• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火山喷发机制、气候效应及火山地球工程

    马昌前 邹博文 黄贵治

    马昌前, 邹博文, 黄贵治, 2022. 火山喷发机制、气候效应及火山地球工程. 地球科学, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
    引用本文: 马昌前, 邹博文, 黄贵治, 2022. 火山喷发机制、气候效应及火山地球工程. 地球科学, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
    Ma Changqian, Zou Bowen, Huang Guizhi, 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415
    Citation: Ma Changqian, Zou Bowen, Huang Guizhi, 2022. Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering. Earth Science, 47(11): 4114-4121. doi: 10.3799/dqkx.2022.415

    火山喷发机制、气候效应及火山地球工程

    doi: 10.3799/dqkx.2022.415
    基金项目: 

    国家自然科学基金项目 42130309

    国家自然科学基金项目 41972066

    详细信息
      作者简介:

      马昌前(1958-),男,教授,博士,主要从事岩石学、岩浆动力学、地球系统科学的教学与研究工作. ORCID:0000-0002-1778-0547. E-mail:cqma@cug.edu.cn

    • 中图分类号: P58

    Volcanic Eruption Mechanism, Climate Impacts and Volcano Geoengineering

    • 摘要: 火山是地球内部与表层系统连接的纽带,是地球充满生机活力的体现.减轻大型火山喷发对全球气候和环境的影响是地球科学的重大研究主题.提出探索岩浆储库的累积组装和演变规律,研究火山喷发的触发机制,聚焦地球内、外层圈的相互作用,认识火山活动与全球气候和表层环境变化的互馈关系,构建火山地球工程的理论体系和技术框架,是减轻火山灾害对全人类不利影响的关键.其中,基于岩浆动力学和火山学的岩浆通道系统研究,将会为火山活动的预测和监测提供新的理论依据.火山活动的影响是全球性的.所以,我们要抢占先机,在深化火山喷发机制理论研究和构建减轻火山灾害影响的工程技术体系等方面有所作为.

       

    • 图  1  火山喷发的主要触发机制

      Fig.  1.  Major triggering mechanisms of volcano eruption

      图  2  岩浆通道系统与火山‒气候效应示意图

      Fig.  2.  Schematic diagram of magma plumbing systems and volcanic-climate impacts

