[1] |
Aubry, T. J., Farquharson, J. I., Rowell, C. R., et al., 2022. Impact of Climate Change on Volcanic Processes: Current Understanding and Future Challenges. Bulletin of Volcanology, 84(6): 1-11. https://doi.org/10.1007/s00445-022-01562-8
|
[2] |
Bachmann, O., Huber, C., 2018. The Inner Workings of Crustal Distillation Columns: The Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103
|
[3] |
Caricchi, L., Townsend, M., Rivalta, E., et al., 2021. The Build-up and Triggers of Volcanic Eruptions. Nature Reviews Earth & Environment, 2: 458-476.
|
[4] |
Carter, L. C., Williamson, B. J., Tapster, S. R., et al., 2021. Crystal Mush Dykes as Conduits for Mineralising Fluids in the Yerington Porphyry Copper District, Nevada. Communications Earth & Environment, 2(1): 1-11.
|
[5] |
Cassidy, M., Mani, L., 2022. Prepare Now for Big Eruptions. Nature, 608: 469-471. https://doi.org/10.1038/d41586-022-02177-x
|
[6] |
Degruyter, W., Huber, C., Bachmann, O., et al., 2017. Influence of Exsolved Volatiles on Reheating Silicic Magmas by Recharge and Consequences for Eruptive Style at Volcán Quizapu (Chile). Geochemistry, Geophysics, Geosystems, 11(18): 4123-4135.
|
[7] |
Di Genova, D., Kolzenburg, S., Wiesmaier, S., et al., 2017. A Compositional Tipping Point Governing the Mobilization and Eruption Style of Rhyolitic Magma. Nature, 552(7684): 235-238. doi: 10.1038/nature24488
|
[8] |
Dufek, J., Bachmann, O., 2010. Quantum Magmatism: Magmatic Compositional Gaps Generated by Melt- Crystal Dynamics. Geology, 38: 687-690.
|
[9] |
Eichelberger, J., 2019. Planning an International Magma Observatory. EOS, 100. https://doi.org/10.1029/2019EO125255
|
[10] |
Felgenhauer, T., Bala, G., Borsuk, M., et al., 2022. Solar Radiation Modification: A Risk-Risk Analysis. Carnegie Climate Governance Initiative (C2G), New York.
|
[11] |
Garibaldi, N., Tikoff, B., Schaen, A. J., et al., 2018. Interpreting Granitic Fabrics in Terms of Rhyolitic Melt Segregation, Accumulation, and Escape via Tectonic Filter Pressing in the Huemul Pluton, Chile Nicolas. Journal of Geophysics Research: Solid Earth, 10(123): 8548-8567.
|
[12] |
Gernon, T. M., Hincks, T. K., Merdith, A. S., et al., 2021. Global Chemical Weathering Dominated by Continental Arcs since the Mid-Palaeozoic. Nature Geoscience, 14(9): 690-696. doi: 10.1038/s41561-021-00806-0
|
[13] |
Green, T., Renne, P. R., Keller, C. B., 2022. Continental Flood Basalts Drive Phanerozoic Extinctions. Proceedings of the National Academy of Sciences, 119(38): e2120441119. https://doi.org/10.1073/pnas.2120441119
|
[14] |
Gudmundsson, M. T., Jonsdottir, K., Hooper, A., et al., 2016. Gradual Caldera Collapse at Bárdarbunga Volcano, Iceland, Regulated by Lateral Magma Outflow. Science, 353 (6296): aaf8988. doi: 10.1126/science.aaf8988
|
[15] |
Hartung, E., Weber, G., Caricchi, L., 2019. The Role of H2O on the Extraction of Melt from Crystallising Magmas. Earth and Planetary Science Letters, 508: 85-96. doi: 10.1016/j.epsl.2018.12.010
|
[16] |
Humphreys, M. C., Smith, V. C., Coumans, J. P., et al., 2021. Rapid Pre-Eruptive Mush Reorganisation and Atmospheric Volatile Emissions from the 12.9 ka Laacher See Eruption, Determined Using Apatite. Earth and Planetary Science Letters, 576: 117198. doi: 10.1016/j.epsl.2021.117198
|
[17] |
Irvine, P. J., Kravitz, B., Lawrence, M. G., et al., 2016. An Overview of the Earth System Science of Solar Geoengineering. WIREs Climate Change, 7: 815-833. https://doi.org/10.1002/wcc.423
|
[18] |
Langhammer, D., Di Genova, D., Steinle-Neumann, G., 2021. Modeling the Viscosity of Anhydrous and Hydrous Volcanic Melts. Geochemistry, Geophysics, Geosystems, 22(8): e2021GC009918.
|
[19] |
Lin, J., Svensson, A., Hvidberg, C. S., et al., 2022. Magnitude, Frequency and Climate Forcing of Global Volcanism during the Last Glacial Period as Seen in Greenland and Antarctic Ice Cores (60-9 ka). Clim. Past, 18: 485-506. doi: 10.5194/cp-18-485-2022
|
[20] |
Liu, F., Xing, C., Li, J. B., et al., 2020. Could the Recent Taal Volcano Eruption Trigger an El Niño and Lead to Eurasian Warming? Advances in Atmospheric Sciences, 37(7): 663-670. https://doi.org/10.1007/s00376-020-2041-z
|
[21] |
Lockwood, J. P. Hazlett, R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell, Hoboken.
|
[22] |
Lucas, L. C., Albright, J. A., Gregg, P. M., et al., 2022. The Impact of Ice Caps on the Mechanical Stability of Magmatic Systems: Implications for Forecasting on Human Timescales. Frontiers in Earth Science, 10: 868569. https://doi.org/10.3389/feart.2022.868569
|
[23] |
Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assembly and Granitic Petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract).
|
[24] |
Marshall, L. R., Maters, E. C., Schmidt, A., et al., 2022. Volcanic Effects on Climate: Recent Advances and Future Avenues. Bulletin of Volcanology, 84(5): 1-14. https://doi.org/10.1007/s00445-022-01559-3
|
[25] |
Millán, L., Santee, M. L., Lambert, A., et al., 2022. The Hunga Tonga-Hunga Ha'apai Hydration of the Stratosphere. Geophysical Research Letters, 49(13): e2022GL099381. https://doi.org/10.1029/2022gl099381
|
[26] |
Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532(7600): 492-495. https://doi.org/10.1038/nature17401
|
[27] |
Pistone, M., Blundy, J., Brooker, R. A., et al., 2017. Water Transfer during Magma Mixing Events: Insights into Crystal Mush Rejuvenation and Melt Extraction Processes. American Mineralogist, 102: 766-776. doi: 10.2138/am-2017-5793
|
[28] |
Poli, P., Shapiro, N. M., 2022. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Explosion from Teleseismic Waves. Geophysical Research Letters, 49(8): e2022GL098123. https://doi.org/10.1029/2022GL098123
|
[29] |
Racki, G., 2020. Volcanism as a Prime Cause of Mass Extinctions: Retrospectives and Perspectives. In Mass Extinctions, Volcanism, and Impacts: New Developments. Geological Society of America Special Paper, 544: 1-34.
|
[30] |
Rasmussen, D. J., Plank, T. A., Roman, D. C., et al., 2022. Magmatic Water Content Controls the Pre- Eruptive Depth of Arc Magmas. Science, 375(6585): 1169-1172. https://doi.org/10.1126/science.abm5174
|
[31] |
Reynolds, J. L., 2019. Solar Geoengineering to Reduce Climate Change: A Review of Governance Proposals. Proceedings Mathematical, Physical, and Engineering Sciences, 475(2229): 20190255. https://doi.org/10.1098/rspa.2019.0255
|
[32] |
Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. doi: 10.1130/G31110.1
|
[33] |
Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4
|
[34] |
Sigl, M., Toohey, M., McConnel, J. R., et al., 2022. Volcanic Stratospheric Sulfur Injections and Aerosol Optical Depth during the Holocene (Past 11 500 Years) from a Bipolar Ice-Core Array. Earth System Science Data, 14: 3167-3196. https://doi.org/10.5194/essd-14-3167-2022
|
[35] |
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., et al., 2010. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption. Nature, 468(7322): 426-430. https://doi.org/10.1038/nature09558
|
[36] |
Sliwinski, J. T., Bachmann, O., Dungan, M. A., et al., 2017. Rapid Pre-Eruptive Thermal Rejuvenation in a Large Silicic Magma Body: The Case of the Masonic Park Tuff, Southern Rocky Mountain Volcanic Field, CO, USA. Contributions to Mineralogy and Petrology, 172(5): 1-20. https://doi.org/10.1007/s00410-017-1351-3
|
[37] |
Tian, J. J., Ding, F., Hao, S. L., et al., 2021. Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?. Earth Science, 46(11): 3926-3944 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.363
|
[38] |
Toohey, M., Krüger, K., Schmidt, H., et al., 2019. Disproportionately Strong Climate Forcing from Extratropical Explosive Volcanic Eruptions. Nature Geoscience, 12(2): 100-107. https://doi.org/10.1038/s41561-018-0286-2
|
[39] |
Tuffen, H., 2010. How Will Melting of Ice Affect Volcanic Hazards in the Twenty-First Century? Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1919): 2535-2558. https://doi.org/10.1098/rsta.2010.0063
|
[40] |
Utami, S. B., Costa, F., Lesage, P., et al., 2021. Fluid Fluxing and Accumulation Drive Decadal and Short-Lived Explosive Basaltic Andesite Eruptions Preceded by Limited Volcanic Unrest. Journal of Petrology, 62(11): egab086. https://doi.org/10.1093/petrology/egab086
|
[41] |
Wirakusumah, A. D., Rachmat, H., 2017. Impact of the 1815 Tambora Eruption to Global Climate Change. IOP Conf. Series: Earth and Environmental Science, 71: 012007. https://doi.org/10.1088/1755-1315/71/1/012007
|
[42] |
Zhou, X. Y., Zhang, Y. X., Zhang, J. H., et al., 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.073
|
[43] |
Zuo, M., Zhou, T., Man, W., et al., 2022. Volcanoes and Climate: Sizing up the Impact of the Recent Hunga Tonga-Hunga Ha'apai Volcanic Eruption from a Historical Perspective. Advances in Atmospheric Sciences. https://org.doi/10.1007/s00376-022-2034-1 doi: 10.1007/s00376-022-2034-1
|
[44] |
马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
|
[45] |
田京京, 丁枫, 郝盛蓝, 等, 2021. 特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因: 东冈瓦纳大陆裂解的响应?. 地球科学, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
|
[46] |
周逍遥, 张玉修, 张吉衡, 等, 2021. 拉萨地体中部古新世早期灯垌火山‒侵入杂岩成因及地壳硅质岩浆演化. 地球科学, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
|