Hotspot and Development Trend of Shale Oil Research
-
摘要: 页岩油储量巨大、分布集中、前景广阔,是世界石油增储上产的一个主要领域. 为厘清页岩油研究的热点与发展趋势,使用CiteSpace和VOSviewer软件对近十年国内外文献进行科学知识可视化分析,结合世界页岩油盆地研究及勘探开发成果,系统梳理了页岩油近十年的主题演化及热点领域,总结了当前页岩油研究面临的挑战. 结果认为全球页岩油研究热点聚焦于页岩油形成的物质基础、页岩油储集空间、页岩油可动性及可压裂性4方面;相比北美海相页岩油构造沉积背景稳定,页岩油生产技术持续迭代,我国页岩油沉积相变快,孔隙类型受成岩作用影响较大,缺乏系统的可动性评价方法,水力压裂易诱发地震和造成环境污染;未来应加强细粒沉积岩研究、定量表征页岩油储集空间、明确页岩油赋存状态、建立全面的页岩油可动性评价方法、加强新型绿色压裂技术研发,从而精准预测页岩油“地质-工程”甜点,以推动我国能源结构的快速转型.Abstract: Shale oil plays a significant role in petroleum exploration and development with its huge reserves, concentrated distribution, and broad prospects. Combining the achievements of global shale oil exploration and development, two bibliometric software CiteSpace and VOSviewer were used to visualize the scientific knowledge about the last ten years. The theme evolution, hotspots and frontiers were systematically sort out. Furthermore, the challenges and effective techniques of shale oil research are summarized. The results show that the research hotspots of shale oil focus on four aspects: formation conditions, reservoir property, mobility, and fracturing. The sedimentary tectonic setting is stable and the production technologies are continuously updated in North America. However, the sedimentary phase change of shale oil is rapid in China, and the pore types are greatly affected by diagenesis. In addition, there is no systematic method to evaluate the mobility of shale oil. Hydraulic fracturing sometimes induces earthquakes and causes environmental pollution. To accurately predict the "geological-engineering" sweet spot of shale oil and promote the rapid transformation of energy structure, the following research should be strengthened including the lithofacies of fine-grained sediment, the quantitative characterization of reservoir space, occurrence state of shale oil, the systematic evaluation method of movability, and the advanced green fracturing technology.
-
Key words:
- shale oil /
- occurrence mechanism /
- mobility /
- fracturing /
- scientific knowledge visualization /
- petroleum geology
-
图 6 有机碳含量(TOC)与氯仿沥青“A”关系图
数据来源于宋国奇等(2013);李吉君等(2014)
Fig. 6. Relationship between TOC and chloroform asphalt "A"
图 8 页岩油储层中不同类型的孔隙
a. 来源于Li et al.(2022);b. 来源于Liang et al.(2022);d,g,h. 来源于Xi et al.(2020);f,i. 来源于Wang et al.(2019);c,e. 来源于王香增等(2018);k. 来源于刘毅(2018);l. 来源于范雨辰等(2022)
Fig. 8. Different pores in shale oil reservior
图 9 东营凹陷古近系泥页岩样品各族组分含量占比及MI分布图(何晋译等, 2019)
Fig. 9. Composition proportion and MI distribution of Paleogene shale in Dongying Sag (He et al., 2019)
图 10 东营凹陷页岩油黏度与日产量关系图(宁方兴等, 2015)
Fig. 10. Relationship between shale oil viscosity and daily production in Dongying Sag (Ning et al., 2015)
表 1 不同学者对页岩油的定义及成藏要素差异
Table 1. Differences in the definition of shale oil and reservoir formation elements
文献来源 岩性 物性 成藏要素 烃源岩 储集层 盖层 油气运移 有机质丰度(TOC) 有机质类型 有机质成熟度(Ro) Jarvie(2012) 页岩、云灰质泥岩 / 2%~30% / 0.4%~1.0% 碳酸盐岩夹层 / 滞留或短距离运移 页岩油是指赋存于富有机质泥页岩层系中滞留或仅经历短距离运移的石油 EIA(2013a) 页岩 / / / / 页岩、致密砂岩、碳酸盐岩等夹层 / / 页岩油指赋存于页岩层系中并能有效开发的石油 Maugeri(2013) 页岩 低孔低渗(无具体数值) / Ⅱ型为主 / 页岩、碳酸盐岩夹层 / 滞留或短距离运移 页岩油是指赋存于低孔低渗泥页岩层系中滞留或仅经历短距离运移的石油 Donovan et al.(2017) 页岩、硅质泥岩、云灰质泥岩 渗透率: < 0.1 mD > 5% Ⅰ型、Ⅱ型 / 页岩、硅质泥岩、云灰质泥岩 / 滞留或短距离运移 页岩油是指赋存于富有机质低渗泥页岩层系中滞留或仅经历短距离运移的石油 Horsfield et al.(2018) 页岩 / 2%~25% Ⅱ型为主 0.8%~1.5% 裂缝型页岩、碳酸盐岩夹层 / 滞留或短距离运移 页岩油是指已经生成并赋存于富有机质泥页岩层系中滞留或仅经历短距离运移的石油 张金川等(2012) 页岩 / / Ⅰ型、Ⅱ型 0.3%~2.0% 碳酸盐岩、致密砂岩、火山岩等夹层 / 滞留或短距离运移 页岩油是指赋存于页岩层系中滞留或仅经历极短距离运移而原地聚集形成的石油 姜在兴等(2014) 云灰质页岩、硅质页岩 孔隙度: < 10% 渗透率: < 0.1 mD / Ⅰ型、Ⅱ型 0.5%~1.5% 云灰质页岩、硅质页岩 / 滞留且基本未运移 页岩油指赋存于低孔低渗的泥页岩中滞留且基本未经历运移的石油 黎茂稳等(2019) 页岩 / 1%~15% Ⅱ型为主 0.6%~1.3% 裂缝型页岩 / 滞留且基本未运移 页岩油是指赋存于富有机质泥页岩中滞留且基本未经历运移的石油 赵文智等(2020) 页岩、云灰质泥岩、粉细砂岩 孔隙度:0.2%~19% 2%~5% Ⅰ型、Ⅱ型 0.5%~1.7% 裂缝型页岩、云灰质泥岩、粉细砂岩 / 滞留且基本未运移 页岩油是指赋存于富有机质低孔泥页岩层系中滞留且基本未经历运移的石油 GB/T 38718-2020(2020) 页岩 生烃品质、储层品质、工程力学品质和含油性,需据研究区条件确定评价标准 粉砂岩、细砂岩、碳酸盐岩,单层厚度不大于5 m,累计厚度小于总厚度30% / 滞留或短距离运移 页岩油是指赋存于富有机质泥页岩层系中滞留或仅经历短距离运移的石油 邹才能等(2022a) 页岩 孔隙度: < 10% 渗透率: < 1 mD > 2% / > 0.9% 页岩、粉砂岩、细砂岩、碳酸盐岩等夹层 / 滞留或短距离运移 页岩油是指赋存于富有机质低孔低渗页岩层系中滞留或仅经历短距离运移的石油 表 2 世界主要页岩油盆地地质特征对比
Table 2. Geological features of the world's major shale oil basins
盆地名称 West Siberian Williston South Texas Neuquen Sirte Western Canada 鄂尔多斯盆地 松辽盆地 南襄盆地 渤海湾盆地 苏北盆地 北部湾盆地 四川盆地 物质基础 沉积环境 海相 海相 海相 海相 海相 海相 陆相 陆相 陆相 陆相 陆相 陆相 陆相 盆地类型 克拉通 克拉通 克拉通 弧后裂谷 克拉通 大陆边缘 坳陷 坳陷 断陷 断陷 断陷 断陷 坳陷 发育层系 J-K D-C K J-K K C T K E E E E J 页岩埋深(m) 2 500~3 000 2 100~3 300 1 800~2 400 1 380~1 950 3 000~5 000 2 800~3 600 1 300~2 600 1 000~2 500 2 300~3 700 2 900~3 400 1 500~2 500 2 600~4 100 2 000~3 500 页岩厚度(m) 10~60 30 22~90 45~150 25~70 35~60 10~45 50~500 30~120 50~350 140~260 10~602 20~80 TOC 2~17 5~10 4~7 3~5 1.7~3.2 2.0~7.5 0.3~36.2 0.4~4.5 1.0~3.0 0.01~13.13 0.65~2.83 3.1~11.3 0.8~3.0 Ro 0.5~1.3 0.5~1.3 0.5~1.3 0.7~1.3 0.6~1.13 0.5~2.0 0.6~1.1 0.5~1.5 0.5~1.2 0.25~1.28 0.8~1.1 0.6~1.3 0.9~1.5 有机质类型 ⅠⅡ Ⅱ Ⅱ Ⅰ Ⅱ / Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅱ 储层特征 孔隙度(%) 5.8~8.6 8~12 4~11 4~10 / 6~7.5 4.8~12.6 6.0~12.0 4 0.9~11.5 3.49~19.9 < 10.0 0~10 渗透率(mD) 0.4~4.0 0.04 0.1~1.5 < 0.2 / 0.2~0.8 < 0.1 0.02~1.00 0.1 0.1~1.0 0.2~14.1 0.01~0.20 0.08~9.79 孔隙类型 裂缝 粒间孔 粒间孔、有机质孔 粒间孔、有机质孔 / 有机质孔 微裂缝、基质孔 微裂缝、基质孔 基质孔 粒间孔、晶间孔 层间孔、晶间孔 粒间孔、有机质孔 有机质孔、基质孔 脆性矿物含量(%) 10~75 60~70 80~92 70~90 / 60~70 50~60 50~70 45~75 30.9~62.5 59~65 30~80 45~70 泊松比 / 0.22~0.29 0.24~0.26 / / / 0.25 0.25 0.25~0.30 / 0.10 / / 流体特征 含油饱和度 / 平均68 55~85 55~85 / 60~80 大于50 / / 58.3~64.4 / / 原油黏度(mPa·s) / 0.3~0.4 < 1 / / 6.1~6.3 20~200 4~18 / 2 170 / / 原油密度(g/cm3) / 0.75~0.82 0.80 0.79~0.82 / 0.76 0.8~0.86 0.78~0.87 0.84~0.87 / < 0.82 / / 压力系数 / 1.35~1.58 1.35~1.80 / / / 0.7~0.9 1.2~1.6 0.9~1.1 / 1.55 / 1.23~1.72 开发现状 可采资源量 104亿吨 5.47亿吨 4.1亿吨 28亿吨 25亿吨 5.6亿吨 25亿吨 20亿吨 2亿吨 3.65亿吨 7亿吨 5亿吨 16.4亿吨 开发情况 工业探索 商业开发 商业开发 工业探索 尚未开发 商业开发 工业探索 工业探索 工业探索 工业探索 工业探索 工业探索 工业探索 数据来源 (EIA, 2011; 崔景伟等,2015) (EIA, 2011, 2013b; Jarvie, 2012) (EIA, 2011, 2013b; Jarvie, 2012; 黎茂稳等, 2019) (EIA, 2011, 2013b2015; Jarvie, 2012) (EIA, 2011; 方欣欣等, 2017, 2020) (EIA, 2011, 2013b; Jarvie, 2012; 黎茂稳等, 2019) (邹才能等, 2012b; 邹才能等, 2015a; 杨智等, 2015; 邹才能等, 2022a) (邹才能等, 2012b; 邹才能等, 2015a; 杨智等, 2015; 邹才能等, 2022a) (陈祥等, 2011; 王敏等, 2013; 冯国奇等, 2019; 何涛华等, 2019) (刘毅,2018;周立宏等,2019) (龙海岑等,2022;付茜等,2020;昝灵等,2021;李小龙等,2022;姚红生等,2021) (严德天等,2019;李辉等,2022 (韩克猷等,2015;孙莎莎等,2021;金涛等,2022) -
[1] Bao, Y. S., Zhang, L. Y., Zhang, J. G., et al., 2016. Factors Influencing Mobility of Paleogene Shale oil in Dongying Sag, Bohai Bay Basin. Oil and Gas Geology, 37(3): 408-414(in Chinese with English abstract). [2] Boak, J., Kleinberg, R., 2020. Shale Gas, Tight Oil, Shale Oil and Hydraulic Fracturing. Future Energy. Elsevier, Amsterdam, 67-95. https://doi.org/10.1016/b978-0-08-102886-5.00004-9 [3] Chen, X., Wang, M., Yan, Y. X., et al., 2011. Accumulation Conditions for Continental Shale Oil and Gas in the Biyang Depression. Oil and Gas Geology, 32(4): 568-576(in Chinese with English abstract). [4] Cheng, B. J., Xu, T. J., Luo, S. Y., et al., 2022. Method and Practice of Deep Favorable Shale Reservoir Prediction Based on Machine Learning. Petroleum Exploration and Development, 49(5): 918-928(in Chinese with English abstract). [5] Cui, J. W., Zhu, R. K., Yang, Z., et al., 2015. Progresses and Enlightenment of Overseas Shale Oil Exploration and Development. Unconventional Oil and Gas, 2(4): 68-82(in Chinese with English abstract). [6] Donovan, A., Evenick, J., Banfield, L., 2017. An Organofacies-Based Mudstone Classification for Unconventional Tight Rock & Source Rock PlaysProceedings of the 5th Unconventional Resources Technology Conference. July 24-26, 2017. Austin, Texas, USA. American Association of Petroleum Geologists, Tulsa. [7] EIA, 2011. Review of Emerging Resources: US Shale Gas and Shale Oil Plays. EIA Analysis & Projections, Washington. [8] EIA, 2013a. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. EIA Analysis & Projections, Washington. [9] EIA, 2013b. Status and Outlook for Shale Gas and Tight Oil Development in the U. S. EIA Pressroom, Washington. [10] EIA, 2015. Annual Energy Outlook 2015 with Projections to 2014. EIA Analysis & Projections, Washington. [11] EIA, 2017. Tight Oil Expected to Make up Most of U. S. Oil Production Increase through 2040. EIA Today in Energy, Washington. [12] EIA, 2022. Drilling Productivity Report: For Key Tight Oil and Shale Gas Regions. EIA Independent Statistics & Analysis, Washington. [13] Fan, Y., Liu, K., Pu, X., et al., 2022. Morphological Classification and Three-Dimensional Pore Structure Reconstruction of Shale Oil Reservoirs: A Case from the Second Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 49(5): 943-954(in Chinese with English abstract). [14] Fang, X. X, Yuan, K., Lin, T., 2017. Potential Asessment of the Shale Gas and Shale Oil Resources in Libya. China Mining Magazine, 26(S2): 18-22(in Chinese with English abstract). [15] Fang, X. X., Guo, Y. C., Wang, P., et al., 2020. The Progress of Research on Tight Oil Accumulation and Several Scientific Issues Requiring Further Study. Geology in China, 47(1): 43-56(in Chinese with English abstract). [16] Feng, G. Q., Li, J. J., Liu, J. W., et al., 2019. Discussion on the Enrichment and Mobility of Continental Shale Oil in Biyang Depression. Oil and Gas Geology, 40(6): 1236-1246(in Chinese with English abstract). [17] Fu, Q., Liu, Q. D., Liu, S. L., et al., 2020. Shale Oil Accumulation Conditions in the Second Member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin. Petroleum Geology and Experiment, 42(4): 625-631(in Chinese with English abstract). [18] Gai, P. Y., 2011. Laboratory Research on Gel as Fracturing Artificial Barrier Material. Oilfield Chemistry, 28(1): 54-57(in Chinese with English abstract). [19] Gao, G., Liu, X. Y., Wang, Y. H., et al., 2013. Characteristics and Resource Potential of the Oil Shale of Chang 7 Layer in Longdong Area, Ordos Basin. Earth Science Frontiers, 20(2): 140-146(in Chinese with English abstract). [20] Gao, Z. Y., Yang, X. B., Hu, C. H., et al., 2018. Characterizing the Pore Structure of Low Permeability Eocene Liushagang Formation Reservoir Rocks from Beibuwan Basin in Northern South China Sea. Marine and Petroleum Geology, 99: 107-121. https://doi.org/10.1016/j.marpetgeo.2018.10.005 [21] Gillard, M., Medvedev, O., Pena, A., et al., 2010. A New Approach to Generating Fracture Conductivity. Journal of Cerebral Blood Flow and Metabolism, 25: 19-22 [22] Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: a Review. International Journal of Coal Geology, 163: 8-51. https://doi.org/10.1016/j.coal.2016.06.010 [23] Han, K., Wang, Y., Cha, Q., 2015. Exploration Potential and Targets of Jurassic System in Central Sichuan. Petroleum Science and Technology Forum, 34(6): 51-57(in Chinese with English abstract). [24] Han, Y. J., Horsfield, B., Wirth, R., et al., 2017. Oil Retention and Porosity Evolution in Organic-Rich Shales. AAPG Bulletin, 101(6): 807-827. https://doi.org/10.1306/09221616069 [25] He, J. Y., Cai, J. G., Lei, T. Z., et al., 2019. Characteristics of Soluble Organic Matter of Paleogene Shale in Dongying Sag and Prediction of Shale Oil "Sweet Spots". Petroleum Geology and Recovery Efficiency, 26(1): 174-182(in Chinese with English abstract). [26] He, T. H., Li, W. H., Tan, Z. Z., et al., 2019. Mechanism of Shale Oil Accumulation in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin. Oil and Gas Geology, 40(6): 1259-1269(in Chinese with English abstract). [27] He, Y. R., Song, Z. C., Zhang, Y. M., et al., 2021. Review on Application of Machine Learning in Hydraulic Fracturing. Journal of China University of Petroleum(Edition of Natural Science), 45(6): 127-135(in Chinese with English abstract). [28] Horsfield, B., Schulz, H. M., Bernard, S., et al., 2018. Oil and Gas Shales. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Springer International Publishing, Cham, 1-34. https://doi.org/10.1007/978-3-319-54529-5_18-1 [29] Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part2-Shale-Oil Resource Systems. AAPG Memoir, 97: 89-119. https://doi.org/10.1306/13321447m973489. [30] Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068 [31] Jia, B., Tsau, J. S., Barati, R., 2019. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel, 236: 404-427. https://doi.org/10.1016/j.fuel.2018.08.103 [32] Jiang, Z. X., Zhang, W. Z., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinca, 35(1): 184-196(in Chinese with English abstract). [33] Jin, T., Zhang, W., Bai, R., et al., 2022. Characteristics on Shale Reservoirs of Lower Jurassic Ziliujing Formation, Eastern Sichuan Basin. Natural Gas Exploration and Development, 45(1): 87-97(in Chinese with English abstract). [34] Jin, X., Li, G., Meng, S., et al., 2021. Microscale Comprehensive Evaluation of Continental Shale Oil Recoverability. Petroleum Exploration & Development, 48(1): 222-232(in Chinese with English abstract). [35] Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil and Gas Geology, 40(3): 451-458(in Chinese with English abstract). [36] Kernan, N. D., 2015. Structural and Facies Characterization of the Niobrara Formation in Goshen and Laramie Counties, Wyoming(Dissertation). Colorado School of Mines, Colorado. [37] Kuang, L. C., Hou, L. H., Yang, Z., et al., 2021. Key Parameters and Methods of Lacustrine Shale Oil Reservoir Characterization. Acta Petrolei Sinca, 42(1): 1-14(in Chinese with English abstract). doi: 10.1038/s41401-020-0366-x [38] Lei, Q., Weng, D. W., Xiong, S. C., et al., 2021. Progress and Development Directions of Shale Oil Reservoir Stimulation Technology of China National Petroleum Corporation. Petroleum Exploration and Development, 48(5): 1198-1207. https://doi.org/10.1016/S1876-3804(21)60102-7 [39] Lewan, M. D., Winters, J. C., McDonald, J. H., 1979. Generation of Oil-Like Pyrolyzates from Organic-Rich Shales. Science, 203(4383): 897-899. https://doi.org/10.1126/science.203.4383.897 [40] Li, H., Jiang, Z. X., Deng, Y., et al., 2022. Geological Formation Conditions and Enrichment Characteristics of Shale Oil in the Weixinan Sag, South China Sea. Journal of China University of Mining and Technology, 51(5): 1-17(in Chinese with English abstract). [41] Li, J. B., Wang, M., Jiang, C. Q., et al., 2022. Sorption Model of Lacustrine Shale Oil: Insights from the Contribution of Organic Matter and Clay Minerals. Energy, 260: 125011. https://doi.org/10.1016/j.energy.2022.125011 [42] Li, J. J., Shi, Y. L., Zhang, X. W., et al., 2014. Control Factors of Enrichment and Producibility of Shale Oil: A Case Study of Biyang Depression. Earth Science, 39(7): 848-857(in Chinese with English abstract). [43] Li, M. W., Ma, X. X., Jiang, Q. G., et al., 2019. Enlightenment from Formation Conditions and Enrichment Characteristics of Marine Shale Oil in North America. Petroleum Geology and Recovery Efficiency, 26(1): 13-28(in Chinese with English abstract). [44] Li, M. W., Ma, X. X., Jin, Z. J., et al., 2022. Diversity in the Lithofacies Assemblages of Marine and Lacustrine Shale Strata and Significance for Unconventional Petroleum Exploration in China. Oil and Gas Geology, 43(1): 1-25(in Chinese with English abstract). [45] Li, S. C., Zhang, J. Y., Gong, F. H., et al., 2017. Lower Limits of Porosity and Permeability of Shale Oil Reservoirs in the Xingouzui Formation, Jianghan Basin. Geological Bulletin of China, 36(4): 654-663(in Chinese with English abstract). [46] Li, S. F., Hu, S. Z., Xie, X. N., et al., 2016. Assessment of Shale Oil Potential Using a New Free Hydrocarbon Index. International Journal of Coal Geology, 156: 74-85. https://doi.org/10.1016/j.coal.2016.02.005 [47] Li, X. L., Sun, W., 2022. Seven Properties Research on Relationship Evaluation of Shale Oil Reservoir: A Case Study of the Second Member of Funing Formation in Qintong Sag of Subei Basin. Unconventional Oil and Gas: 1-9(in Chinese with English abstract). [48] Li, Y., Zhao, Q. M., Lu, Q., et al., 2022. Evaluation Technology and Practice of Continental Shale Oil Development in China. Petroleum Exploration and Development, 49(5): 955-964(in Chinese with English abstract). [49] Liang, C., Wu, J., Cao, Y. C., et al., 2022. Storage Space Development and Hydrocarbon Occurrence Model Controlled by Lithofacies in the Eocene Jiyang Sub-Basin, East China: Significance for Shale Oil Reservoir Formation. Journal of Petroleum Science and Engineering, 215: 110631. https://doi.org/10.1016/j.petrol.2022.110631 [50] Liang, S. J., Huang, Z. L., Liu, B., et al., 2012. Formation Mechanism and Enrichment Conditions of Lucaogou Formation Shale Oil from Malang Sag, Santanghu Basin. Acta Petrolei Sinca, 33(4): 588-594(in Chinese with English abstract). [51] Liu, B., Lu, Y. F., Ran, Q. C., et al., 2014. Geological Conditions and Exploration Potential of Shale Oil in Qingshankou Formation, Northern Songliao Basin. Oil and Gas Geology, 35(2): 280-285(in Chinese with English abstract). [52] Liu, B., Lu, Y. F., Zhao, R., et al., 2012. Formation overpressure and shale oil enrichment in the shale system of Lucaogou Formation, Malang Sag, Santanghu Basin, NW China. Petroleum Exploration & Development, 39(6): 699-705(in Chinese with English abstract). [53] Liu, C. Q., Jiang, X. F., Wu, M. Y., 2021. Global Oil and Gas Industry Development Report in 2021. Petroleum Industry Press, Beijing, 3(in Chinese). [54] Liu, H. B., Guo, X. Q., 2008. Influence of Property and Structure of Crude Oil on Its Viscosity. Xinjiang Petroleum Geology, (3): 347-349(in Chinese with English abstract). [55] Liu, H. M., Yu, B. S., Xie, Z. H., et al., 2018. Characteristics and Implications of Micro-Lithofacies in Lacustrine-Basin Organic-Rich Shale: a Case Study of Jiyang Depression, Bohai Bay Basin. Acta Petrolei Sinca, 39(12): 1328-1343(in Chinese with English abstract). [56] Liu, J. S., Ding, W. L., Xiao, Z. K., et al., 2019. Advances in Comprehensive Characterization and Prediction of Reservoir Fractures. Progress in Geophysics, 34(6): 2283-2300(in Chinese with English abstract). [57] Liu, Y., 2018. Study on Shale Oil Reservoir Characteristics of Shahejie Formation in Jiyang Depression, Bohai Bay Basin(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [58] Long, H. Q., Li, S. P., 2022. The Research on the Heterogeneity of Shale Formations and Its Controlling Factors: A Case Study of the Second Member of Funing Formation in Subei Basin. Unconventional Oil and Gas, 9(4): 78-90(in Chinese with English abstract). [59] Loucks, R. G., Robert, M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks. Gulf Coast Association of Geological Societies, 3: 51-60. [60] Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 [61] Lu, S. F., Huang, W. B., Chen, F. W., et al., 2012. Classification and Evaluation Criteria of Shale Oil and Gas Resources: Discussion and Application. Petroleum Exploration and Development, 39(2): 268-276. https://doi.org/10.1016/S1876-3804(12)60042-1 [62] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2022. Geological Characteristics and Exploration Practices of Continental Shale Oil in China. Acta Geologica Sinica, 96(1): 155-171(in Chinese with English abstract). [63] Ma, Y. S., Feng, J. H., Mou, Z. H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Strategic Study of CAE, 14(6): 22-30(in Chinese with English abstract). [64] Maugeri, L., 2013. The Shale Oil Boom: a U.S. Phenomenon. Harvard University Press, Cambridge, 2. [65] Mehana, M., Guiltinan, E., Vesselinov, V., et al., 2021. Machine-Learning Predictions of the Shale Wells' Performance. Journal of Natural Gas Science and Engineering, 88: 103819. https://doi.org/10.1016/j.jngse. 2021. 103819 doi: 10.1016/j.jngse.2021.103819 [66] Meng, M., Zhong, R. Z., Wei, Z. L., 2020. Prediction of Methane Adsorption in Shale: Classical Models and Machine Learning Based Models. Fuel, 278: 118358. https://doi.org/10.1016/j.fuel.2020.118358 [67] Ning, F. X., 2015. The Main Control Factors of Shale Oil Enrichment in Jiyang Depression. Acta Petrolei Sinca, 36(8): 905-914(in Chinese with English abstract). [68] Ning, F. X., Wang, X. J., Hao, X. F., et al., 2015. Evaluation Method of Shale Oil Sweetspots in Jiyang Depression. Science Technology and Engineering, 15(35): 11-16(in Chinese with English abstract). [69] Pu, C. S., Zheng, H., Yang, Z. P., et al., 2020. Research Status and Development Trend of the Formation Mechanism of Complex Fractures by Staged Volume Fracturing in Horizontal Wells. Acta Petrolei Sinca, 41(12): 1734-1743(in Chinese with English abstract). [70] Robison, C. R., Castano, J. R., 1997. Hydrocarbon source rock variability within the Austin Chalk and Eagle Ford Shale (Upper Cretaceous), East Texas, U.S.A. International Journal of Coal Geology, 34(3-4): 287-305. https://doi.org/10.1016/S0166-5162(97)00027-X. [71] Shi, L., Zhang, K. P., Mu, L. J., 2020. Discussion of Hydraulic Fracturing Technical Issues in Shale Oil Reservoirs. Petroleum Science Bulletin, 5(4): 496-511(in Chinese with English abstract). [72] Song, G. Q., Zhang, L. Y., Lu, S. F., et al., 2013. Resource Evaluation Method for Shale Oil and Its Application. Earth Science Frontiers, 20(4): 221-228(in Chinese with English abstract). [73] Su, T. J., Zheng, Y. C., 2007. Correlations Between Heavy Oil Composition and its Viscosity. Journal of Yangtze University, 1: 60-62(in Chinese with English abstract). [74] Sun, S. S., Dong, D., Li, Y., et al., 2021. Geological Characteristics and Controlling Factors of Hydrocarbon Accumulation in Terrestrial Shale in the Da'anzhai Member of the Jurassic Ziliujing Formation, Sichuan Basin. Oil and Gas Geology, 42(1): 124-135(in Chinese with English abstract). [75] Treadgold, G., Mclain, B., Sinclair, S., 2011. Eagle Ford Shale Prospecting with 3D Seismic and Microseismic Data. Rio de Janeiro. [76] Wang, G. C., Wang, Y. X., Liu, F., et al., 2022. Advances and Trends in Hydrogeochemical Studies: Insights from Bibliometric Analysis. Earth Science Frontiers, 29(3): 25-36(in Chinese with English abstract). [77] Wang, M., Chen, X., Yan, Y. X, et al., 2013. Geological Characteristics and Evaluation of Continental Shale Oil in Biyang Sag of Nanxiang Basin. Journal of Palaeogeography, 15(5): 663-671(in Chinese with English abstract). [78] Wang, M., Ma, R., Li, J. B., et al., 2019. Occurrence Mechanism of Lacustrine Shale Oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 46(4): 833-846. https://doi.org/10.1016/S1876-3804(19)60242-9 [79] Wang, S. L., Wu, X. S., Zhang, W., et al., 2016. Progress and Trend of Global Exploration and Development for Shale Resources. China Mining Magazine, 25(2): 7-11(in Chinese with English abstract). [80] Wang, X. Z., Zhang, L. X., Lei, Y. H., et al., 2018. Characteristics of Migrated Solid Organic Matters and Organic Pores in Low Maturity Lacustrine Shale: a Case Study of the Shale in Chang 7 Oil-Bearing Formation of Yanchang Formation, Southeastern Ordos Basin. Acta Petrolei Sinca, 39(2): 141-151(in Chinese with English abstract). [81] Wang, X. K., Sheng, J. J., 2017. Effect of Low-Velocity Non-Darcy Flow on Well Production Performance in Shale and Tight Oil Reservoirs. Fuel, 190: 41-46. https://doi.org/10.1016/j.fuel.2016.11.040 [82] Wang, Y., Liu, H. M., Song, G. Q., et al., 2017. Enrichment Controls and Models of Shale Oil in the Jiyang Depression, Bohai Bay Basin. Geological Journal of China Universities, 23(2): 268-276(in Chinese with English abstract). [83] Wang, Y., Song, G. Q., Liu, H. M., et al., 2015. Main Control Factors of Enrichment Characteristics of Shale Oil in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 22(4): 20-25(in Chinese with English abstract). [84] Wu, X. L., Gao, B., Ye, X., et al., 2013. Shale Oil Accumulation Conditions and Exploration Potential of Faulted Basins in the East of China. Oil and Gas Geology, 34(4): 455-462(in Chinese with English abstract). [85] Xi, K. L., Li, K., Cao, Y. C., et al., 2020. Laminae Combination and Shale Oil Enrichment Patterns of Chang 73 Sub-Member Organic-Rich Shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(6): 1342-1353. https://doi.org/10.1016/S1876-3804(20)60142-8 [86] Xu, W. M., Ruhl, M., Jenkyns, H. C., et al., 2017. Carbon Sequestration in an Expanded Lake System during the Toarcian Oceanic Anoxic Event. Nature Geoscience, 10(2): 129-134. https://doi.org/10.1038/ngeo2871 [87] Xu, Y., Lun, Z. M., Pan, Z. J., et al., 2022. Occurrence Space and State of Shale Oil: a Review. Journal of Petroleum Science and Engineering, 211: 110183. https://doi.org/10.1016/j.petrol.2022.110183 [88] Yan, D. T., Lu, J., Wei, X. S., et al., 2019. Sediment Environment and Major Controlling Factors of Organic Rich Shales in the Rift Lake Basin: A Case Study of the 2nd Member of Liushagang Formation of the Weixinan Sag. China Offshore Oil and Gas, 31(5): 21-29(in Chinese with English abstract). [89] Yang, H., Li, S. X., Liu, X. Y., 2013. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin. Acta Petrolei Sinca, 34(1): 1-11(in Chinese with English abstract). doi: 10.1038/aps.2012.174 [90] Yang, L., Jin, Z. J., 2019. Global Shale Oil Development and Prospects. China Petroleum Exploration, 24(5): 553-559(in Chinese with English abstract). [91] Yang, Z. H., Zhao, H. B., Huang, Y., et al., 2022. Application of Seismic-Constrained 3D Modeling Technology in Geoscience and Engineering Integration of Gulong Shale Oil in Songliao Basin. Petroleum Geology and Oilfield Development in Daqing, 41(3): 103-111(in Chinese with English abstract). [92] Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot " Evaluation of Tight Oil and Shale Oil Petroleum Exploration and Development, 42(5): 555-565(in Chinese with English abstract). [93] Yang, Z., Zou, C. N., Hou, L. H., et al., 2019. Division of Fine-Grained Rocks and Selection of "Sweet Sections" in the Oldest Continental Shale in China: Taking the Coexisting Combination of Tight and Shale Oil in the Permian Junggar Basin. Marine and Petroleum Geology, 109: 339-348. https://doi.org/10.1016/j.marpetgeo.2019.06.010 [94] Yao, H. S., Zan, L., Gao, Y. Q., et al., 2021. Main Controlling Factors for the Enrichment of Shale Oil and Significant Discovery in Second Member of Paleogene Funing Formation, Qintong Sag, Subei Basin. Petroleum Geology and Experiment, 43(5): 776-783(in Chinese with English abstract). [95] Yu, X. L., Xu, Y., Weng, D. W., et al., 2020. Factors Influencing the Productivity of the Multi-Fractured Shale Oil Reservoir with Tighter Clusters. Journal of Southwest Petroleum University(Science & Technology Edition), 42(3): 132-143(in Chinese with English abstract). [96] Yu, Z. Y., Zhang, X. W., Tan, J. J., et al., 2019. Occurrence Characteristics and Mobility of Shale Oil in Biyang Sag. Petroleum Geology and Engineering, 33(1): 42-46(in Chinese with English abstract). [97] Zan, L., Luo, W. F., Yin, Y. L., et al., 2021. Formation Conditions of Shale Oil and Favorable Targets in the Second Member of Paleogene Funing Formation in Qintong Sag, Subei Basin. Petroleum Geology and Experiment, 43(2): 233-241(in Chinese with English abstract). [98] Zeng, L. B., Lu, W. Y., Xu, X., et al., 2022. Development Characteristics, Formation Mechanism and Hydrocarbon Significance of Bedding Fractures in Typical Tight Sandstone and Shale. Acta Petrolei Sinca, 43(2): 180-191(in Chinese with English abstract). [99] Zeng, L. B., Ma, S. J., Tian, H., et al., 2022. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science: 1-15(in Chinese with English abstract). [100] Zhang, B., Mao, Z., Zhang, Z., et al., 2021. Black Shale Formation Environment and Its Control on Shale Oil Enrichment in Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 48(6): 1127-1136(in Chinese with English abstract). [101] Zhang, D. X., 2015. Environmental Impacts of Hydraulic Fracturing in Shale Gas Development in the United States. Petroleum Exploration and Development, 42(6): 801-807(in Chinese with English abstract). [102] Zhang, J. C., Lin, L. M., Li, Y. X., et al., 2012. Classification and Evaluation of Shale Oil. Earth Science Frontiers, 19(5): 322-331(in Chinese with English abstract). [103] Zhang, P. F., Lu, S. F., Li, W. H., et al., 2016. Lower Limits of Porosity and Permeability of Shale Oil Reservoirs in the Xingouzui Formation, Jianghan Basin. Oil and Gas Geology, 37(1): 93-100(in Chinese with English abstract). [104] Zhang, S., Liu, H. M., Liu, Y. L., et al., 2021. Shale Oil Geological Dessert Types in Jiyang Depression, Bohai Bay Basin. Geological Review, 67(S1): 237-238(in Chinese with English abstract). [105] Zhang, S., Liu, H. M., Liu, Y. L., et al., 2021. Shale Oil Geological Dessert Types in Jiyang Depression, Bohai Bay Basin. Geological Review, 67(S1): 237-238(in Chinese with English abstract). [106] Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5 [107] Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2018. Geological Characteristics of Shale Rock System and Shale Oil Exploration Breakthrough in a Lacustrine Basin: A Case Study from the Paleogene 1st Sub-Member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 45(3): 361-372(in Chinese with English abstract). [108] Zhi, D. M., Song, Y., He, W. J., et al., 2019a. Geological Characteristics, Resource Potential and Exploration Direction of Shale Oil in Middle-Lower Permian, Junggar Basin. Xinjiang Petroleum Geology, 40(4): 389-401(in Chinese with English abstract). [109] Zhi, D. M., Tang, Y., Zheng, M. L., et al., 2019b. Geological Characteristics and Accumulation Controlling Factors of Shale Reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin. China Petroleum Exploration, 24(5): 615-623(in Chinese with English abstract). [110] Zhou, J. M., Zhang, H. C., Wang, M. R., 2021. Machine Learning With Physical Empirical Model Constraints for Prediction of Shale Oil Production. Applied Mathematics and Mechanics, 42(9): 881-890(in Chinese with English abstract). [111] Zhou, L. H., Chen, Z. W., Han, G. M., et al., 2019. Geological Characteristics and Shale Oil Exploration Potential of Lower First Member of Shahejie Formation in Qikou Sag, Bohai Bay Basin. Earth Science, 44(8): 2736-2750(in Chinese with English abstract). [112] Zhou, L. H., Pu, X. G., Xiao, D. Q., et al., 2018. Geological Conditions for Shale Oil Formation and the Main Controlling Factors for the Enrichment of the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Natural Gas Geoscience, 29(9): 1323-1332(in Chinese with English abstract). [113] Zhu, D. Y., Wang, X. J., Hao, X. F., et al., 2016. Study on Sequence Stratigraphic Division of Oil Shale in Dongying Sag. Petroleum Geology and Recovery Efficiency, 23(2): 52-56(in Chinese with English abstract). [114] Zou, C. N., Ma, F., Pan, S. Q., et al., 2022a. Formation and Distribution Potential of Global Shale Oil and the Theoretical and Technological Progress of Continental Shale Oil in China. Earth Science Frontiers: 1-16(in Chinese with English abstract). [115] Zou, C. N., Yang, Z., Cui, J. W., et al., 2013a. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale oil in China. Petroleum Exploration and Development, 40(1): 14-26(in Chinese with English abstract). [116] Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022b. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533(in Chinese with English abstract). [117] Zou, C. N., Yang, Z., Tao, S. Z., et al., 2012a. Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26(in Chinese with English abstract). [118] Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015a. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 13-25(in Chinese with English abstract). [119] Zou, C. N., Zhang, G. S., Yang, Z., et al., 2013b. Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon: On Unconventional Petroleum Geology. Petroleum Exploration and Development, 40(4): 385-399(in Chinese with English abstract). [120] Zou, C. N., Zhu, R. K., Bai, B., et al., 2015b. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 3-17(in Chinese with English abstract). [121] Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012b. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinca, 33(2): 173-187(in Chinese with English abstract). doi: 10.1038/aps.2011.203 [122] 包友书, 张林晔, 张金功, 等, 2016. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素. 石油与天然气地质, 37(3): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htm [123] 陈祥, 王敏, 严永新, 等, 2011. 泌阳凹陷陆相页岩油气成藏条件. 石油与天然气地质, 32(4): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104013.htm [124] 程冰洁, 徐天吉, 罗诗艺, 等, 2022. 基于机器学习的深层页岩有利储集层预测方法及实践. 石油勘探与开发, 49(5): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205008.htm [125] 崔景伟, 朱如凯, 杨智, 等, 2015. 国外页岩层系石油勘探开发进展及启示. 非常规油气, 2(4): 68-82. doi: 10.3969/j.issn.2095-8471.2015.04.012 [126] 范雨辰, 刘可禹, 蒲秀刚, 等, 2022. 页岩储集空间微观形态分类及三维结构重构——以渤海湾盆地沧东凹陷古近系孔店组二段为例. 石油勘探与开发, 49(5): 943-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205010.htm [127] 方欣欣, 郭迎春, 王朋, 等, 2020. 致密油成藏研究进展与待解决的重要科学问题. 中国地质, 47(1): 43-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001005.htm [128] 方欣欣, 苑坤, 林拓, 2017. 利比亚页岩油气资源潜力分析. 中国矿业, 26(S2): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S2005.htm [129] 冯国奇, 李吉君, 刘洁文, 等, 2019. 泌阳凹陷页岩油富集及可动性探讨. 石油与天然气地质, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm [130] 付茜, 刘启东, 刘世丽, 等, 2020. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析. 石油实验地质, 42(4): 625-631. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004019.htm [131] 盖平原, 2011. 胜利油田稠油黏度与其组分性质的关系研究. 油田化学, 28(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201101014.htm [132] 高岗, 刘显阳, 王银会, 等, 2013. 鄂尔多斯盆地陇东地区长7段页岩油特征与资源潜力. 地学前缘, 20(2): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201302022.htm [133] 韩克猷, 王毓俊, 查全衡, 2015. 川中侏罗系勘探潜力及勘探目标再认识. 石油科技论坛, 34(6): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201506011.htm [134] 何晋译, 蔡进功, 雷天柱, 等, 2019. 东营凹陷古近系泥页岩中可溶有机质特征与页岩油"甜点"预测. 油气地质与采收率, 26(1): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901018.htm [135] 何涛华, 李文浩, 谭昭昭, 等, 2019. 南襄盆地泌阳凹陷核桃园组页岩油富集机制. 石油与天然气地质, 40(6): 1259-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906010.htm [136] 何玉荣, 宋志超, 张燕明, 等, 2021. 机器学习在水力压裂作业中的应用综述. 中国石油大学学报(自然科学版), 45(6): 127-135. doi: 10.3969/j.issn.1673-5005.2021.06.015 [137] 姜在兴, 张文昭, 梁超, 等, 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm [138] 金涛, 张文济, 白蓉, 等, 2022. 四川盆地东部地区下侏罗统自流井组页岩储层特征. 天然气勘探与开发, 45(1): 87-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT202201011.htm [139] 金旭, 李国欣, 孟思炜, 等, 2021. 陆相页岩油可动用性微观综合评价. 石油勘探与开发, 48(1): 222-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101023.htm [140] 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [141] 匡立春, 侯连华, 杨智, 等, 2021. 陆相页岩油储层评价关键参数及方法. 石油学报, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm [142] 黎茂稳, 马晓潇, 蒋启贵, 等, 2019. 北美海相页岩油形成条件、富集特征与启示. 油气地质与采收率, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm [143] 黎茂稳, 马晓潇, 金之钧, 等, 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质, 43(1): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201020.htm [144] 李辉, 姜振学, 邓勇, 等, 2022. 南海涠西南凹陷页岩油形成条件及富集特征. 中国矿业大学学报, 51(5): 1-17. [145] 李吉君, 史颖琳, 章新文, 等, 2014. 页岩油富集可采主控因素分析: 以泌阳凹陷为例. 地球科学(中国地质大学学报), 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm [146] 李士超, 张金友, 公繁浩, 等, 2017. 松辽盆地北部上白垩统青山口组泥岩特征及页岩油有利区优选. 地质通报, 36(4): 654-663. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201704020.htm [147] 李小龙, 孙伟, 2022. 页岩油储层"七性"关系评价研究——以苏北盆地溱潼凹陷阜宁组二段为例. 非常规油气: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202206006.htm [148] 李阳, 赵清民, 吕琦, 等, 2022. 中国陆相页岩油开发评价技术与实践. 石油勘探与开发, 49(5): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205011.htm [149] 梁世君, 黄志龙, 柳波, 等, 2012. 马朗凹陷芦草沟组页岩油形成机理与富集条件. 石油学报, 33(4): 588-594. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204008.htm [150] 刘朝全, 姜学峰, 吴谋远, 2021. 2021国内外油气行业发展报告. 北京: 石油工业出版社, 3. [151] 刘海波, 郭绪强, 2008. 原油组分的性质与结构对其粘度的影响. 新疆石油地质, (3): 347-349. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200803023.htm [152] 刘惠民, 于炳松, 谢忠怀, 等, 2018. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义——以渤海湾盆地济阳坳陷为例. 石油学报, 39(12): 1328-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812002.htm [153] 刘敬寿, 丁文龙, 肖子亢, 等, 2019. 储层裂缝综合表征与预测研究进展. 地球物理学进展, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm [154] 刘毅, 2018. 渤海湾盆地济阳坳陷沙河街组页岩油储层特征研究(博士毕业论文). 成都: 成都理工大学. [155] 柳波, 吕延防, 冉清昌, 等, 2014. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力. 石油与天然气地质, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm [156] 柳波, 吕延防, 赵荣, 等, 2012. 三塘湖盆地马朗凹陷芦草沟组泥页岩系统地层超压与页岩油富集机理. 石油勘探与开发, 39(6): 699-705. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206008.htm [157] 龙海岑, 李绍鹏, 2022. 泥页岩层系非均质性及其控制因素研究——以苏北盆地阜二段为例. 非常规油气, 9(4): 78-90. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202204011.htm [158] 马永生, 蔡勋育, 赵培荣, 等, 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201010.htm [159] 马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201206003.htm [160] 宁方兴, 2015. 济阳坳陷页岩油富集主控因素. 石油学报, 36(8): 905-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508002.htm [161] 宁方兴, 王学军, 郝雪峰, 等, 2015. 济阳坳陷页岩油甜点评价方法研究. 科学技术与工程, 15(35): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201535003.htm [162] 蒲春生, 郑恒, 杨兆平, 等, 2020. 水平井分段体积压裂复杂裂缝形成机制研究现状与发展趋势. 石油学报, 41(12): 1734-1743. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012025.htm [163] 石林, 张鲲鹏, 慕立俊, 2020. 页岩油储层压裂改造技术问题的讨论. 石油科学通报, 5(4): 496-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202004006.htm [164] 宋国奇, 张林晔, 卢双舫, 等, 2013. 页岩油资源评价技术方法及其应用. 地学前缘, 20(4): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304021.htm [165] 苏铁军, 郑延成, 2007. 稠油族组成与黏度关联研究. 长江大学学报, 1: 60-62. [166] 孙莎莎, 董大忠, 李育聪, 等, 2021. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素. 石油与天然气地质, 42(1): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101012.htm [167] 王广才, 王焰新, 刘菲, 等, 2022. 基于文献计量学分析水文地球化学研究进展及趋势. 地学前缘, 29(3): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203003.htm [168] 王敏, 陈祥, 严永新, 等, 2013. 南襄盆地泌阳凹陷陆相页岩油地质特征与评价. 古地理学报, 15(5): 663-671. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305013.htm [169] 王淑玲, 吴西顺, 张炜, 等, 2016. 全球页岩油气勘探开发进展及发展趋势. 中国矿业, 25(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201602002.htm [170] 王香增, 张丽霞, 雷裕红, 等, 2018. 低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例. 石油学报, 39(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802002.htm [171] 王勇, 刘惠民, 宋国奇, 等, 2017. 济阳坳陷页岩油富集要素与富集模式研究. 高校地质学报, 23(2): 268-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201702009.htm [172] 王勇, 宋国奇, 刘惠民, 等, 2015. 济阳坳陷页岩油富集主控因素. 油气地质与采收率, 22(4): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201504004.htm [173] 武晓玲, 高波, 叶欣, 等, 2013. 中国东部断陷盆地页岩油成藏条件与勘探潜力. 石油与天然气地质, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm [174] 严德天, 陆江, 魏小松, 等, 2019. 断陷湖盆富有机质页岩形成环境及主控机制浅析——以涠西南凹陷流沙港组二段为例. 中国海上油气, 31(5): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905003.htm [175] 杨华, 李士祥, 刘显阳, 2013. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm [176] 杨雷, 金之钧, 2019. 全球页岩油发展及展望. 中国石油勘探, 24(5): 553-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905002.htm [177] 杨志会, 赵海波, 黄勇, 等, 2022. 地震信息约束的三维建模技术及其在松辽盆地古龙页岩油地质工程一体化中的应用. 大庆石油地质与开发, 41(3): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202203009.htm [178] 杨智, 侯连华, 陶士振, 等, 2015. 致密油与页岩油形成条件与"甜点区"评价. 石油勘探与开发, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm [179] 姚红生, 昝灵, 高玉巧, 等, 2021. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破. 石油实验地质, 43(5): 776-783. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105007.htm [180] 于学亮, 胥云, 翁定为, 等, 2020. 页岩油藏"密切割"体积改造产能影响因素分析. 西南石油大学学报(自然科学版), 42(3): 132-143. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202003014.htm [181] 余志远, 章新文, 谭静娟, 等, 2019. 泌阳凹陷页岩油赋存特征及可动性研究. 石油地质与工程, 33(1): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201901011.htm [182] 昝灵, 骆卫峰, 印燕铃, 等, 2021. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价. 石油实验地质, 43(2): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202102006.htm [183] 曾联波, 吕文雅, 徐翔, 等, 2022a. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义. 石油学报, 43(2): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202002.htm [184] 曾联波, 马诗杰, 田鹤, 等, 2022b. 富有机质页岩天然裂缝研究进展. 地球科学: 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202301006.htm [185] 张斌, 毛治国, 张忠义, 等, 2021. 鄂尔多斯盆地三叠系长7段黑色页岩形成环境及其对页岩油富集段的控制作用. 石油勘探与开发, 48(6): 1127-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106006.htm [186] 张东晓, 杨婷云, 2015. 美国页岩气水力压裂开发对环境的影响. 石油勘探与开发, 42(6): 801-807. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506015.htm [187] 张金川, 林腊梅, 李玉喜, 等, 2012. 页岩油分类与评价. 地学前缘, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm [188] 张鹏飞, 卢双舫, 李文浩, 等, 2016. 江汉盆地新沟嘴组页岩油储层物性下限. 石油与天然气地质, 37(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601014.htm [189] 张顺, 刘惠民, 刘雅利, 等, 2021. 渤海湾盆地济阳坳陷页岩油地质甜点类型划分. 地质论评, 67(S1): 237-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2021S1105.htm [190] 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm [191] 赵贤正, 周立宏, 蒲秀刚, 等, 2018. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例. 石油勘探与开发, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803002.htm [192] 支东明, 宋永, 何文军, 等, 2019a. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389-401. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904002.htm [193] 支东明, 唐勇, 郑孟林, 等, 2019b. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905008.htm [194] 周济民, 张海晨, 王沫然, 2021. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用. 应用数学和力学, 42(9): 881-890. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202109001.htm [195] 周立宏, 陈长伟, 韩国猛, 等, 2019. 渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力. 地球科学, 44(8): 2736-2750. doi: 10.3799/dqkx.2019.112 [196] 周立宏, 蒲秀刚, 肖敦清, 等, 2018. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素. 天然气地球科学, 29(9): 1323-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809010.htm [197] 朱德燕, 王学军, 郝雪峰, 等, 2016. 东营凹陷泥页岩层序地层划分. 油气地质与采收率, 23(2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201602009.htm [198] 邹才能, 翟光明, 张光亚, 等, 2015a. 全球常规-非常规油气形成分布、资源潜力及趋势预测. 石油勘探与开发, 42(1): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501003.htm [199] 邹才能, 马锋, 潘松圻, 等, 2022a. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘: 1-16. [200] 邹才能, 杨智, 崔景伟, 等, 2013a. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm [201] 邹才能, 杨智, 董大忠, 等, 2022b. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160 [202] 邹才能, 杨智, 陶士振, 等, 2012a. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm [203] 邹才能, 张国生, 杨智, 等, 2013b. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学. 石油勘探与开发, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm [204] 邹才能, 朱如凯, 白斌, 等, 2015b. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm [205] 邹才能, 朱如凯, 吴松涛, 等, 2012b. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm