natural Gas Geoscience, 22(4): 582-587 (in Chinese with English abstract).
      [69] Zhang, C. M., Zhu, R., Guo, X. G., et al., 2020. Arid Fluvial Fandelta-Fluvial Fan Transition: Implications of Huangyangquan Fan Area. Earth Science, 45(5): 1791-1806 (in Chinese with English abstract).
      [70] Zhang, K., Liu, R., Liu, Z., et al., 2021. Geochemical Characteristics and Geological Significance of Humid Climate Events in the Middle-Late Triassic (Ladinian-Carnian) of the Ordos Basin, Central China. Marine and Petroleum Geology, 131: 105179. https://doi.org/10.1016/j.marpetgeo.2021.105179
      [71] Zhang, L., 2017. Paleoceanographic Characteristics of Key Environmental and Climatic Events during the Triassic in the Paleo-Tethys and Panthalassic Oceans (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [72] Zhao, X. D., Xue, N. H., Wang, B., et al., 2019. Carnian (Late Triassic) Pluvial Episode: Current Status and Future Challenges. Journal of Stratigraphy, 43(3): 306-314 (in Chinese with English abstract).
      [73] Zou, C. N., Wang, L., Li, Y., et al., 2012. Deep-Lacustrine Transformation of Sandy Debrites into Turbidites, Upper Triassic, Central China. Sedimentary Geology, 265-266: 143-155. https://doi.org/10.1016/j.sedgeo.2012.04.004
      [74] Zou, C. N., Zhao, W. Z., Zhang, X. Y., et al., 2008. Formation and Distribution of Shallow-Water Deltas and Central-Basin Sandbodies in Large Open Depression Lake Basins. Acta Geologica Sinica, 82(6): 813-825 (in Chinese with English abstract).
      [75] 邓秀芹, 付金华, 姚泾利, 等, 2011. 鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破. 古地理学报, 13(4): 443-455. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201104011.htm
      [76] 邓秀芹, 李文厚, 刘新社, 等, 2009. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论. 地质学报, 83(8): 1089-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200908007.htm
      [77] 付金华, 郭正权, 邓秀芹, 2005. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义. 古地理学报, 7(1): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200501004.htm
      [78] 付金华, 李士祥, 牛小兵, 等, 2020. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
      [79] 付金华, 李士祥, 徐黎明, 等, 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806003.htm
      [80] 惠潇, 侯云超, 喻建, 等, 2022. 大型陆相坳陷湖盆深湖区前积型地震地层特征及砂体分布规律——以鄂尔多斯盆地陇东地区延长组中段为例. 沉积学报, 40(3): 787-800. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202203017.htm
      [81] 吉利明, 王少飞, 徐金鲤, 2006a. 陇东地区延长组疑源类组合特征及其古环境意义. 地球科学, 31(6): 798-806. http://www.earth-science.net/article/id/1642
      [82] 吉利明, 吴涛, 李林涛, 2006b. 陇东三叠系延长组主要油源岩发育时期的古气候特征. 沉积学报, 24(3): 426-431. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200603015.htm
      [83] 吉利明, 祝幼华, 2013. 鄂尔多斯盆地西南部甘肃西峰地区延长组孢粉组合及古气候研究. 微体古生物学报, 30(4): 367-378. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201304004.htm
      [84] 金鑫, 时志强, 王艳艳, 等, 2015. 晚三叠世中卡尼期极端气候事件: 研究进展及存在问题. 沉积学报, 33(1): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501011.htm
      [85] 李嘉光, 2018. 干旱湖盆曲流河末端细粒沉积体系及沉积模式. 地球科学, 43(S1): 264-276. doi: 10.3799/dqkx.2018.525
      [86] 李树同, 王多云, 王彬, 等, 2008. 坳陷型湖盆缓坡边缘沉积坡折带的识别——以鄂尔多斯盆地三叠纪延长期沉积坡折带为例. 天然气地球科学, 19(1): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801020.htm
      [87] 李士祥, 牛小兵, 柳广弟, 等, 2020. 鄂尔多斯盆地延长组长7段页岩油形成富集机理. 石油与天然气地质, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm
      [88] 李相博, 付金华, 陈启林, 等, 2011. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用. 地球科学进展, 26(3): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201103009.htm
      [89] 李相博, 刘化清, 邓秀芹, 等, 2021a. 干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂"成因新解. 沉积学报, 39(5): 1208-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202105013.htm
      [90] 李相博, 刘化清, 黄军平, 等, 2021b. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布——以鄂尔多斯盆地延长组为例. 地质学报, 1-17. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKW202108001187.htm
      [91] 刘化清, 李相博, 陈启林, 等, 2013. 鄂尔多斯盆地延长组若干石油地质问题分析. 北京: 科学出版社.
