Main Controlling Factors of Natural Gas Differential Accumulation Model, in Baodao Sag, Qiongdongnan Basin
-
摘要: 宝岛凹陷的烃源分布和天然气成藏主控因素不清,制约勘探突破. 综合应用构造解析、烃源识别、源-汇体系及成藏综合分析技术,明确宝岛凹陷差异构造演化控制下的主力供烃灶、有利储盖层及差异成藏主控因素. 研究表明,宝岛凹陷早渐新世属“非典型”双断,断阶带崖城组烃源岩厚度大,形成南、北两个洼陷群;北坡洼陷群主要受多条北东向早期断裂控制,形成多个转换断阶带,部分北东向断裂活动性强,导致其下降盘远端翘倾抬升形成低凸起;北东向转换断阶带+低凸起控制了古近系扇三角洲、三角洲砂岩及崖城组陆源海相烃源岩的分布,成为天然气聚集的主要场所. 基于不同构造样式控制下的天然气运聚条件分析,建立了“转换断阶带渐新统近源高效汇聚型”、“凹陷带中新统海底扇有限聚集型”两种成藏模式,明确转换断阶带渐新统三角洲构造-岩性复合圈闭是大气田勘探的突破方向.Abstract: The distribution of source⁃rock and main controlling factors of gas accumulation are vague in baodao sag, which restricts exploration breakthroughs. Comprehensive application of structural analysis、hydrocarbon source identification, source⁃sink system and comprehensive analysis techniques for accumulation, the main hydrocarbon supply kitchen、favorable reservoir⁃seal layer as well as main controlling factors of play under the control of differential structural evolution in baodao sag have been identified. The research shows that baodao sag belongs an "atypical" double fault during early oligocene, Yacheng formation in the fault terrace belts is thick, respectively forming two depression groups in the south and north; the northern depression groups mainly controlled by the early NE trending faults, result in multiple transition fault terrace belts are formed; NE⁃trending structural transition belts and low uplift controls the distribution of paleogene fan delta, delta sandstone as well as terrigenous marine source rock, thus becomes the main place for natural gas accumulation. Based on the analysis of natural gas migration and accumulation conditions under the control of different tectonic styles, two accumulation models are established, namely "oligocene near⁃source high efficiency accumulation type in transition fault terrace belts" and "miocene submarine fan limited accumulation type in depression zone", and sug"oligocene delta & structural⁃lithologic composite trap" on the transform fault terrace belts t are exploration direction of large gas fields.
-
表 1 B2A-1、B2S-1井天然气地化特征表
Table 1. Geochemical characteristic of natural gas, B2A‐1、B2S‐1 well
断阶带 井名 深度(m) 气组 测试层位 样品类型 天然气组分 碳同位素组成(‰) C1(%) C2-5(%) C1/C1-C5 CO2(%) d13C1 d13C2 d13C3 d13C-CO2 B2A B2A-1 4 092.4~4 154.8 Ⅱa 陵三段 DST 66.54 5.84 0.92 27.14 -39.5 -28.4 27.0 -5.0 4 306.0 Ⅲa MDT 57.50 5.26 0.92 37.20 -40.4 -29.1 -25.4 -4.3 4 335.8 34.56 3.15 0.92 61.86 -40.1 —29.6 -25.6 -4.2 B2S B2S-1 4 044.0 A0 三亚二段 MDT 45.52 8.84 0.84 45.58 -42.0 -28.9 -29.3 -5.4 4 500.0 B 6.29 0.77 0.89 92.92 -40.1 -31.1 -28.6 -3.1 4 578.5 C 5.07 0.89 0.85 94.00 -41.7 -32.8 -28.7 -4.0 -
[1] Dai, N., Zhong, N. N., Deng, Y. H., et al., 2015. Genetic Types of Marine Source rock in Meso-Cenozoic Continental Margin Basins. Acta Petrolei Sinica, 36(8): 940-953(in Chinese with English abstract). [2] Gan, J., Zhang, Y. Z., Liang, G., et al., 2018. Study on Accumulation Process and Dynamic Mechanism of Natural Gas in the Deep Water Area of Central Canyon, Qiongdongnan Basin. Acta Geologica Sinica, 92(11): 2359-2362 (in Chinese with English abstract). [3] Gan, J., Zhang, Y. Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2627-2635(in Chinese with English abstract). [4] Guo, M. G., Zhu, J. T., Zeng, X. Y., 2017. Volcano/Magma Diaper Distribution and Analysis of CO2 Injection Risk in Baodao-Changchang Sag of Deepwater Area in Qiongdongnan Basin. Contributions to Geology and Mineral Resource Research, 32(1): 82-91(in Chinese with English abstract). [5] Huang, B. J., Li, X. S., Wang, Z. F., et al., 2012. Source Rock Geochemistry and Gas Potential in the Deep Water Area, Qiongdongnan Basin. China Offshore Oil and Gas, 24(4) : 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2012.04.001 [6] Lei, C., Ren, J. Y., Li, X. S., et al., 2011. Structural Characteristics and Petroleum Exploration Potential in the Deep-Water Area of the Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 38(5): 560-569(in Chinese with English abstract). [7] Li, X. Z., Zhong, Z. H., Dong, W. L., et al., 2006. Paleogene Rift Structure and Its Dynamics of Qiongdongnan Basin, Petroleum Exploration and Development. Acta Petrolei Sinica, 33(6) : 713-721(in Chinese with English abstract). [8] Liao, J. H., Wang, H., Lu, M., 2016. Evolution of Syndepositional Faulting and Its Controlling Effect on Sedimentary Filling in Songnan-Baodao Sag of Qiongdongnan Basin, South China Sea. Journal of China University of Mining & Technology, 45(2): 337-345(in Chinese with English abstract). [9] Shao, L., Li, A., Wu, G. X., et al., 2010. Evolution of Sedimentary Environment and Provenance in Qiongdongnan Basin in the Northern South China Sea. Acta Petrolei Sinica, 31(4): 548-552(in Chinese with English abstract). [10] Stricker, S., Jones, S. J., Sathar, S., et al., 2016. Exceptional Reservoir Quality in HPHT Reservoir Settings: Examples from the Skagerrak Formation of the Heron Cluster, North Sea, UK. Marine and Petroleum Geology, 77: 198-215. doi: 10.1016/j.marpetgeo.2016.02.003 [11] Sun, R., Han, Y. X., Zeng, Q. B., 2019. Sedimentary Characteristics of Yacheng Formation in the Eastern Deep Water Area in Qiongdongnan Basin and Their Control on Marine Source Rocks. Acta Petrolei Sinica, 40(S2): 58-65(in Chinese with English abstract). [12] Tan, J. C., Fan, C. W., Ren, K. Y., et al., 2014. Transfer Zone in the Northern of Qiongdongnan Basin and Its Hydrocarbon Implication. Petroleum Geology and Recovery Efficiency, 21(2) : 62-65(in Chinese with English abstract). [13] Tao, W. X., Liang, J. S., 2000. Formation Mechanism of BD19-2 Structure in Qingdongnan Basin. China Offshore Oil and Gas(Geology), 14(5): 315-319(in Chinese with English abstract). [14] Tong, H. M., Fan, C. W., Tong, C. X., 2015. Characteristics, Types and Genetic Mechanism of Baodao Transfer Zone, Qiongdongnan Basin. Oil & Gas Geology, 36(6) : 897-905(in Chinese with English abstract). [15] Wu, P., Hou, D. J., Gan, J., 2019. Developmental Model of Oligocene Source Rock in the Eastern Deep-Water Area of Qiongdongnan Basin. Acta Sedimentologica Sinica. 37(3): 633-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202120018.htm [16] Xie, Y. H., Tong, C. X., Fan, C. W., 2015. Characteristics and Evolution of Fault System in Qiongdongnan Basin. Geotectonica et Metallogenia, 39(5): 43-55(in Chinese with English abstract). [17] Xu, X. D., Zhang, Y. Z., Xiong, X. F., 2017. Genesis, Accumulation and Distriution of CO2 in the Ying Gehai and Qiongdongnan Basins, Northern South China Sea. Marine Geology Frontier, 33(7): 46-53(in Chinese with English abstract). [18] Zhang, G. C., Qu, H. J., Liu, S. X., et al., 2015. Tectonic Cycle of Marginal Sea Controlled the Hydrocarbon Accumulation in the Deep-Water Area of South China Sea. Acta Petrolei Sinica, 36(5): 533-545(in Chinese with English abstract). [19] Zhang, Y. Z., Gan, J., Xu, X. D., 2019. The Source and Natural Gas Lateral Migration Accumulation Model of Y 8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin. Earth Science. 