The Whole Apertures of Deeply Buried Wufeng-Longmaxi Formation Shale and Their Controlling Factors in Luzhou District, Sichuan Basin
-
摘要: 页岩孔隙结构是控制与影响海相页岩储层质量的主要参数之一,对于页岩气资源评估、勘探和开发极其重要. 为阐明泸州地区深层五峰‒龙马溪组页岩孔隙结构,基于氦气膨胀法测孔隙度、矿物组分分析、TOC测试,采用CO2和N2吸附、高压压汞联合表征页岩全孔径,并与氧化‒还原条件、水分、TOC等因素藕合,探讨页岩孔径分布的主控因素.结果表明:页岩中以介孔为主,微孔次之,宏孔较少,平均分别占总孔隙的73%、23%、4%;孔径分布与孔隙体积从五峰组向上先增加后降低;TOC与低孔径孔体积相关性高;水分占据页岩孔隙,大幅降低页岩孔隙体积和表比面积. 因此,页岩孔径分布受沉积条件、TOC、水分共同控制.Abstract: Pore distribution of shale is a key parameter of the shale reservoir, and it is important to estimate shale gas resource reserve and for shale gas exploration and development. To characterize the pore apertures of deeply buried Wufeng-Longmaxi shale in the Luzhou district, carbon dioxide and nitrogen adsorption, high pressure mercury injection and helium expansion porosity were used, combined with the oxidation-reduction condition during the deposition, moisture and TOC. The data show that mesopores were main pore types, accounting for 73% of the total pore volume on average, followed by micropores of 23%, and macropores of 4%. Pore volume changed regularly with the deposited oxidation-reduction environment, and the TOC contents dominantly controlled the pore distributions and pore volumes, especially obvious for pores of less than 10 nm in diameter. Moisture could occupy some pores, and reduce the pore surface area and pore volume, with decrease amounting to 30%. Therefore, pore distributions were jointly controlled by oxidation-reduction condition, TOC and moisture.
-
Key words:
- Wufeng- /
- Longmaxi Formation /
- deeply burial shale gas /
- pore aperture /
- Sichuan Basin /
- petroleum geology
-
表 1 样品地化参数与矿物组分
Table 1. Geochemical parameters and mineral composition of samples
序号 样品编号 深度(m) 小层 TOC(%) 孔隙度
(%)X-衍射矿物组分(%) 粘土 石英 钾长石 斜长石 方解石 白云石 黄铁矿 1 Y101H2-7-16 4 113.29 ④ 3.01 3.64 49.5 36.6 / 4.9 2.6 3.2 3.2 2 Y101H4-4-30 4 134.14 ④ 2.71 3.29 35.1 43.8 1.0 6.5 6.4 5.4 1.7 3 Y101H4-4-44 4 142.81 ③ 5.04 5.54 19.3 68.1 / 3.2 2.7 4.5 2.1 4 Y101H2-7-29 4 142.87 ③ 4.44 3.69 36.9 49.4 / 6.6 2.6 2.4 2.1 5 Y101H4-4-52 4 146.73 ② 5.78 5.71 14.2 60.4 / 2.7 8.6 12.0 2.2 6 Y101H4-4-56 4 148.45 ② 4.94 6.02 11.0 61.5 / 2.1 7.8 16.4 1.2 7 Z206-26 4 267.88 ① 4.54 3.53 14.2 76.0 / 2.2 2.4 3.8 1.4 8 L205-24 4 031.77 ① 4.07 / 12.5 60.3 / 2.4 10.3 12.7 1.8 9 Y101H4-4-68 4 153.19 O3w 3.95 3.32 31.1 60.0 / 3.8 1.0 4.1 0.0 10 Y101H4-4-76 4 156.94 O3w 0.50 0.83 44.3 35.7 / 4.4 9.9 5.7 0.0 11 Y101H4-4-37 4 138.72 ③ 4.23 / 27.5 60.5 / 3.7 2.1 4.4 1.9 注:L205-4和Y101H4-4-37样品没有成功钻取圆柱样,因此没有孔隙度和高压压汞实验数据. 表 2 页岩样品不同孔径孔体积及其占总孔体积比例
Table 2. Pore volumes of shale samples with different pore sizes and their proportion in total pore volumes
表 3 水平衡实验结果
Table 3. Experimental result of water balance
样品编号 平衡
条件吸水率 比表面积 孔体积 比表面减少百分比(%) 孔隙度减少百分比(%) (%) (m2/g) (mm3/g) Y101H4-4-37 干燥 0.00 15.95 26.84 11% 0.65 13.16 21.90 17 18 33% 0.90 13.32 21.85 16 19 57% 1.19 12.26 20.43 23 24 75% 1.30 12.01 20.51 25 24 98% 2.33 11.16 18.97 30 29 -
[1] Bernard, S., Horsfield, B., Schulz, H. M., et al., 2012a. Geochemical Evolution of Organic⁃Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany). Marine and Petroleum Geology, 31(1): 70-89. https://doi.org/10.1016/j.marpetgeo.2011.05.010 [2] Bernard, S., Wirth, R., Schreiber, A., et al., 2012b. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3-11. https://doi.org/10.1016/j.coal.2012.04.010 [3] Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution⁃Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745-1770. https://doi.org/10.1306/04061514181 [4] Cui, J. Q., 2019. Research on Effect of Clay Minerals on Pore Structure and Water Absorption Characteristics of Mudstone (Dissertation). Taiyuan University of Technology, Taiyuan (in Chinese with English abstract). [5] Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012a. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004 [6] Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012b. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer⁃Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188 [7] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091 [8] He, X., Li, W. G., Dang, L. R., et al., 2021. Key Technological Challenges and Research Directions of Deep Shale Gas Development. Natural Gas Industry, 41(1): 118-124 (in Chinese with English abstract). [9] He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng⁃Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract). [10] Houben, M. E., Barnhoorn, A., Wasch, L., et al., 2016. Microstructures of Early Jurassic (Toarcian) Shales of Northern Europe. International Journal of Coal Geology, 165: 76-89. https://doi.org/10.1016/j.coal.2016.08.003 [11] Hu, D. F., Wei, Z. H., Li, Y. P., et al., 2022. Deep Shale Gas Exploration in Complex Structure Belt of the Southeastern Sichuan Basin: Progress and Breakthrough. Natural Gas Industry, 42(8): 35-44 (in Chinese with English abstract). [12] Hu, H. Y., Hao, F., Guo, X. S., et al., 2018. Investigation of Methane Sorption of Overmature Wufeng⁃Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin, China. Marine and Petroleum Geology, 91: 251-261. https://doi.org/10.1016/j.marpetgeo.2018.01.008 [13] Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter⁃Hosted Pore System in the Wufeng⁃Longmaxi (O3w⁃S1l) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173: 40-50. https://doi.org/10.1016/j.coal.2017.02.004 [14] Hu, H. Y., Zhang, T. W., Wiggins⁃Camacho, J. D., et al., 2015. Experimental Investigation of Changes in Methane Adsorption of Bitumen⁃Free Woodford Shale with Thermal Maturation Induced by Hydrous Pyrolysis. Marine and Petroleum Geology, 59: 114-128. https://doi.org/10.1016/j.marpetgeo.2014.07.02 [15] Jiang, Z. X., Tang, X. L., Li, Z., et al., 2016. The Whole⁃Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin. Earth Science Frontiers, 23(2): 126-134 (in Chinese with English abstract). [16] Klaver, J., Desbois, G., Littke, R., et al., 2015. BIB⁃SEM Characterization of Pore Space Morphology and Distribution in Postmature to Overmature Samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59: 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020 [17] Li, T. F., Tian, H., Chen, J., et al., 2015. The Application of Low Pressure Gas Adsorption to the Characterization of Pore Size Distribution for Shales: An Example from Southeastern Chongqing Area. Natural Gas Geoscience, 26(9): 1719-1728 (in Chinese with English abstract). [18] Li, Y. D., Yang, C., Feng, S., et al., 2017. The Method for Studying Shale Pore Size Distribution by Using Nuclear Magnetic Resonance. Geological Review, 63(S1): 119-120 (in Chinese with English abstract). [19] Liu, S. G., Jiao, K., Zhang, J. C., et al., 2021. Research Progress on the Pore Characteristics of Deep Shale Gas Reservoirs: An Example from the Lower Paleozoic Marine Shale in the Sichuan Basin. Natural Gas Industry, 41(1): 29-41 (in Chinese with English abstract). [20] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer⁃Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 [21] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix⁃Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 [22] Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter? Organic Geochemistry, 87: 119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010 [23] Lu, Y. Q., Liang, B., Wang, C., et al., 2021. Shale Gas Exploration and Development in the Lower Paleozoic Jiangdong Block of Fuling Gas Field, Sichuan Basin. Oil & Gas Geology, 42(1): 241-250 (in Chinese with English abstract). [24] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194 [25] Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter⁃Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048 [26] Nie, H. K., Li, P., Dang, W., et