      [92] 刘化清, 李相博, 完颜容, 等, 2011. 鄂尔多斯盆地长8油层组古地理环境与沉积特征. 沉积学报, 29(6): 1086-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106009.htm
      [93] 刘自亮, 沈芳, 朱筱敏, 等, 2015. 浅水三角洲研究进展与陆相湖盆实例分析. 石油与天然气地质, 36(4): 596-604. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504010.htm
      [94] 吕奇奇, 罗顺社, 付金华, 等, 2017. 湖泊深水重力流沉积露头精细解剖——以鄂尔多斯盆地瑶曲剖面长7油层组为例. 地质学报, 91(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201703009.htm
      [95] 潘松圻, 邹才能, 李勇, 等, 2021. 重大生物事件与化石能源形成演化——兼论地球系统框架下能源学发展. 石油勘探与开发, 48(3): 498-509. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103007.htm
      [96] 潘树新, 卫平生, 王天奇, 等, 2012. 大型坳陷湖盆"洪水—河漫湖"沉积——以干旱背景下的松南泉四段为例. 地质论评, 58(1): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201005.htm
      [97] 邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001001.htm
      [98] 时志强, 钱利军, 曾德勇, 等, 2010a. 晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录. 地质论评, 56(3): 321-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201003003.htm
      [99] 时志强, 张华, 曾德勇, 等, 2010b. 龙门山前缘上三叠统卡尼阶特征及其古环境、古气候意义. 成都理工大学学报(自然科学版), 37(4): 424-431. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201004011.htm
      [100] 童金南, 楚道亮, 梁蕾, 等, 2019. 中国三叠纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 194-226. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901010.htm
      [101] 王德坪, 1991. 湖相内成碎屑流的沉积及形成机理. 地质学报, 65(4): 299-316, 387. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199104000.htm
      [102] 武富礼, 李文厚, 李玉宏, 等, 2004. 鄂尔多斯盆地上三叠统延长组三角洲沉积及演化. 古地理学报, 6(3): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200403005.htm
      [103] 杨华, 邓秀芹, 2013. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响. 石油勘探与开发, 40(5): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201305002.htm
      [104] 杨俊杰, 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社.
      [105] 杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望. 地球科学, 47(11): 3944-3959. doi: 10.3799/dqkx.2022.192
      [106] 杨仁超, 金之钧, 孙冬胜, 等, 2015. 鄂尔多斯晚三叠世湖盆异重流沉积新发现. 沉积学报, 33(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501002.htm
      [107] 杨仁超, 尹伟, 樊爱萍, 等, 2017. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 19(5): 791-806. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201705005.htm
      [108] 曾建理, 张廷山, 杨巍, 等, 2022. 卡尼期湿润幕: 气候—环境变化与海洋生态效应研究新进展. 地质学报, 96(3): 729-743. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202203001.htm
      [109] 张才利, 高阿龙, 刘哲, 等, 2011. 鄂尔多斯盆地长7油层组沉积水体及古气候特征研究. 天然气地球科学, 22(4): 582-587. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201104004.htm
      [110] 张昌民, 朱锐, 郭旭光, 等, 2020. 干旱地区河流扇三角洲—河流扇演替模式: 来自黄羊泉扇的启示. 地球科学, 45(5): 1791-1806. doi: 10.3799/dqkx.2019.165
      [111] 张磊, 2017. 古特提斯—泛大洋地区三叠纪重要环境气候事件的古海洋学研究(博士学位论文). 武汉: 中国地质大学.
      [112] 赵向东, 薛乃华, 王博, 等, 2019. 三叠纪卡尼期湿润幕事件研究进展. 地层学杂志, 43(3): 306-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201903007.htm
      [113] 邹才能, 赵文智, 张兴阳, 等, 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200806012.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  124
    • HTML全文浏览量:  56
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-08
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回