44(8): 2610-2616(in Chinese with English abstract). [20] Zhang, Y. X., Zhu, X. M., Zhang, G. C., et al., 2013. Sedimentary Characteristics of Oligocene Lingshui Formation in Qiongdongnan Basin, South China Sea. Natural Gas Geoscience, 24(5): 956-964(in Chinese with English abstract). [21] Zhao, H. T., Tong, H. M., 2021. Characteristics and Significance of Transfer Zone in Northern Qiongdongnan Basin, South China Sea. Journal of China University of Petroleum, 45(2): 11-18(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.02.002 [22] Zhou, J., Zhu, J. T., Yang, J. H., 2018. Characteristics of Faults and Their Implication to Gas Geology in Baonan Step-Fault Zone in Deep-Water Area of Qiongdongnan Basin. Natural Gas Geoscience, 29(1): 87-95(in Chinese with English abstract). [23] Zhou, J., Yang, X. B., Yang, J. H., 2019. Structure-Sedimentary Evolution and Gas Accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2713(in Chinese with English abstract). [24] 戴娜, 钟宁宁, 邓运华, 等, 2015. 中生代-新生代大陆边缘盆地海相烃源岩成因类型. 石油学报, 36(8): 940-953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508005.htm [25] 郭明刚, 朱继田, 曾小宇, 等, 2017. 琼东南盆地深水区宝岛-长昌凹陷火山/岩浆底辟分布及CO2充注风险分析. 地质找矿论丛, 32(1): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201701010.htm [26] 甘军, 张迎朝, 梁刚, 等, 2018. 琼东南盆地深水区天然气成藏过程及动力机制研究, 地质学报, 92(11): 2359-2362. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201811011.htm [27] 甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202 [28] 黄保家, 李绪深, 王振峰, 等, 2012. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力. 中国海上油气, 24(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201204002.htm [29] 李绪宣, 钟志洪, 董伟良, 等, 2006. 琼东南盆地古近纪裂陷构造特征及其动力学机制. 石油勘探与开发, 33(6) : 713-721. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200606013.htm [30] 雷超, 任建业, 李绪深, 等, 2011. 琼东南盆地深水区结构构造特征与油气勘探潜力. 石油勘探与开发, 38(5): 560-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105008.htm [31] 廖计华, 王华, 吕明, 等, 2016. 琼东南盆地深水区松南-宝岛凹陷同沉积断裂活动及其对沉积充填的控制. 中国矿业大学学报, 45(2): 337-345. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201602017.htm [32] 邵磊, 李昂, 吴国瑄, 等, 2010. 琼东南盆地沉积环境及物源演变特征. 石油学报, 31(4): 548-552. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004004.htm [33] 孙瑞, 韩银学, 曾清波, 2019. 琼东南盆地深水区东段崖城组沉积特征及对海相烃源岩的控制. 石油学报, 40(S2): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2008.htm [34] 陶维祥, 梁建设, 2000. 琼东南盆地BD19-2构造形成机理初步研究. 中国海上油气(地质), 14(5): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200005003.htm [35] 童亨茂, 范彩伟, 童传新, 2015. 琼东南盆地宝岛变换带的特征、类型及其成因机制. 石油与天然气地质, 36(6) : 897-905. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506006.htm [36] 谭建财, 范彩伟, 任科英, 等, 2014. 琼东南盆地北部构造变换带及其油气地质意义. 油气地质与采收率, 21(2) : 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201402016.htm [37] 吴飘, 侯读杰, 甘军, 等, 2019. 琼东南盆地深水东区渐新统烃源岩发育模式. 沉积学报, 37(3): 633-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903018.htm [38] 谢玉洪, 童传新, 范彩伟, 2015. 琼东南盆地断裂系统特征与演化. 大地构造与成矿学, 39(5): 43-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201505004.htm [39] 徐新德, 张迎朝, 熊小峰, 2017. 南海北部莺-琼盆地CO2成因与成藏特征及其分布规律. 海洋地质前沿, 33(7): 46-53. [40] 张亚雄, 朱筱敏, 张功成, 等, 2013. 中国南海琼东南盆地渐新统陵水组沉积特征. 天然气地球科学, 24(5) : 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305011.htm [41] 张功成, 屈红军, 刘世翔, 等, 2015. 边缘海构造旋回控制南海深水区油气成藏. 石油学报, 36(5): 533-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505002.htm [42] 张迎朝, 甘军, 徐新德, 等, 2019. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式. 地球科学, 44(8): 2609-2618. doi: 10.3799/dqkx.2019.159 [43] 周杰, 朱继田, 杨金海, 2018. 琼东南盆地深水区宝南断阶带断裂特征及天然气地质意义. 天然气地球科学, 29(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201801008.htm [44] 周杰, 杨希冰, 杨金海, 2019. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2713. doi: 10.3799/dqkx.2019.104 [45] 赵海涛, 童亨茂. 2021. 琼东南盆地北部地区变换带构造特征及地质意义. 中国石油大学学报, 45(2): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202102003.htm