    • [1] Aubry, T. J., Farquharson, J. I., Rowell, C. R., et al., 2022. Impact of Climate Change on Volcanic Processes: Current Understanding and Future Challenges. Bulletin of Volcanology, 84(6): 1-11. https://doi.org/10.1007/s00445-022-01562-8
      [2] Bachmann, O., Huber, C., 2018. The Inner Workings of Crustal Distillation Columns: The Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103
      [3] Caricchi, L., Townsend, M., Rivalta, E., et al., 2021. The Build-up and Triggers of Volcanic Eruptions. Nature Reviews Earth & Environment, 2: 458-476.
      [4] Carter, L. C., Williamson, B. J., Tapster, S. R., et al., 2021. Crystal Mush Dykes as Conduits for Mineralising Fluids in the Yerington Porphyry Copper District, Nevada. Communications Earth & Environment, 2(1): 1-11.
      [5] Cassidy, M., Mani, L., 2022. Prepare Now for Big Eruptions. Nature, 608: 469-471. https://doi.org/10.1038/d41586-022-02177-x
      [6] Degruyter, W., Huber, C., Bachmann, O., et al., 2017. Influence of Exsolved Volatiles on Reheating Silicic Magmas by Recharge and Consequences for Eruptive Style at Volcán Quizapu (Chile). Geochemistry, Geophysics, Geosystems, 11(18): 4123-4135.
      [7] Di Genova, D., Kolzenburg, S., Wiesmaier, S., et al., 2017. A Compositional Tipping Point Governing the Mobilization and Eruption Style of Rhyolitic Magma. Nature, 552(7684): 235-238. doi: 10.1038/nature24488
      [8] Dufek, J., Bachmann, O., 2010. Quantum Magmatism: Magmatic Compositional Gaps Generated by Melt- Crystal Dynamics. Geology, 38: 687-690.
      [9] Eichelberger, J., 2019. Planning an International Magma Observatory. EOS, 100. https://doi.org/10.1029/2019EO125255
      [10] Felgenhauer, T., Bala, G., Borsuk, M., et al., 2022. Solar Radiation Modification: A Risk-Risk Analysis. Carnegie Climate Governance Initiative (C2G), New York.
      [11] Garibaldi, N., Tikoff, B., Schaen, A. J., et al., 2018. Interpreting Granitic Fabrics in Terms of Rhyolitic Melt Segregation, Accumulation, and Escape via Tectonic Filter Pressing in the Huemul Pluton, Chile Nicolas. Journal of Geophysics Research: Solid Earth, 10(123): 8548-8567.
      [12] Gernon, T. M., Hincks, T. K., Merdith, A. S., et al., 2021. Global Chemical Weathering Dominated by Continental Arcs since the Mid-Palaeozoic. Nature Geoscience, 14(9): 690-696. doi: 10.1038/s41561-021-00806-0
      [13] Green, T., Renne, P. R., Keller, C. B., 2022. Continental Flood Basalts Drive Phanerozoic Extinctions. Proceedings of the National Academy of Sciences, 119(38): e2120441119. https://doi.org/10.1073/pnas.2120441119
      [14] Gudmundsson, M. T., Jonsdottir, K., Hooper, A., et al., 2016. Gradual Caldera Collapse at Bárdarbunga Volcano, Iceland, Regulated by Lateral Magma Outflow. Science, 353 (6296): aaf8988. doi: 10.1126/science.aaf8988
      [15] Hartung, E., Weber, G., Caricchi, L., 2019. The Role of H2O on the Extraction of Melt from Crystallising Magmas. Earth and Planetary Science Letters, 508: 85-96. doi: 10.1016/j.epsl.2018.12.010
      [16] Humphreys, M. C., Smith, V. C., Coumans, J. P., et al., 2021. Rapid Pre-Eruptive Mush Reorganisation and Atmospheric Volatile Emissions from the 12.9 ka Laacher See Eruption, Determined Using Apatite. Earth and Planetary Science Letters, 576: 117198. doi: 10.1016/j.epsl.2021.117198
      [17] Irvine, P. J., Kravitz, B., Lawrence, M. G., et al., 2016. An Overview of the Earth System Science of Solar Geoengineering. WIREs Climate Change, 7: 815-833. https://doi.org/10.1002/wcc.423
      [18] Langhammer, D., Di Genova, D., Steinle-Neumann, G., 2021. Modeling the Viscosity of Anhydrous and Hydrous Volcanic Melts. Geochemistry, Geophysics, Geosystems, 22(8): e2021GC009918.
      [19] Lin, J., Svensson, A., Hvidberg, C. S., et al., 2022. Magnitude, Frequency and Climate Forcing of Global Volcanism during the Last Glacial Period as Seen in Greenland and Antarctic Ice Cores (60-9 ka). Clim. Past, 18: 485-506. doi: 10.5194/cp-18-485-2022
      [20] Liu, F., Xing, C., Li, J. B., et al., 2020. Could the Recent Taal Volcano Eruption Trigger an El Niño and Lead to Eurasian Warming? Advances in Atmospheric Sciences, 37(7): 663-670. https://doi.org/10.1007/s00376-020-2041-z
      [21] Lockwood, J. P. Hazlett, R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell, Hoboken.
      [22] Lucas, L. C., Albright, J. A., Gregg, P. M., et al., 2022. The Impact of Ice Caps on the Mechanical Stability of Magmatic Systems: Implications for Forecasting on Human Timescales. Frontiers in Earth Science, 10: 868569. https://doi.org/10.3389/feart.2022.868569
      [23] Ma, C. Q., Zou, B. W., Gao, K., et al., 2020. Crystal Mush Storage, Incremental Pluton Assembly and Granitic Petrogenesis. Earth Science, 45(12): 4332-4351 (in Chinese with English abstract).
      [24] Marshall, L. R., Maters, E. C., Schmidt, A., et al., 2022. Volcanic Effects on Climate: Recent Advances and Future Avenues. Bulletin of Volcanology, 84(5): 1-14. https://doi.org/10.1007/s00445-022-01559-3
