Characteristics and Exploration Prospects of Deep-Water Sandstone Reservoir of Chang 73 Sub-Member, Ordos Basin
-
摘要: 鄂尔多斯盆地延长组长73亚段发育大套厚层的富有机质泥页岩夹薄层粉细砂岩,深水环境的砂质岩类受到优质烃源岩的高强度源内充注,局部具有一定规模,是盆地深水勘探的重要目标.基于湖盆中部长73亚段的岩心、测录井、分析测试资料,结合岭页、池页水平井风险勘探实践,对长73亚段深水砂质岩类的沉积储层特征进行分析.结果表明:长73沉积期水体较深,优质烃源岩发育,湖盆西南祁秦造山带地震火山活动频发,物源供给充足,降雨量大、湖平面上升,滑塌成因与洪水成因的重力流沉积在湖盆中部广泛发育;环绕湖盆的一级坡折带控制着深水重力流的发育范围,沉积物入湖后受古地貌与沉积微相的控制,发育滑动—滑塌、砂质碎屑流、混合事件层、浊流、异重流等沉积类型,坡折带的坡脚、古沟道相对富砂,砂质碎屑流、浊流沉积是有利的储层类型;单砂体较薄,平均厚度1 m,孤立或叠置发育,空间上厚度、长度、宽度较小,较厚的块状单砂体和紧密连续叠置的薄层单砂体组合是期待钻遇的储层;高Ro、高TOC的泥页岩是砂质岩类充注油气的物质基础,高剩余压差下,储集性能较优的紧密叠置细砂岩薄储层与优质烃源岩互层的源储配置关系最易出现优质砂岩“甜点”.长73亚段深水砂质沉积勘探潜力较好,需持续攻关薄储层地球物理探测技术及砂泥一体压裂改造工艺.Abstract: Thick organic-rich shale with thin silty sandstones is developed in Chang 73 Sub-member of Yanchang Formation in Ordos Basin. The sandstones in deep water environment are charged high intensity by source rocks and have a certain scale, which is an important target of deep water exploration in the basin. Based on the core, logging and test data of Chang 73 Sub-member, combined with the risk exploration practice of Lingye and Chiye horizontal wells, this paper discusses and analyzes the sedimentary and reservoir characteristics of deep-water sandy rocks in Chang 73 Sub-member. The results show that during the Chang 73 sedimentary period, the water body was deep, organic-rich shale was developed, the Qiqin orogenic belt in the southwest of the basin had frequent seismic and volcanic activities, and the source supply was sufficient, the rainfall was large and the lake level was rising. The gravity flow deposits of slump origin and flood origin were widely developed in the middle of the basin. Slope break belt controlled the development of deep-water gravity flow, the characteristics of deep-water gravity flow were controlled by the ancient landform and sedimentary microfacies, developing sliding-slump, sandy debris flow, hybrid event bed, turbidity current and density flow, such as slope break zone of slope toe, relatively rich ancient channel sand, sandy debris flow and turbidity current deposits are favorable reservoir types. The single sand body is thin, with an average thickness of 1 m, and is isolated or superimposed. In terms of spatial thickness, length and width, the combination of thick block single sand body and tightly continuous superimposed thin single sand body is the reservoir expected to be drilled. Shale with high Ro and high TOC is the material basis for sandy rock. Under high residual pressure difference, high-quality sandy "sweet spot" is most likely to appear in the source-reservoir configuration relationship between tightly stacked thin sandstone reservoir with better reservoir performance and interbedded high-quality source rock. The exploration potential of deep-water sandy rocks in Chang 73 Sub-member is good, so it is necessary to continuously explore the geophysical exploration technology of thin reservoir and the matched fracturing technology.
