Cause Analyses of "Failure" for First Round Shale Oil Exploration Wells in Jiyang Depression
-
摘要: 济阳坳陷沙三下和沙四上亚段富有机质泥页岩层系页岩油形成条件优越,但第一轮页岩油勘探开发探索阶段实施的4口评价井和4口系统取心井在优选的“有利层段”进行试油试采均未获得规模突破.为了揭示济阳坳陷第一轮页岩油探井“失利”的原因,系统剖析了4口系统取心井取心段的含油性、储集性、可压性与页岩油可动性特征以及针对4口系统取心优选的“有利层段”和4口评价井实施的工程工艺技术情况.结果表明,NY1、LY1取心段含油性、储集性、可压性与页岩油可动性均好,优选的“有利层段”合理,而FY1和L69井取心段含油性、储集性和页岩油可动性较NY1、LY1取心段明显偏低并且优选的“有利层段”不正确.4口评价井“失利”主要原因是水平井段富有机质泥页岩成熟度低和压裂工艺适应性差;系统取心井NY1和LY1井优选“有利层段”“失利”主要与仅采用了常规油气试油试采工具进行联测有关,FY1和L69井优选“有利层”“失利”则既与“有利层”优选失误有关,也与仅采用了常规油气试油试采工具进行联测有关.Abstract: The formation conditions of shale oil for the Lower Es3 (Third Member of Shahejie Formation) and Upper Es4 (Fourth Member of Shahejie Formation) Sub-member in Jiyang Depression, Bohai Bay Basin, are excellent, but none of the production test results of four evaluation wells and four system coring wells at preferred favorable layers reach the level of scale breakthrough. In order to reveal the causes of "failure" for the first round shale oil exploration wells in Jiyang Depression, the characteristics of oiliness, reservoir property, compressibility and mobility of shale oil for coring section of four system coring wells and the implementation of engineering technologies to preferred favorable layers of four system coring wells and four evaluation wells, are systematically analyzed. The results of this study show that the oiliness, reservoir property, compressibility and mobility of shale oil for coring section from wells NY1 and LY1 are all good and preferred favorable layers are reasonable, but the oiliness, reservoir property, and mobility of shale oil for coring section from wells FY1 and L69 are obviously lower than results of wells NY1 and LY1 and preferred favorable layers are incorrect. The main causes of "failure" for four evaluation wells are the maturity of shales rich in organic matter of horizontal intervals are low and the fracturing engineering technologies are poorly adaptable. The cause of "failure" for NY1 and LY1 of system coring wells at preferred favorable layer is mainly related to only conventional oil and gas test and production tools are used for joint measurement. The causes of "failure" for FY1 and L69 of system coring wells for preferred favorable layer are not only the preferred favorable layers are wrong, but also only conventional oil and gas test and production tools are used for joint measurement.
-
图 5 济阳坳陷页岩油勘探系统取心井沙三下‒沙四上亚段主要孔隙类型
a.L69井3 066.00 m,沙三下亚段,方解石晶间孔、晶间溶孔、粒内溶孔;b.FY1井3 053.92 m,沙三下亚段,草莓状黄铁晶粒孔,孔内发育油膜;c.FY1井3 053.92 m,沙三下亚段,长石溶蚀孔(孔壁见油膜)、矿物粒间孔;d.LY1井3 580.17 m,沙三下亚段,黏土矿物晶孔缝、有机孔;e.LY1井3 644.95 m,沙三下亚段,白云石晶间、晶内溶孔,粒缘缝;f.LY1井3 822.75 m,沙四上亚段,顺层缝/层理缝半充填 Fig. 5. The main pore types of Es3x and Es4s from systemic cored wells for shale oil exploration in Jiyang Depression
表 1 济阳坳陷第一轮页岩油探井试油试采情况统计结果(据宋明水,2019修改)
Table 1. The results of oil test and production for the first round shale oil exploration wells in Jiyang Depression (modification from Song, 2019)
井号 垂深(m) 等效镜质体发射率EqVRo(%) 水平段长度(m) 初始日产油量(t•d‒1) 求产方式 累积产油量(t) 主压裂工艺 措施 页岩油密度(g•cm‒3) NY1 3 403.2~3 510.0 0.89 油花 一开溢流折算 0.86 LY1 3 632.0~3 665.0 0.92 0.17 二开溢流折算 0.41 0.83 FY1 3 199.0~3 210.0 0.80 2.41 二开溢流折算 653 滑溜水+交联液体积压裂技术 压裂、泵抽 0.88 L69 3 040.0~3 066.0 0.75 0.85 2.9 0.89 BYP1 2 932.9 0.72 1 147 2.48 油管畅放 116 滑溜水/线性胶造复杂缝网+高黏液造主裂缝的主导工艺 压裂、泵抽 0.91 BYP2 2 564.1 0.65 716 1.11 油管畅放 70.3 线性胶造复杂缝网+高黏液造主裂缝的主导工艺 压裂、泵抽 0.93 BYP1-2 2 960.7 0.71 373.1 3.00 油管畅放 317 压裂、泵抽 0.92 LY1HF 3 229.1 0.81 633.8 2.29 管式泵 127.4 泵抽、酸洗 0.88 表 2 济阳坳陷沙三下和沙四上亚段不同岩相储集特征对比(据宋明水等,2020修改)