al., 2022. Enrichment Characteristics and Exploration Directions of Deep Shale Gas of Ordovician⁃Silurian in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 49(4): 648-659 (in Chinese with English abstract). [27] Pang, H. Q., Xiong, L., Wei, L. M., et al., 2019. Analysis on the Main Geological Factors of Deep Shale Gas Enrichment and High Yield in Southern Sichuan: Taking Weirong Shale Gas Field as an Example. Natural Gas Industry, 39(S1): 78-84 (in Chinese). [28] Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151 [29] Shi, Z. S., Wu, J., Dong, D. Z., et al., 2021. Pore Types and Pore Size Distribution of the Typical Wufeng⁃Lungmachi Shale Wells in the Sichuan Basin, China. Earth Science Frontiers, 28(1): 249-260 (in Chinese with English abstract). [30] Slatt, R. M., O'Brien, N. R., 2011. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine⁃Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. https://doi.org/10.1306/03301110145 [31] Wang, G., Li, G. C., Sun, Y. T., et al., 2017. Study on Molecular Simulation of Illite on Hydration Mechanism and Water Absorption Behavior. Coal Science & Technology Magazine, (3): 16-22 (in Chinese with English abstract). [32] Wang, H. Y., Shi, Z. S., Sun, S. S., et al., 2021. Characterization and Genesis of Deep Shale Reservoirs in the First Member of the Silurian Longmaxi Formation in Southern Sichuan Basin and Its Periphery. Oil & Gas Geology, 42(1): 66-75 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-9578.2021.01.019 [33] Wang, M., Guan, Y., Li, C. M., et al., 2018. Qualitative Description and Full⁃Pore⁃Size Quantitative Evaluation of Pores in Lacustrine Shale Reservoir of Shahejie Formation, Jiyang Depression. Oil & Gas Geology, 39(6): 1107-1119 (in Chinese with English abstract). [34] Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng⁃Longmaxi Shales, Southern Sichuan Basin. Earth Science, (2): 518-531 (in Chinese with English abstract). [35] Xie, G. L., 2020. Pore Structure Characteristics of the Lower Paleozoic Marine Shale in the Sichuan Basin and Their Relationships with Burial Depth of Shale (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [36] Xu, Z. H., Zheng, M. J., Liu, Z. H., et al., 2020. Petrophysical Properties of Deep Longmaxi Formation Shales in the Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(6): 1100-1110 (in Chinese with English abstract). [37] Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High⁃Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2019.11.007 [38] Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic⁃Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84(6): 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033 [39] Yang, R., He, S., Hu, D. F., et al., 2015. Characteristics and the Main Controlling Factors of Micro⁃Pore Structure of the Shale in Wufeng Formation⁃Longmaxi Formation in Jiaoshiba Area. Geological Science and Technology Information, 34(5): 105-113 (in Chinese with English abstract). [40] Yang, R., He, S., Yi, J., et al., 2016. Nano⁃Scale Pore Structure and Fractal Dimension of Organic⁃Rich Wufeng⁃Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE⁃SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70(2): 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 [41] Yao, C. P., Fu, H. J., Ma, Y. Z., et al., 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693 (in Chinese with English abstract). [42] Zhang, C. L., Zhang, J., Li, W. G., et al., 2019. Deep Shale Reservoir Characteristics and Exploration Potential of Wufeng⁃Longmaxi Formations in Dazu Area, Western Chongqing. Natural Gas Geoscience, 30(12): 1794-1804 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2019.12.014 [43] Zhang, C. L., Zhao, S. X., Zhang, J., et al., 2021. Analysis and Enlightenment of the Difference of Enrichment Conditions for Deep Shale Gas in Southern Sichuan Basin. Natural Gas Geoscience, 32(2): 248-261 (in Chinese with English abstract). [44] Zhang, L. H., He, X., Li, X. G., et al., 2021. Shale Gas Exploration and Development in the Sichuan Basin: Progress, Challenge and Countermeasures. Natural Gas Industry, 41(8): 143-152 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.013 [45] Zhang, T. W., Ellis, G. S., Ruppel, S. C., et al., 2012. Effect of Organic⁃Matter Type and Thermal Maturity on Methane Adsorption in Shale⁃Gas Systems. Organic Geochemistry, 47: 120-131. https://doi.org/10.1016/j.orggeochem.2012.03.012 [46] Zhou, S. W., Dong, D. Z., Zhang, J. H., et al., 2021. Optimization of Key Parameters for Porosity Measurement of Shale Gas Reservoirs. Natural Gas Industry, 41(5): 20-29 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.05.003 [47] 崔家庆, 2019. 粘土类矿物对泥岩孔隙结构及吸水特性的影响研究(硕士学位论文). 太原: 太原理工大学. [48] 何骁, 李武广, 党录瑞, 等, 2021. 深层页岩气开发关键技术难点与攻关方向. 天然气工业, 41(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101017.htm [49] 何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm [50] 胡东风, 魏志红, 李宇平, 等, 2022. 四川盆地东南部地区复杂构造带深层页岩气勘探进展与突破. 天然气工业, 42(8): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208004.htm [51] 姜振学, 唐相路, 李卓, 等, 2016. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制. 地学前缘, 23(2): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602015.htm [52] 李腾飞, 田辉, 陈吉, 等, 2015. 低压气体吸附法在页岩孔径表征中的应用——以渝东南地区页岩样品为例. 天然气地球科学, 26(9): 1719-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509014.htm [53] 李亚丁, 杨成, 冯顺, 等, 2017. 利用核磁共振研究页岩孔径分布的方法. 地质论评, 63(S1): 119-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1059.htm [54] 刘树根, 焦堃, 张金川, 等, 2021. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例. 天然气工业, 41(1): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101005.htm [55] 陆亚秋, 梁榜, 王超, 等, 2021. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示. 石油与天然气地质, 42(1): 241-250. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101021.htm [56] 聂海宽, 李沛, 党伟, 等, 2022. 四川盆地及周缘奥陶系‒志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm [57] 庞河清, 熊亮, 魏力民, 等, 2019. 川南深层页岩气富集高产主要地质因素分析——以威荣页岩气田为例. 天然气工业, 39(S1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1014.htm [58] 施振生, 武瑾, 董大忠, 等, 2021. 四川盆地五峰组‒龙马溪组重点井含气页岩孔隙类型与孔径分布. 地学前缘, 28(1): 249-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101025.htm [59] 王冠, 李桂臣, 孙元田, 等, 2017. 伊利石水化机理及膨胀特性的分子模拟研究. 煤炭科技, (3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-META201703004.htm [60] 王红岩, 施振生, 孙莎莎, 等, 2021. 四川盆地及周缘志留系龙马溪组一段深层页岩储层特征及其成因. 石油与天然气地质, 42(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101007.htm [61] 王民, 关莹, 李传明, 等, 2018. 济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价. 石油与天然气地质, 39(6): 1107-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806003.htm [62] 吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组‒龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049 [63] 谢国梁, 2020. 四川盆地下古生界海相页岩孔隙结构及其与埋深的相关性(博士学位论文). 成都: 成都理工大学. [64] 徐中华, 郑马嘉, 刘忠华, 等, 2020. 四川盆地南部地区龙马溪组深层页岩岩石物理特征. 石油勘探与开发, 47(6): 1100-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006005.htm [65] 杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm [66] 杨锐, 何生, 胡东风, 等, 2015. 焦石坝地区五峰组‒龙马溪组页岩孔隙结构特征及其主控因素. 地质科技情报, 34(5): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505017.htm [67] 姚程鹏, 伏海蛟, 马英哲, 等, 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021 [68] 张成林, 张鉴, 李武广, 等, 2019. 渝西大足区块五峰组‒龙马溪组深层页岩储层特征与勘探前景. 天然气地球科学, 30(12): 1794-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201912013.htm [69] 张成林, 赵圣贤, 张鉴, 等, 2021. 川南地区深层页岩气富集条件差异分析与启示. 天然气地球科学, 32(2): 248-261. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202102008.htm [70] 张烈辉, 何骁, 李小刚, 等, 2021. 四川盆地页岩气勘探开发进展、挑战及对策. 天然气工业, 41(8): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108019.htm [71] 周尚文, 董大忠, 张介辉, 等, 2021. 页岩气储层孔隙度测试方法关键参数优化. 天然气工业, 41(5): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202105004.htm