-
图 2 长73亚段深水砂质沉积岩心特征
a.浊流沉积,砂泥互层特征,Z61井,长73亚段,2 075.00 m;b.滑动‒滑塌沉积,泥岩内的砂质条带发生揉皱变形,Ch96井,长73亚段,2 073.34 m;c.砂质碎屑流沉积,整体块状,侧向尖灭,细砂岩内部发育泥岩撕裂屑,M138井,长73亚段,2 338.80 m;d.异重流沉积,发育逆‒正粒序层理粉砂岩,Z155井,长73亚段,1 605.05 m;e.层理断面见白云母及暗色矿物,Z40井,长73亚段,1 443.52 m;f.滑动‒滑塌沉积,细砂岩内部见阶梯断层构造,G347井,长73亚段,2 452.92 m;g.浊流沉积,泥质粉砂岩底部发育泥岩条带,Y1井,长73亚段,2 031.37 m;h.混合事件层沉积,细砂岩与粉砂质泥岩突变接触,Ch96井,长73亚段,2 046.57 m
Fig. 2. The core characteristics of sandstone reservoir of Chang 73 Sub-member
图 4 长73亚段砂质储层沉积成藏模式
a.盆地北东向剖面长73亚段沉积模式;b.盆地北东向剖面长73亚段成藏组合模式;c.盆地东南向剖面长73亚段沉积模式;d.盆地东南向剖面长73亚段成藏组合模式(两条剖面位置均在图 1中标出)
Fig. 4. The sedimentary and accumulation assemblage models of sandstone reservoir of Chang 73 Sub-member
图 5 长73亚段砂质储层岩石学特征
a.细砂岩,以石英长石为主,见云母、伊利石等,微孔发育,Z40井,长73亚段,1 438.00 m;b.泥质粉砂岩,致密,分选较差,Z40井,长73亚段,1 445.00 m;c.粒序层理,富有机质泥岩与泥质粉砂岩互层,Z70井,长73亚段,1 648.70 m;d.方解石胶结致密,B522井,长73亚段,1 940.30 m;e.碎屑矿物间黏土矿物充填胶结,C37井,长73亚段,1 906.60 m;f.碎屑蚀变丝缕状伊利石,Z70井,长73亚段,1 664.50 m
Fig. 5. The petrology characteristics of sandstone reservoir of Chang 73 Sub-member
图 6 长73亚段砂质储层孔隙特征
a.细砂岩,粒间孔、长石溶孔发育,L231井,长73亚段,2 122.32 m;b.细砂岩,致密,粒间孔、溶孔发育,L231井,长73亚段,2 164.30 m;c.细砂岩,白云石溶蚀产生粒内溶孔,B522井,长73亚段,1 940.30 m;d.细砂岩,发育粒间孔,B522井,长73亚段,1 946.10 m;e.粉砂岩,粒间孔充填自生石英,N36井,长73亚段,1 667.40 m;f.粉砂岩,长石溶孔,N36井,长73亚段,1 667.40 m;g.粉砂岩,长石粒内溶蚀,Z70井,长73亚段,1 654.50 m;h.粉砂岩,片状云母弯曲变形,发育残余层间缝隙,Z70井,长73亚段,1 648.70 m;i.粉砂岩,高岭石晶间微孔,N36井,长73亚段,1 667.40 m
Fig. 6. The pore characteristics of sandstone reservoir of Chang 73 Sub-member
图 8 长73亚段砂质储层含油特征
a.细砂岩均匀含油,Y1井,长73亚段,2 037.50 m;b.粉砂岩层理面含油,N189井,长73亚段,1 740.85 m;c.裂缝见油,Y1井,长73亚段,2 008.39 m;d.细砂岩,矿物发育裂缝,ChY1井,长73亚段,2 027.90 m;e.粉砂岩,发育溶蚀孔,ChY1井,长73亚段,2 027.52 m;f.细砂岩,粒间孔较发育,ChY1井,长73亚段,2 028.91 m;g.图d的荧光薄片,颗粒裂缝中蓝色油质沥青,ChY1井,长73亚段,2 027.90 m;h.图e的荧光薄片,颗粒内部蓝色油质沥青,ChY1井,长73亚段,2 027.52 m;i.图f的荧光薄片,粒间蓝色油质沥青,ChY1井,长73亚段,2 028.91 m
Fig. 8. The oil-bearing characteristics of sandstone reservoir of Chang 73 Sub-member
表 1 长73亚段深水砂质沉积主要类型
Table 1. The main types of sandy deposits of Chang 73 Sub-member
沉积微相类型 主要岩相 主要岩性 典型沉积构造 滑动‒滑塌沉积 块状层理细砂岩相块状层理粉砂岩相变形构造粉砂岩相泥质粉砂岩相 细砂岩泥质粉砂岩 变形构造 砂质碎屑流沉积 块状层理细砂岩相块状层理粉砂岩相 细砂岩 块状层理漂浮泥岩撕裂屑 混合事件层沉积 块状层理粉砂岩相泥质粉砂岩相粉砂质泥岩相 粉细砂岩 双层结构 浊流沉积 韵律层理粉砂岩相沙纹层理粉砂岩相黑色页岩相
块状泥岩相粉砂岩泥质粉砂岩泥页岩 不完整的鲍马序列冲刷面槽模 异重流沉积 逆‒正粒序粉砂岩相沙纹层理粉砂岩相 细砂岩粉砂岩 逆‒正粒序组合 -
[1] Cao, Y. C., Wang, Y. Z., Gluyas, J. G., et al., 2018. Depositional Model for Lacustrine Nearshore Subaqueous Fans in a Rift Basin: The Eocene Shahejie Formation, Dongying Sag, Bohai Bay Basin, China. Sedimentology, 65(6): 2117-2148. https://doi.org/10.1111/sed.12459 [2] Cartigny, M. J. B., Eggenhuisen, J. T., Hansen, E. W. M., et al., 2013. Concentration-Dependent Flow Stratification in Experimental High-Density Turbidity Currents and Their Relevance to Turbidite Facies Models. Journal of Sedimentary Research, 83(12): 1046-1064. https://doi.org/10.2110/jsr.2013.71 [3] Felix, M., Peakall, J., 2006. Transformation of Debris Flows into Turbidity Currents: Mechanisms Inferred from Laboratory Experiments. Sedimentology, 53(1): 107-123. doi: 10.1111/j.1365-3091.2005.00757.x [4] Fongngern, R., Olariu, C., Steel, R., et al., 2018. Subsurface and Outcrop Characteristics of Fluvial‐Dominated Deep‐Lacustrine Clinoforms. Sedimentology, 65(5): 1447-1481. doi: 10.1111/sed.12430 [5] Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 870-883 (in Chinese with English abstract). [6] Fu, J. H., Li, S. X., Xu, L. M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 936-946 (in Chinese with English abstract). [7] Fu, X., Du, X. F., Guan, D. Y., et al., 2020. Depositional System, Plane Distribution and Exploration Significance of Fan Delta Mixed Siliciclastic-Carbonate Sediments in Lacustrine Basin: An Example of Member 1—2 of Shahejie Formation in Offshore Bohai Bay, Eastern China. Earth Science, 45(10): 3706-3720 (in Chinese with English abstract). [8] Jin, J. H., Cao, Y. C., Wang, J., et al., 2019. Deep-Water Sandy Debris Flow Deposits: Concepts, Sedimentary Processes and Characteristics. Geological Review, 65(3): 689-702 (in Chinese with English abstract). [9] Li, S. X., Niu, X. B., Liu, G. D., et al., 2020. Formation and Accumulation Mechanism of Shale Oil in the 7th Member of Yanchang Formation, Ordos Basin. Oil & Gas Geology, 41(4): 719-729 (in Chinese with English abstract). [10] Li, S. X., Zhou, X. P., Guo, Q. H., et al., 2021. Research on Evaluation Method of Movable Hydrocarbon Resources of Shale Oil in the Chang 73 Sub-Member in the Ordos Basin. Natural Gas Geoscience, 32(12): 1771-1784 (in Chinese with English abstract). [11] Li, X., Cheng, X. Z., Zhou, C. C., et al., 2015. Technology and Application of Well Logging Evaluation of Shale Oil and Gas Reservoirs. Natural Gas Geoscience, 26(5): 904-914 (in Chinese with English abstract). [12] Li, Z. M., Tao, G. L., Li, M. W., et al., 2019. Discussion on Prospecting Potential of Shale Oil in the 3rd Sub-Member of the Triassic Chang 7 Member in Binchang Block, Southwestern Ordos Basin. Oil & Gas Geology, 40(3): 558-570 (in Chinese with English abstract). [13] Liu, X. Y., Li, S. X., Guo, Q. H., et al., 2021. Characteristics of Rock Types and Exploration Significance of the Shale Strata in the Chang 73 Sub-Member of Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 32(8): 1177-1189 (in Chinese with English abstract). [14] Mulder, T., Alexander, J., 2001. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology, 48(2): 269-299. doi: 10.1046/j.1365-3091.2001.00360.x [15] Pei, Y., He, Y. B., Li, H., et al., 2015. Discuss about Relationship between High-Density Turbidity Current and Sandy Debris Flow. Geological Review, 61(6): 1281-1292 (in Chinese with English abstract). [16] Qiu, X. W., Liu, C. Y., Mao, G. Z., et al., 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150 (in Chinese with English abstract). [17] Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English abstract). [18] Shanmugam, G., 2013. New Perspectives on Deep-Water Sandstones: Implications. Petroleum Exploration and Development, 40(3): 316-324. https://doi.org/10.1016/S1876-3804(13)60038-5 [19] Song, M. S., Xiang, K., Zhang, Y., et al., 2017. Research Progresses on Muddy Gravity Flow Deposits and Their Significances on Shale Oil and Gas: A Case Study from the 3rd Oil-Member of the Paleogene Shahejie Formation in the Dongying Sag. Acta Sedimentologica Sinica, 35(4): 740-751 (in Chinese with English abstract). [20] Talling, P. J., 2013. Hybrid Submarine Flows Comprising Turbidity Current and Cohesive Debris Flow: Deposits, Theoretical and Experimental Analyses, and Generalized Models. Geosphere, 9(3): 460-488. doi: 10.1130/GES00793.1 [21] Tan, M. X., Zhu, X. M., Geng, M. Y., et al., 2016. The Flow Transforming Deposits of Sedimentary Gravity Flow-Hybrid Event Bed. Acta Sedimentologica Sinica, 34(6): 1108-1119 (in Chinese with English abstract). [22] Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract). [23] Wu, S. T., Li, S. X., Yuan, X. J., et al., 2021. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32(4): 850-862. https://doi.org/10.1007/s12583-020-1050-2 [24] Wu, S. T., Zou, C. N., Zhu, R. K., et al., 2015. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Science, 40(11): 1810-1823 (in Chinese with English abstract). [25] Xu, L. M., Guo, Q. H., Liu, Y. B., et al., 2021. Characteristics and Controlling Factors of Deep-Water Gravity Flow Sandstone Reservoir in the Chang 73 Sub-Member in Ordos Basin: Case Study of Well CY1 in Huachi Area. Natural Gas Geoscience, 32(12): 1797-1809 (in Chinese with English abstract). [26] Zhang, J. Q., Li, S. X., Li, H. W., et al., 2021. Gravity Flow Deposits in the Distal Lacustrine Basin of the 7th Reservoir Group of Yanchang Formation and Deepwater Oil and Gas Exploration in Ordos Basin: A Case Study of Chang 73 Sublayer of Chengye Horizontal Well Region. Acta Petrolei Sinica, 42(5): 570-587 (in Chinese with English abstract). [27] Zhang, Y. A., Li, S. X., Tian, J. C., et al., 2021. Sedimentation Types of Deep-Water Gravity Flow, Chang 7 Member, Upper Triassic Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 39(2): 297-309 (in Chinese with English abstract). [28] Zhou, X. P., He, Q., Liu, J. Y., et al., 2021. Features and Origin of Deep-Water Debris Flow Deposits in the Triassic Chang 7 Member, Ordos Basin. Oil & Gas Geology, 42(5): 1063-1077 (in Chinese with English abstract). [29] Zhu, R. K., Jin, X., Wang, X. Q., et al., 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5): 1773-1782 (in Chinese with English abstract). [30] Zou, C. N., Yang, Z., Zhang, G. S., et al., 2019. Establishment and Practice of Unconventional Oil and Gas Geology. Acta Geologica Sinica, 93(1): 12-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.13759 [31] Zou, C. N., Zhao, Q., Wang, H. Y., et al., 2021. Theory and Technology of Unconventional Oil and Gas Exploration and Development Helps China Increase Oil and Gas Reserves and Production. Petroleum Science and Technology Forum, 40(3): 72-79 (in Chinese with English abstract). [32] 付金华, 李士祥, 牛小兵, 等, 2020. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm [33] 付金华, 李士祥, 徐黎明, 等, 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806003.htm [34] 付鑫, 杜晓峰, 官大勇, 等, 2020. 渤海海域沙河街组一二段扇三角洲混合沉积特征、沉积模式及勘探意义. 地球科学, 45(10): 3706-3720. doi: 10.3799/dqkx.2020.173 [35] 金杰华, 操应长, 王健, 等, 2019. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征. 地质论评, 65(3): 689-702. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201903016.htm [36] 李士祥, 牛小兵, 柳广弟, 等, 2020. 鄂尔多斯盆地延长组长7段页岩油形成富集机理. 石油与天然气地质, 41(4): 719-729. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004007.htm [37] 李士祥, 周新平, 郭芪恒, 等, 2021. 鄂尔多斯盆地长73亚段页岩油可动烃资源量评价方法. 天然气地球科学, 32(12): 1771-1784. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112003.htm [38] 李霞, 程相志, 周灿灿, 等, 2015. 页岩油气储层测井评价技术及应用. 天然气地球科学, 26(5): 904-914. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201505014.htm [39] 李志明, 陶国亮, 黎茂稳, 等, 2019. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨. 石油与天然气地质, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm [40] 刘显阳, 李士祥, 郭芪恒, 等, 2021. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义. 天然气地球科学, 32(8): 1177-1189. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202108008.htm [41] 裴羽, 何幼斌, 李华, 等, 2015. 高密度浊流和砂质碎屑流关系的探讨. 地质论评, 61(6): 1281-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201506010.htm [42] 邱欣卫, 刘池洋, 毛光周, 等, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015 [43] 邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001001.htm [44] 宋明水, 向奎, 张宇, 等, 2017. 泥质重力流沉积研究进展及其页岩油气地质意义: 以东营凹陷古近系沙河街组三段为例. 沉积学报, 35(4): 740-751. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704008.htm [45] 谈明轩, 朱筱敏, 耿名扬, 等, 2016. 沉积物重力流流体转化沉积—混合事件层. 沉积学报, 34(6): 1108-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606009.htm [46] 田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062 [47] 吴松涛, 邹才能, 朱如凯, 等, 2015. 鄂尔多斯盆地上三叠统长7段泥页岩储集性能. 地球科学, 40(11): 1810-1823. doi: 10.3799/dqkx.2015.162 [48] 徐黎明, 郭芪恒, 刘元博, 等, 2021. 鄂尔多斯盆地长73亚段深水重力流砂岩储层特征及控制因素: 以华池地区CY1井为例. 天然气地球科学, 32(12): 1797-1809. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112005.htm [49] 张家强, 李士祥, 李宏伟, 等, 2021. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探: 以城页水平井区长73小层为例. 石油学报, 42(5): 570-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105002.htm [50] 张倚安, 李士祥, 田景春, 等, 2021. 鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型. 沉积学报, 39(2): 297-309. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102003.htm [51] 周新平, 何青, 刘江艳, 等, 2021. 鄂尔多斯盆地三叠系延长组7段深水碎屑流沉积特征及成因. 石油与天然气地质, 42(5): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202105006.htm [52] 朱如凯, 金旭, 王晓琦, 等, 2018. 复杂储层多尺度数字岩石评价. 地球科学, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429 [53] 邹才能, 杨智, 张国生, 等, 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901003.htm [54] 邹才能, 赵群, 王红岩, 等, 2021. 非常规油气勘探开发理论技术助力我国油气增储上产. 石油科技论坛, 40(3): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT202103008.htm