Table 2. The comparison of reservoir characteristics of different lithofacies from Es3x and Es4s in Jiyang Depression (modified from Song et al., 2020)
岩相 储集空间类型 孔径范围(nm) 孔径均值(nm) 孔隙度(%) 渗透率(10-3μm2) 富有机质纹层状泥质灰岩/灰质泥岩相 方解石晶间孔 240~825 560 5~16 1~50 黏土矿物微孔 11~489 270 富有机质层状泥质灰岩/灰质泥岩相 方解石晶间孔 126~525 500 4~13 0.05~1 黏土矿物微孔 7~325 75 富有机质块状灰质泥岩/泥岩相 方解石晶间孔 68~210 158 3~8 0.000 8~0.002 0 黏土矿物微孔 3~92 28 表 3 济阳坳陷页岩油系统取心井沙三下和沙四上亚段矿物组成与脆性矿物指数
Table 3. The contents of minerals and brittle mineral index of Es3x and Es4s for systemic cored wells for shale oil exploration in Jiyang Depression
探井名称 层位 黏土矿物(%) 石英
(%)长石
(%)方解石(%) 白云石(%) 黄铁矿(%) 脆性矿物指数 可压性评价等级 样品数 FY1 沙三下亚段 23.7 23.8 4.1 38.4 7.2 2.6 76.1 好 798 沙四上亚段 17.2 24.1 4.2 39.1 12.4 2.8 82.6 好 756 NY1 沙三下亚段 21.1 26.1 3.1 40.5 6.4 2.6 78.7 好 99 沙四上亚段 22.8 21.8 5.5 32.4 14.2 3.2 77.1 好 595 LY1 沙三下亚段 34.5 23.9 4.4 27.1 7.1 2.9 65.4 较好 432 沙四上亚段 23.2 27.2 4.1 33.5 10.1 1.8 76.7 好 398 L69 沙三下亚段 18.9 19.1 1.4 51.5 5.3 3.6 80.9 好 426 沙四上亚段 10.3 15.8 1.2 55.2 15.1 2.3 89.6 好 23 注:各矿物含量为平均值,矿物含量分析结果据刘毅(2018)补充. -
[1] Abrams, M. A., Gong, C. R., Garnier, C., et al., 2017. A New Thermal Extraction Protocol to Evaluate Liquid Rich Unconventional Oil in Place and In-Situ Fluid Chemistry. Marine and Petroleum Geology, 88: 659-675. https://doi.org/10.1016/j.marpetgeo.2017.09.014 [2] Bao, Y. S., 2018a. Influence of Overpressure and Stress on Shale Oil Enrichment in Jiyang Depression. Fault-Block Oil & Gas Field, 25(5): 585-588 (in Chinese with English abstract). [3] Bao, Y. S., 2018b. Effective Reservoir Spaces of Paleogene Shale Oil in the Dongying Depression, Bohai Bay Basin. Petroleum Geology & Experiment, 40(4): 479-484 (in Chinese with English abstract). [4] Bao, Y. S., Zhang, L. Y., Zhang, J. G., et al., 2016. Factors Influencing Mobility of Paleogene Shale Oil in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 37(3): 408-414 (in Chinese with English abstract). [5] Cao, Q., Wang, X. Z., Qi, M. H., et al., 2020. Research Progress on Experimental Technologies of Shale Oil Geological Evaluation. Rock and Mineral Analysis, 39(3): 337-349 (in Chinese with English abstract). [6] Capuano, R. M., 1993. Evidence of Fluid Flow in Microfractures in Geopressured Shales. AAPG Bulletin, 77(8): 1303-1314. https://doi.org/10.1306/bdff8e70-1718-11d7-8645000102c1865d [7] Hu, S. Y., Zhao, W. Z., Hou, L. H., et al., 2020. Development Potential and Technical Strategy of Continental Shale Oil in China. Petroleum Exploration and Development, 47(4): 819-828 (in Chinese with English abstract). [8] Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2-Shale-Oil Resource Systems. In: Breyer, J. A., Shale Reservoirs: Giant Resources for the 21st Century American Association of Petroleum Geologists, Houston. https://doi.org/10.1306/13321446m973489 [9] Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, 12(4): 307-325. [10] Jiang, T. X., Bian, X. B., Su, Y., et al., 2014. A New Method for Evaluating Shale Fracability Index and Its Application. Petroleum Drilling Techniques, 42(5): 16-20 (in Chinese with English abstract). [11] Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil & Gas Geology, 40(3): 451-458 (in Chinese with English abstract). [12] Larter, S., Huang, H. P., Bennett, B., et al., 2012. What don't We Know about Self Sourced Oil Reservoirs: Challenges and Potential Solutions. Society of Petroleum Engineers, Calgary. [13] Lei, Q., Weng, D. W., Xiong, S. C., et al., 2021. Progress and Development Directions of Shale Oil Reservoir Stimulation Technology of China National Petroleum Corporation. Petroleum Exploration and Development, 48(5): 1035-1042 (in Chinese with English abstract). [14] Li, M. W., Chen, Z. H., Cao, T. T., et al., 2018a. Expelled Oils and Their Impacts on Rock-Eval Data Interpretation, Eocene Qianjiang Formation in Jianghan Basin, China. International Journal of Coal Geology, 191: 37-48. https://doi.org/10.1016/j.coal.2018.03.001 [15] Li, M. W., Chen, Z. H., Ma, X. X., et al., 2018b. A Numerical Method for Calculating Total Oil Yield Using a Single Routine Rock-Eval Program: A Case Study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China. International Journal of Coal Geology, 191: 49-65. https://doi.org/10.1016/j.coal.2018.03.004 [16] Li, Y., Liu, K. Y., Pu, X. G., et al., 2020. Lithofacies Characteristics and Formation Environments of Mixed FineGrained Sedimentary Rocks in Second Member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin. Earth Science, 45(10): 3779-3796 (in Chinese with English abstract). [17] Li, Z. M., Liu, P., Qian, M. H., et al., 2018a. Quantitative Comparison of Different Occurrence Oil for Lacustrine Shale: A Case from Cored Interval of Shale Oil Special Drilling Wells in Dongying Depression, Bohai Bay Basin. Journal of China University of Mining & Technology, 47(6): 1252-1263 (in Chinese with English abstract). [18] Li, Z. M., Zheng, L. J., Jiang, Q. G., et al., 2018b. Simulation of Hydrocarbon Generation and Expulsion for Lacustrine Organic-Rich Argillaceous Dolomite and Its Implications for Shale Oil Exploration. Earth Science, 43(2): 566-576 (in Chinese with English abstract). [19] Li, Z. M., Qian, M. H., Li, M. W., et al., 2020. Favorable Conditions of Inter-Salt Shale Oil Formation and Key Parameters for Geological Sweet Spots Evaluation: A Case Study of Eq34-10 Rhythm of Qianjiang Formation in Qianjiang Sag, Jianghan Basin. Petroleum Geology & Experiment, 42(4): 513-523 (in Chinese with English abstract). [20] Li, Z. M., Rui, X. Q., Li, M. W., et al., 2015. Characteristics of Typical Hybrid Shale-Oil System in North America and Its Implications. Journal of Jilin University (Earth Science Edition), 45(4): 1060-1072 (in Chinese with English abstract). [21] Li, Z. M., Sun, Z. L., Li, M. W., et al., 2021. Maturity Limit of Sweet Spot Area for Continental Matrix Type Shale Oil: A Case Study of Lower Es3 and Upper Es4 Sub-Members in Dongying Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 43(5): 767-775 (in Chinese with English abstract). [22] Li, Z. M., Tao, G. L., Li, M. W., et al., 2019a. Discussion on Prospecting Potential of Shale Oil in the 3rd Sub-Member of the Triassic Chang 7 Member in Binchang Block, Southwestern Ordos Basin. Oil & Gas Geology, 40(3): 558-570 (in Chinese with English abstract). [23] Li, Z. M., Tao, G. L., Li, M. W., et al., 2019b. Favorable Interval for Shale Oil Prospecting in Coring Well L69 in the Paleogene Es3L in Zhanhua Sag, Jiyang Depression, Bohai Bay Basin. Oil & Gas Geology, 40(2): 236-247 (in Chinese with English