Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation
-
摘要: 研究下寒武统筇竹寺组烃源岩灶迁移演化能够为震旦-寒武系天然气成藏动力学及勘探方向提供重要的支撑. 以四川盆地热历史为基础,利用盆地模拟技术恢复筇竹寺组成熟度史及生烃史,揭示烃源岩灶迁移演化规律,建立烃源岩灶与规模成藏的耦合关系,进而指出震旦-寒武系天然气发育的有利区. 筇竹寺组烃源岩主要具有3期生油阶段:加里东旋回末期、海西旋回中-末期、印支旋回末期-燕山旋回早期;且具有4期生气阶段:加里东旋回末期、海西旋回中-末期、海西旋回末期-印支旋回中期、印支旋回中期-燕山旋回早期. 加里东旋回末期,川北和川南-川西南地区发育两个烃源岩灶,后者为主要生烃中心;加里东旋回末期-海西旋回末期,川北地区烃源岩灶向西迁移,为主要生烃中心,川南-川西南地区烃源岩灶未迁移,生烃强度少量增加;海西旋回末期-燕山旋回末期,川西北-川中地区发育一个新的烃源岩灶,生烃强度大且生烃面积广,该阶段为筇竹寺组烃源岩最主要的生烃阶段. 烃源岩以生油为主,生气为辅,震旦-寒武系气藏主要由原油二次裂解形成. 较大的生油强度、台缘带优质储层及构造高带的时空耦合为震旦-寒武系规模成藏奠定了坚实基础,研究成果可以为震旦-寒武系的天然气勘探提供重要的依据,针对震旦-寒武系的天然气下一步勘探应考虑中北部槽缘带的优质储层.Abstract: The research on the hydrocarbon kitchen evolution of the Lower Cambrian Qiongzhusi Formation can provide important sustain for natural gas accumulation dynamics and exploration direction of the Sinian-Cambrian. Based on thermal history of the Sichuan Basin, the maturity and hydrocarbon generation histories of source rocks of the Qiongzhusi Formation were reproduced, the hydrocarbon kitchen evolution regularity was revealed, the coupling relationship between hydrocarbon generation processes, pale structure and large-scale reservoir formation was established, and the favorable zones of natural gas development in the Sinian-Cambrian were pointed out. The results show that the source rocks of the Qiongzhusi Formation experienced three stages of oil generation, including the Late Caledonian Movement Cycle, the Middle to Late Hercynian Movement Cycle and the Late Indosinian Movement Cycle to Early Yanshanian Movement Cycle; and four stages of gas generation, including the Late Caledonian Movement Cycle, the Middle to Late Hercynian Movement Cycle, the Late Hercynian Movement Cycle to Middle Indosinian Movement Cycle and the Middle Indosinian Movement Cycle to Early Yanshanian Movement Cycle. During the Late Caledonian Movement Cycle, two hydrocarbon kitchens were developed in northern and southern to southwestern Sichuan Basin, respectively, and the latter was the main hydrocarbon generation center; During the Late Caledonian Movement Cycle to the Late Hercynian Movement Cycle, hydrocarbon kitchen in northern Sichuan Basin migrated westward and was the main hydrocarbon generation center. The hydrocarbon generation intensity of hydrocarbon kitchen in southern to southwestern Sichuan Basin increased slightly and the kitchen did not migrate. During the Late Hercynian Movement Cycle to the Late Yanshanian Movement Cycle, a new hydrocarbon kitchen was developed in northwestern to central Sichuan Basin, which had large hydrocarbon intensity and wide area, and this stage was the most important hydrocarbon generation stage. The Sinian-Cambrian natural gas reservoirs were mainly formed by secondary cracking of crude oil. The space-time coupling of massive hydrocarbon generation, high-quality reservoirs in the platform margin and the high tectonic belt have laid a solid foundation for the large-scale accumulation. This research can provide basic parameters for gas exploration and exploitation. For the next exploration of the natural gas of the Sinian-Cambrian system, the high-quality reservoirs in the margin belt of the north central trough should be considered, and the shale gas exploration should be carried out at the positions where the three source rock kitchens are developed.
-
图 1 四川盆地位置及构造分区图
据马新华等(2021)修改;a. 四川盆地位置图;b. 构造分区图
Fig. 1. Position and structural unit division of the Sichuan Basin
-
[1] Chen, Z. Q., 2010. Gas Exploration in Sinian Dengying Formation, Sichuan Basin. China Petroleum Exploration, 15(4): 1-14, 18(in Chinese with English abstract) doi: 10.3969/j.issn.1672-7703.2010.04.001 [2] Hou, M. F., Pan, S. Q., Liu, H. L., 2021. World Energy Trend and China's Oil and Gas Sustainable Development Strategies. Natural Gas Industry, 41(12): 9-16 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.12.002 [3] Hu, G. Y., He, F., Mi, J. K., et al., 2021. The Geochemical Characteristics, Distribution Patterns, and Gas Exploration Potential of Marine Source Rocks in Northwest Sichuan Basin. Natural Gas Geoscience, 32(3): 319-333 (in Chinese with English abstract). [4] Li, J. J., Cao, Q., Lu, S. F., et al., 2016. History of Natural Gas Accumulation in Leshan-Longnyusi Sinian Paleo-Uplift, Sichuan Basin. Oil & Gas Geology, 37(1): 30-36 (in Chinese with English abstract). [5] Li, J., He, D. F., 2014. Palaeogeography and Tectonic-Depositional Environment Evolution of the Cambrian in Sichuan Basin and Adjacent Areas. Journal of Palaeogeography, 16(4): 441-460 (in Chinese with English abstract). [6] Liu, S. G., Deng, B., Sun, W., et al., 2020. May Sichuan Basin Be a Super Petroliferous Basin? Journal of Xihua University (Natural Science Edition), 39(5): 20-35 (in Chinese with English abstract). [7] Liu, S. G., Yang, Y., Deng, B., et al., 2021. Tectonic Evolution of the Sichuan Basin, Southwest China. Earth-Science Reviews, 213: 103470. https://doi.org/10.1016/j.earscirev.2020.103470 [8] Liu, S. G., Sun, W., Song, J. M., et al., 2015. Tectonics-Controlled Distribution of Marine Petroleum Accumulations in the Sichuan Basin, China. Earth Science Frontiers, 22(3): 146-160(in Chinese with English abstract). [9] Ma, X. H., Yan, H. J., Chen, J. Y., et al. 2021. Development Patterns and Constraints of Superimposed Karst Reservoirs in Sinian Dengying Formation, Anyue Gas Field, Sichuan Basin. Oil & Gas Geology, 42(6): 1281-1284 (in Chinese with English abstract). [10] Ma, X. H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium- and Large-Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 1-13 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1 [11] Qiu, N. S., Chang, J., Zhu, C. Q., et al., 2022. Thermal Regime of Sedimentary Basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Science Reviews, 224: 103884. https://doi.org/10.1016/j.earscirev.2021.103884 [12] Qiu, N. S., Liu, W., Fu, X. D., et al., 2021. Maturity Evolution of Lower Cambrian Qiongzhusi Formation Shale of the Sichuan Basin. Marine and Petroleum Geology, 128: 105061. https://doi.org/10.1016/j.marpetgeo.2021.105061 [13] Rao, S., Yang, Y. N., Hu, S. B., et al., 2022. The Thermal Evolution History and Shale Gas Accumulation Significance in the Lower Cambrian Qiongzhusi Formation in the Southwest Sichuan Basin. Earth Science (in Chinese with English abstract). [14] Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching-Explanation of Post-Mid-Cretaceous Subsidence of Central North-Sea Basin. AAPG Bulletin, 64(5): 781-782. https://doi.org/10.1306/2f919201-16ce-11d7-8645000102c1865d [15] Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378 (in Chinese with English abstract). [16] Tian, T., Yang, P., Ren, Z. L., et al., 2020. Hydrocarbon Migration and Accumulation in the Lower Cambrian to Neoproterozoic Reservoirs in the Micangshan Tectonic Zone, China: New Evidence of Fluid Inclusions. Energy Reports, 6: 721-733. https://doi.org/10.1016/j.egyr. 2020.03.012 doi: 10.1016/j.egyr.2020.03.012 [17] Tian, T., Yang, P., Yao, J. M., et al., 2021. New Detrital Apatite Fission Track Thermochronological Constraints on the Meso-Cenozoic Tectono-Thermal Evolution of the Micangshan-Dabashan Tectonic Belt, Central China. Frontiers in Earth Science, 9: 754137. https://doi.org/10.3389/feart.2021.754137 [18] Wei, G. Q., Wang, Z. H., Li, J., et al., 2017. Characteristics of Source Rocks, Resource Potential and Exploration Direction of Sinian and Cambrian in Sichuan Basin. Natural Gas Geoscience, 28(1): 1-13 (in Chinese with English abstract). [19] Xu, M. Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese J. Geophys. , 54(4) : 1052-1060 (in Chinese). [20] Xu, Q. C., Qiu, N. S., Liu, W., et al., 2018. Thermal Evolution and Maturation of Sinian and Cambrian Source Rocks in the Central Sichuan Basin, Southwest China. Journal of Asian Earth Sciences, 164: 143-158. https://doi.org/10.1016/j.jseaes.2018.06.015 [21] Yang, M. H., Zuo, Y. H., Zhang, J. Z., et al., 2021. Hydrocarbon Kitchen Evolution in the Early Cretaceous Bayingebi 2 Formation in the Chagan Depression, Yingen-Ejinaqi Basin, North Central China. ACS Omega, 6(18): 12194-12204. https://doi.org/10.1021/acsomega. 1c00944 doi: 10.1021/acsomega.1c00944 [22] Yang, Y. M., Wen, L., Luo, B., et al., 2016a. Sedimentary Tectonic Evolution and Reservoir-Forming Conditions of the Dazhou-Kaijiang Paleo-Uplift, Sichuan Basin. Natural Gas Industry, 36(8): 1-10 (in Chinese with English abstract). [23] Yang, Y. M., Wen, L., Luo, B., et al., 2016b. Hydrocarbon Accumulation of Sinian Natural Gas Reservoirs, Leshan-Longnüsi Paleohigh, Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 179-188 (in Chinese with English abstract). [24] Yang, Y., Luo, B., Zhang, B. J., et al., 2021. Differential Mechanisms of Organic Matter Accumulation of Source Rocks in the Lower Cambrian Qiongzhusi Formation and Implications for Gas Exploration Fields in Sichuan Basin. Petroleum Geology & Experiment, 43(4): 611-619 (in Chinese with English abstract). [25] Yang, Y., Wen, L., Xie, J. R., et al., 2020. Progress and Direction of Marine Carbonate Gas Exploration in Sichuan Basin. China Petroleum Exploration, 25(3): 44-55 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.03.005 [26] Yu, Z., 2017. Changes of Ground Temperature in Sichuan and Evaluation Model. Chengdu University of Technology. [27] Zhang, N. N., He, D. F., Sun, Y. P., et al., 2014. Distribution Patterns and Controlling Factors of Giant Carbonate Rock Oil and Gas Fields Worldwide. China Petroleum Exploration, 19(6): 54-65 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2014.06.007 [28] Zhao, W. Z., Wang, Z. C., Jiang, H., et al., 2020. Exploration Status of the Deep Sinian Strata in the Sichuan Basin: Formation Conditions of Old Giant Carbonate Oil/Gas Fields. Natural Gas Industry, 40(2): 1-10 (in Chinese with English abstract). [29] Zhu, G. Y., Milkov, A. V., Chen, F. R., et al., 2018. Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China. Marine and Petroleum Geology, 89: 252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019 [30] Zou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293 (in Chinese with English abstract). [31] Zou, C. N., He, D. B., Jia, C. Y., et al., 2021. Connotation and Pathway of World Energy Transition and its Significance for Carbon Neutral. Acta Petrolei Sinica, 42(2): 233-247 (in Chinese with English abstract). [32] Zou, C. N., Wei, G. Q., Xu, C. C., et al., 2014. Geochemistry of the Sinian-Cambrian Gas System in the Sichuan Basin, China. Organic Geochemistry, 74: 13-21. https://doi.org/10.1016/j.orggeochem.2014.03.004 [33] Zuo, Y. H., Qiu, N. S., Zhang, Y., et al., 2011. Geothermal Regime and Hydrocarbon Kitchen Evolution of the Offshore Bohai Bay Basin, North China. AAPG Bulletin, 95(5): 749-769. https://doi.org/10.1306/09271010079 [34] 陈宗清, 2010. 四川盆地震旦系灯影组天然气勘探. 中国石油勘探, 15(4): 1-14, 18. doi: 10.3969/j.issn.1672-7703.2010.04.001 [35] 侯梅芳, 潘松圻, 刘翰林, 2021. 世界能源转型大势与中国油气可持续发展战略. 天然气工业, 41(12): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202112002.htm [36] 胡国艺, 贺飞, 米敬奎, 等, 2021. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力. 天然气地球科学, 32(3): 319-333. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103001.htm [37] 李吉君, 曹群, 卢双舫, 等, 2016. 四川盆地乐山-龙女寺古隆起震旦系天然气成藏史. 石油与天然气地质, 37(1): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601006.htm [38] 李皎, 何登发, 2014. 四川盆地及邻区寒武纪古地理与构造—沉积环境演化. 古地理学报, 16(4): 441-460. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404002.htm [39] 刘树根, 邓宾, 孙玮, 等, 2020. 四川盆地是"超级"的含油气盆地吗?西华大学学报(自然科学版), 39(5): 20-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX202005004.htm [40] 刘树根, 孙玮, 宋金民, 等, 2015. 四川盆地海相油气分布的构造控制理论. 地学前缘, 22(3): 146-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503015.htm [41] 马新华, 闫海军, 陈京元, 等, 2021. 四川盆地安岳气田震旦系气藏叠合岩溶发育模式与主控因素. 石油与天然气地质, 42(6): 1281-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106004.htm [42] 马新华, 杨雨, 文龙, 等, 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向. 石油勘探与开发, 46(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901001.htm [43] 饶松, 杨轶南, 胡圣标, 等, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学. doi: 10.3799/dqkx.2019.183 [44] 苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202 [45] 魏国齐, 王志宏, 李剑, 等, 2017. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向. 天然气地球科学, 28(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701001.htm [46] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm [47] 杨雨, 罗冰, 张本健, 等, 2021. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域. 石油实验地质, 43(4): 611-619. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104007.htm [48] 杨雨, 文龙, 谢继容, 等, 2020. 四川盆地海相碳酸盐岩天然气勘探进展与方向. 中国石油勘探, 25(3): 44-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003005.htm [49] 杨跃明, 文龙, 罗冰, 等, 2016a. 四川盆地达州-开江古隆起沉积构造演化及油气成藏条件分析. 天然气工业, 36(8): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608002.htm [50] 杨跃明, 文龙, 罗冰, 等, 2016b. 四川盆地乐山-龙女寺古隆起震旦系天然气成藏特征. 石油勘探与开发. 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm [51] 于真, 2017. 四川省地表温度时空变化特征及评价模型研究. 成都理工大学. [52] 张宁宁, 何登发, 孙衍鹏, 等, 2014. 全球碳酸盐岩大油气田分布特征及其控制因素. 中国石油勘探, 19(6): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201406007.htm [53] 赵文智, 汪泽成, 姜华, 等, 2020. 从古老碳酸盐岩大油气田形成条件看四川盆地深层震旦系的勘探地位. 天然气工业, 40(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002002.htm [54] 邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系——寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [55] 邹才能, 何东博, 贾成业, 等, 2021. 世界能源转型内涵、路径及其对碳中和的意义. 石油学报, 42(2): 233-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202102008.htm