      [25] Millán, L., Santee, M. L., Lambert, A., et al., 2022. The Hunga Tonga-Hunga Ha'apai Hydration of the Stratosphere. Geophysical Research Letters, 49(13): e2022GL099381. https://doi.org/10.1029/2022gl099381
      [26] Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532(7600): 492-495. https://doi.org/10.1038/nature17401
      [27] Pistone, M., Blundy, J., Brooker, R. A., et al., 2017. Water Transfer during Magma Mixing Events: Insights into Crystal Mush Rejuvenation and Melt Extraction Processes. American Mineralogist, 102: 766-776. doi: 10.2138/am-2017-5793
      [28] Poli, P., Shapiro, N. M., 2022. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Explosion from Teleseismic Waves. Geophysical Research Letters, 49(8): e2022GL098123. https://doi.org/10.1029/2022GL098123
      [29] Racki, G., 2020. Volcanism as a Prime Cause of Mass Extinctions: Retrospectives and Perspectives. In Mass Extinctions, Volcanism, and Impacts: New Developments. Geological Society of America Special Paper, 544: 1-34.
      [30] Rasmussen, D. J., Plank, T. A., Roman, D. C., et al., 2022. Magmatic Water Content Controls the Pre- Eruptive Depth of Arc Magmas. Science, 375(6585): 1169-1172. https://doi.org/10.1126/science.abm5174
      [31] Reynolds, J. L., 2019. Solar Geoengineering to Reduce Climate Change: A Review of Governance Proposals. Proceedings Mathematical, Physical, and Engineering Sciences, 475(2229): 20190255. https://doi.org/10.1098/rspa.2019.0255
      [32] Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. doi: 10.1130/G31110.1
      [33] Satow, C., Gudmundsson, A., Gertisser, R., et al., 2021. Eruptive Activity of the Santorini Volcano Controlled by Sea-Level Rise and Fall. Nature Geoscience, 14: 586-592. https://doi.org/10.1038/s41561-021-00783-4
      [34] Sigl, M., Toohey, M., McConnel, J. R., et al., 2022. Volcanic Stratospheric Sulfur Injections and Aerosol Optical Depth during the Holocene (Past 11 500 Years) from a Bipolar Ice-Core Array. Earth System Science Data, 14: 3167-3196. https://doi.org/10.5194/essd-14-3167-2022
      [35] Sigmundsson, F., Hreinsdóttir, S., Hooper, A., et al., 2010. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption. Nature, 468(7322): 426-430. https://doi.org/10.1038/nature09558
      [36] Sliwinski, J. T., Bachmann, O., Dungan, M. A., et al., 2017. Rapid Pre-Eruptive Thermal Rejuvenation in a Large Silicic Magma Body: The Case of the Masonic Park Tuff, Southern Rocky Mountain Volcanic Field, CO, USA. Contributions to Mineralogy and Petrology, 172(5): 1-20. https://doi.org/10.1007/s00410-017-1351-3
      [37] Tian, J. J., Ding, F., Hao, S. L., et al., 2021. Petrogenesis of Acidic Volcanic Rocks in Sangxiu Formation, East-Central Segment of Tethyan-Himalaya: Response to Break-up of Eastern Gondwana Continent?. Earth Science, 46(11): 3926-3944 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.363
      [38] Toohey, M., Krüger, K., Schmidt, H., et al., 2019. Disproportionately Strong Climate Forcing from Extratropical Explosive Volcanic Eruptions. Nature Geoscience, 12(2): 100-107. https://doi.org/10.1038/s41561-018-0286-2
      [39] Tuffen, H., 2010. How Will Melting of Ice Affect Volcanic Hazards in the Twenty-First Century? Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1919): 2535-2558. https://doi.org/10.1098/rsta.2010.0063
      [40] Utami, S. B., Costa, F., Lesage, P., et al., 2021. Fluid Fluxing and Accumulation Drive Decadal and Short-Lived Explosive Basaltic Andesite Eruptions Preceded by Limited Volcanic Unrest. Journal of Petrology, 62(11): egab086. https://doi.org/10.1093/petrology/egab086
      [41] Wirakusumah, A. D., Rachmat, H., 2017. Impact of the 1815 Tambora Eruption to Global Climate Change. IOP Conf. Series: Earth and Environmental Science, 71: 012007. https://doi.org/10.1088/1755-1315/71/1/012007
      [42] Zhou, X. Y., Zhang, Y. X., Zhang, J. H., et al., 2021. Petrogenesis of Early Paleocene Dengtong Volcanic-Plutonic Complex in Central Lhasa Terrane and Evolution of Crustal High-Silica Magma. Earth Science, 46(2): 474-488 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.073
      [43] Zuo, M., Zhou, T., Man, W., et al., 2022. Volcanoes and Climate: Sizing up the Impact of the Recent Hunga Tonga-Hunga Ha'apai Volcanic Eruption from a Historical Perspective. Advances in Atmospheric Sciences. https://org.doi/10.1007/s00376-022-2034-1 doi: 10.1007/s00376-022-2034-1
      [44] 马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
      [45] 田京京, 丁枫, 郝盛蓝, 等, 2021. 特提斯喜马拉雅中东部桑秀组酸性火山岩岩石成因: 东冈瓦纳大陆裂解的响应?. 地球科学, 46(11): 3926-3944. doi: 10.3799/dqkx.2020.363
      [46] 周逍遥, 张玉修, 张吉衡, 等, 2021. 拉萨地体中部古新世早期灯垌火山‒侵入杂岩成因及地壳硅质岩浆演化. 地球科学, 46(2): 474-488. doi: 10.3799/dqkx.2019.073
    • 加载中
    图(2)
    计量
    • 文章访问数:  329
    • HTML全文浏览量:  137
    • PDF下载量:  115
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-29
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回