abstract). [24] Liu, H. M., Zhang, S., Bao, Y. S., et al., 2019. Geological Characteristics and Effectiveness of the Shale Oil Reservoir in Dongying Sag. Oil & Gas Geology, 40(3): 512-523 (in Chinese with English abstract). [25] Liu, P., Tao, G. L., Li, M. W., et al., 2020. Characteristics of Nitrogen-Containing Compounds in Shale Oil and Adjacent Shales in Well FY 1, Jiyang Depression, Bohai Bay Basin. Petroleum Geology & Experiment, 42(4): 552-557 (in Chinese with English abstract). [26] Liu, Q., Zhang, L. Y., Shen, Z. M., et al., 2004. Microfracture Occurrence and Its Significance to the Hydrocarbons Expulsion in Source Rocks with High Organic Matter Abundance, Dongying Depression. Geological Review, 50(6): 593-597, 669 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.06.010 [27] Liu, Y., 2018. Study on Shale Oil Reservoir Characteristics of Shahejie Formation in Jiyang Depression, Bohai Bay Basin (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [28] Lu, Y. X., Pan, R. F., Tang, L. Y., et al., 2017. Rock Mechanics and Brittleness of Shale Reservoirs in the Lower Sha 3 Member in Luojia Area, Zhanhua Sag. China Petroleum Exploration, 22(6): 69-77 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.06.008 [29] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2022. Geological Characteristics and Exploration Practices of Continental Shale Oil in China. Acta Geologica Sinica, 96(1): 155-171 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.01.013 [30] Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70(3) : 318-329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d [31] Snowdon, L. R., 1995. Rock-Eval Tmax Suppression: Documentation and Amelioration. AAPG Bulletin, 79(9): 1337-1348. https://doi.org/10.1306/7834d4c2-1721-11d7-8645000102c1865d [32] Song, M. S., 2019. Practice and Current Status of Shale Oil Exploration in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 26(1): 1-12 (in Chinese with English abstract). [33] Song, M. S., Liu, H. M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60041-6 [34] Sun, H. Q., 2017. Exploration Practice and Cognitions of Shale Oil in Jiyang Depression. China Petroleum Exploration, 22(4): 1-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.04.001 [35] Sun, H. Q., Cai, X. Y., Zhou, D. H., et al., 2019. Practice and Prospect of SINOPEC Shale Oil Exploration. China Petroleum Exploration, 24(5): 569-575 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.004 [36] Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 453-463 (in Chinese with English abstract). [37] Wang, F. Y., Meng, X. H., Feng, W. P., et al., 2013. Evaluating Techniques for the Resource Extent and Its Recoverability of Lacustrine-Facies Tight Oil. Petroleum Geology & Oilfield Development in Daqing, 32(3): 144-149 (in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2013.03.030 [38] Wang, G. M., Xiong, Z. H., Zhang, J., 2016. The Impact of Lithology Differences to Shale Fracturing. Journal of Jilin University (Earth Science Edition), 46(4): 1080-1089 (in Chinese with English abstract). [39] Wang, X. J., Ning, F. X., Hao, X. F., et al., 2017. Paleogene Shale Oil Occurrence Features: A Case of Jiyang Depression. Science Technology and Engineering, 17(29): 39-48 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.29.006 [40] Wang, Y., Liu, H. M., Song, G. Q., et al., 2017. Enrichment Controls and Models of Shale Oil in the Jiyang Depression, Bohai Bay Basin. Geological Journal of China Universities, 23(2): 268-276 (in Chinese with English abstract). [41] Wang, Y., Zhang, S., 2021. Types and Characteristics of Lacustrine Shale Fine-Grained Depositional System: A Case Study of Upper Es4 and Lower Es3 Member in Jiyang Depression. Geological Review, 67(S1): 135-136 (in Chinese). [42] Wang, Y. S., Li, Z., Gong, J. Q., et al., 2013. Discussion on an Evaluation Method of Shale Oil and Gas in Jiyang Depression: A Case Study on Luojia Area in Zhanhua Sag. Acta Petrolei Sinica, 34(1): 83-91 (in Chinese with English abstract). [43] Yang, W. Q., 2018. Shale Lithofacies Characteristics and Development Rule of the Lower Es3 and Upper Es4, Dongying Depression (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract). [44] Zhang, L. Y., 2005. A Restudy on the Hydrocarbon Occurrence of " Enriched Organic Matter": A Case Study of Dongying Depression. Geochimica, 34(6): 619-625 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2005.06.009 [45] Zhang, L. Y., Kong, X. X., Zhang, C. R., et al., 2003. High Quality Oil Prone Source Rocks in Jiyang Depression. Geochimica, 32(1): 35-42 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2003.01.005 [46] Zhang, L. Y., Li, J. Y., Li, Z., et al., 2015. Development Characteristics and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales. Earth Science, 40(11): 1824-1833 (in Chinese with English abstract). [47] Zhang, L. Y., Li, J. Y., Li, Z., et al., 2017. Study and Practice on Continental Shale Oil and Gas Geology. Petroleum Industry Press, Beijing (in Chinese). [48] Zhao, B., Chen, E. D., 2021. Drilling Technologies for Horizontal Shale Oil Well Fan Yeping 1 in the Shengli Oilfield. Petroleum Drilling Techniques, 49(4): 53-58 (in Chinese with English abstract). [49] Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5 [50] 包友书, 2018a. 济阳坳陷超压和应力场对页岩油富集的影响. 断块油气田, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm [51] 包友书, 2018b. 渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索. 石油实验地质, 40(4): 479-484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804004.htm [52] 包友书, 张林晔, 张金功, 等, 2016. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素. 石油与天然气地质, 37(3): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htm [53] 曹茜, 王兴志, 戚明辉, 等, 2020. 页岩油地质评价实验测试技术研究进展. 岩矿测试, 39(3): 337-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003003.htm [54] 胡素云, 赵文智, 侯连华, 等, 2020. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm [55] 蒋廷学, 卞晓冰, 苏瑗, 等, 2014. 页岩可压性指数评价新方法及应用. 石油钻探技术, 42(5): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201405003.htm [56] 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [57] 雷群, 翁定为, 熊生春, 等, 2021. 中国石油页岩油储集层改造技术进展及发展方向. 石油勘探与开发, 48(5): 1035-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105016.htm [58] 李圯, 刘可禹, 蒲秀刚, 等, 2020. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境. 地球科学, 45(10): 3779-3796. doi: 10.3799/dqkx.2020.167 [59] 李志明, 刘鹏, 钱门辉, 等, 2018a. 湖相泥页岩不同赋存状态油定量对比——以渤海湾盆地东营凹陷页岩油探井取心段为例. 中国矿业大学学报, 47(6): 1252-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806010.htm [60] 李志明, 郑伦举, 蒋启贵, 等, 2018b. 湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示. 地球科学, 43(2): 566-576. doi: 10.3799/dqkx.2018.025 [61] 李志明, 钱门辉, 黎茂稳, 等, 2020. 盐间页岩油形成有利条件与地质甜点评价关键参数——以潜江凹陷潜江组潜34‒10韵律为例. 石油实验地质, 42(4): 513–523. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004006.htm [62] 李志明, 芮晓庆, 黎茂稳, 等, 2015. 北美典型混合页岩油系统特征及其启示. 吉林大学学报(地球科学版), 45(4): 1060-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201504010.htm [63] 李志明, 孙中良, 黎茂稳, 等, 2021. 陆相基质型页岩油甜点区成熟度界限探讨——以渤海湾盆地东营凹陷沙三下‒沙四上亚段为例. 石油实验地质, 43(5): 767-775. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105006.htm [64] 李志明, 陶国亮, 黎茂稳, 等, 2019a. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨. 石油与天然气地质, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm [65] 李志明, 陶国亮, 黎茂稳, 等, 2019b. 渤海湾盆地济阳坳陷沾化凹陷L69井古近系沙三下亚段取心段页岩油勘探有利层段. 石油与天然气地质, 40(2): 236-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902004.htm [66] 刘惠民, 张顺, 包友书, 等, 2019. 东营凹陷页岩油储集地质特征与有效性. 石油与天然气地质, 40(3): 512-523. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903008.htm [67] 刘鹏, 陶国亮, 黎茂稳, 等, 2020. 渤海湾盆地济阳坳陷樊页1井页岩油与临近页岩中含氮化合物组成特征. 石油实验地质, 42(4): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004010.htm [68] 刘庆, 张林晔, 沈忠民, 等, 2004. 东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移. 地质论评, 50(6): 593-597, 669. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406006.htm [69] 刘毅, 2018. 渤海湾盆地济阳坳陷沙河街组页岩油储层特征研究(博士学位论文). 成都: 成都理工大学. [70] 陆益祥, 潘仁芳, 唐廉宇, 等, 2017. 沾化凹陷罗家地区沙三下亚段页岩储层的岩石力学与脆性评价研究. 中国石油勘探, 22(6): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201706008.htm [71] 马永生, 蔡勋育, 赵培荣, 等, 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201010.htm [72] 宋明水, 2019. 济阳坳陷页岩油勘探实践与现状. 油气地质与采收率, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm [73] 宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm [74] 孙焕泉, 2017. 济阳坳陷页岩油勘探实践与认识. 中国石油勘探, 22(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201704001.htm [75] 孙焕泉, 蔡勋育, 周德华, 等, 2019. 中国石化页岩油勘探实践与展望. 中国石油勘探, 24(5): 569-575. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905004.htm [76] 孙龙德, 刘合, 何文渊, 等, 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htm [77] 王飞宇, 孟晓辉, 冯伟平, 等, 2013. 湖相致密油资源量和可采性评价技术. 大庆石油地质与开发, 32(3): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201303030.htm [78] 王冠民, 熊周海, 张婕, 2016. 岩性差异对泥页岩可压裂性的影响分析. 吉林大学学报(地球科学版), 46(4): 1080-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604008.htm [79] 王学军, 宁方兴, 郝雪峰, 等, 2017. 古近系页岩油赋存特征——以济阳坳陷为例. 科学技术与工程, 17(29): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201729006.htm [80] 王勇, 刘惠民, 宋国奇, 等, 2017. 济阳坳陷页岩油富集要素与富集模式研究. 高校地质学报, 23(2): 268-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702009.htm [81] 王勇, 张顺, 2021. 细粒沉积体系类型及特征——以济阳坳陷沙四上‒沙三下亚段为例. 地质论评, 67(S1): 135-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2021S1062.htm [82] 王永诗, 李政, 巩建强, 等, 2013. 济阳坳陷页岩油气评价方法: 以沾化凹陷罗家地区为例. 石油学报, 34(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301008.htm [83] 杨万芹, 2018. 东营凹陷沙三下‒沙四上亚段页岩岩相特征及发育规律(博士学位论文). 青岛: 中国石油大学. [84] 张林晔, 2005. "富集有机质"成烃作用再认识: 以东营凹陷为例. 地球化学, 34(6): 619-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200506009.htm [85] 张林晔, 孔祥星, 张春荣, 等, 2003. 济阳坳陷下第三系优质烃源岩的发育及其意义. 地球化学, 32(1): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200301004.htm [86] 张林晔, 李钜源, 李政, 等, 2015. 湖相页岩有机储集空间发育特点与成因机制. 地球科学, 40(11): 1824-1833. doi: 10.3799/dqkx.2015.163 [87] 张林晔, 李钜源, 李政, 等, 2017. 陆相盆地页岩油气地质研究与实践. 北京: 石油工业出版社. [88] 赵波, 陈二丁, 2021. 胜利油田页岩油水平井樊页平1井钻井技术. 石油钻探技术, 49(4): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202104009.htm [89] 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm