Reservoir Characteristics and Main Controlling Factors of Hydrocarbon Accumulation of Lower Paleozoic Buried-Hill in Northwestern Shaleitian Slope of Western Bohai Sea
-
摘要: 渤海规模性潜山油气发现集中在山头的太古宇变质岩,而下古生界碳酸盐岩发育在斜坡带,已有地质模式难以解释其成藏规律.运用岩心、薄片、地震、成像测井及分析化验等资料,开展了沙西北下古生界储层特征和成藏主控因素研究.结果表明,该区下古生界碳酸盐岩发育“缝‒洞”型储层,储集空间受裂缝和岩溶两大因素控制;印支期以来的3期断裂活动形成了连排式构造‒地层圈闭;北侧南堡凹陷生烃灶的超压为成藏提供了强劲的充注条件,新生界披覆式泥岩提供了区域性封盖条件,断块上倾端的致密灰岩为油气在斜坡带成藏提供了遮挡条件.由此建立了“古储古堵‒超压强注”的斜坡带碳酸盐岩潜山成藏模式,为潜山油气勘探提供了新思路.Abstract: The large-scale buried⁃hill oil and gas discovery in Bohai Sea is concentrated in the Archean metamorphic rocks at the mountain top, while the Lower Paleozoic carbonate rocks are developed in the slope zone, and the existing geological models are difficult to explain their accumulation laws. In this paper, core, thin section, seismic, imaging logging, analysis and laboratory data are used to study the characteristics of the Lower Paleozoic reservoir and the main controlling factors of reservoir formation in the northwestern Shaleitian Uplift. The results show that "fracture cave" type reservoirs are developed in the Lower Paleozoic carbonate rocks in this area, and the reservoir space is controlled by two factors: fractures and karst. Three periods of fault activities since Indosinian formed a series of structural stratigraphic traps. The overpressure of the hydrocarbon generating stove in the northern Nanpu Sag provides a strong filling and injection condition for reservoir formation, the Cenozoic draped mudstone provides a regional sealing condition, and the tight limestone at the updip end of the fault block provides a shielding condition for oil and gas accumulation in the slope zone. Therefore, the reservoir forming model of carbonate buried⁃hill in slope zone of "ancient reservoir, ancient plugging and overpressure injection" is established, which provides a new idea for buried⁃hill oil and gas exploration.
-
图 2 沙西北地区下古生界岩石学特征
a.奥陶系亮甲山组泥晶白云岩,可见多期构造裂缝,CFD2-2-D井,3 764.87 m;b.奥陶系下马家沟组灰色细晶白云岩,可见垂直裂缝发育,且被方解石脉体充填,CFD2-1-B井,3 706.10 m;c.寒武系长山组颗粒(球粒)白云岩,可见多期充填作用,CFD2-2-C井,3 817 m;d.寒武系崮山组竹叶状灰岩(生物碎屑颗粒灰岩),CFD2-2-I井,4 050.00 m;e.奥陶系冶里组泥晶灰岩,可见溶蚀缝、洞中后期充填中粗晶方解石,CFD2-2-B井,3 450.00 m;f.寒武系张夏组变晶鲕粒灰岩,可隐约见到圈层(同心圆)构造,CFD2-2-C井,3 942.00 m
Fig. 2. Petrological characteristics of Lower Paleozoic in northwestern Shaleitian Uplift
图 3 沙西北地区下古生界碳酸盐岩储层储集空间类型
a.“岩溶角砾”型储层段,CFD2-1-B井,上马家沟组,3 438.35~3 440.35 m段岩心;b.灰岩中的岩溶角砾,CFD2-2-I井,下马家沟组,3 567.40~ 3 567.90 m;c.岩溶孔洞,CFD2-1-G井,下马家沟组,3 545.90~3 547.70 m;d.岩溶洞穴,可见油浸迹象,CFD2-1-G井,下马家沟组,3 545.90~3 547.70 m;e.“岩溶角砾+构造裂缝”型储层段,CFD2-1-B井,上马家沟组,3 440.40~3 444.40 m;f.多期构造裂缝发育,CFD2-1-B井,上马家沟组,3 442.00 m;g.多期裂缝相互切割,沿裂缝溶蚀孔洞发育,CFD2-2-I井,下马家沟组,3 565.81 m;h.细晶白云岩的裂缝中充填方解石脉体被后期溶蚀,CFD2-1-B井,亮甲山组,3 709.30 m
Fig. 3. Reservoir space types of Lower Paleozoic carbonate reservoirs in northwestern Shaleitian Uplift
-
[1] Chen, A. Q., Hou, M. C., Chen, H. D., et al., 2017. Marine Carbonate Exploration History and the Basic Driving Action from Sedimentology in China. Acta Sedimentologica Sinica, 35(5): 1054-1062 (in Chinese with English abstract). [2] Chen, A. Q., Zhang, X. X., Mi, W. T., et al., 2019. Favorable Sandstone Reservoir Characteristics and Hydrocarbon Accumulation Models of Middle Jurassic Zhiluo Formation in the Southwestern Ordos Basin, China. Journal of Earth Sciences and Environment, 41(5): 517-528 (in Chinese with English abstract). [3] Chu, R., Liu, H. T., Wang, H. X., et al., 2019. Differences of Vertical Hydrocarbon Enrichment Controlled by Different Types of Faults: A Case Study of Qi'nan Slope of Qikou Depression, Bohai Bay Basin. Acta Petrolei Sinica, 40(8): 928-940 (in Chinese with English abstract). [4] Deng, Y. H., 2015. Formation Mechanism and Exploration Practice of Large⁃Medium Buried⁃Hill Oil Fields in Bohai Sea. Acta Petrolei Sinica, 36(3): 253-261 (in Chinese with English abstract). [5] Dong, Y. X., Zhao, Z. J., Cao, Z. H., et al., 2015. Exploration Potential and Significance of Ordovician Carbonate Karst Monadnock Traps in Nanpu Sag. Acta Petrolei Sinica, 36(6): 653-663 (in Chinese with English abstract). [6] Hassani, A., Mortazavi, S. A., Gholinezhad, J., 2014. A New Practical Method for Determination of Critical Flow Rate in Fahliyan Carbonate Reservoir. Journal of Petroleum Science and Engineering, 115: 50-56. https://doi.org/10.1016/j.petrol.2014.02.010 [7] Hou, M. C., Cao, H. Y., Li, H. Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried⁃Hill Reservoirs in the BZ19⁃6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44 (in Chinese with English abstract). [8] Ji, Y. L., Hu, G. M., Huang, J. J., et al., 2006. Eroded Strata Thickness of Mesozoic and Evolution of Mesozoic and Cenozoic Basins in the Bohai Bay Basin Area. Acta Geologica Sinica, 80(3): 351-358 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.03.006 [9] Jin, M. D., Tan, X. C., Zeng, W., et al., 2016. Reconstruction of the Tectonic Palaeogeomorphology of Longwangmiao Formation during the Caledonian⁃Hercynian Period in Moxi⁃Gaoshiti Area, Sichuan Basin and Its Geological Significance. Acta Sedimentologica Sinica, 34(4): 634-644 (in Chinese with English abstract). [10] Li, S. Y., Hu, L., Gan, J., et al., 2021. Accumulation Conditions of Buried⁃Hill Hydrocarbon Reservoirs on the Lingnan Low Uplift in the Deep Water Areas of Qiongdongnan Basin. Marine Geology Frontiers, 37(7): 68-75 (in Chinese with English abstract). [11] Li, Z. H., Wang, X., Yang, S. Z., et al., 2006. Analysis of Control Factors of Ordovician Karst Reservoir in Ordos Basin. Geoscience, 20(2): 299-306 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2006.02.014 [12] Lima, B. E. M., Tedeschi, L. R., Pestilho, A. L. S., et al., 2020. Deep⁃Burial Hydrothermal Alteration of the Pre⁃Salt Carbonate Reservoirs from Northern Campos Basin, Offshore Brazil: Evidence from Petrography, Fluid Inclusions, Sr, C and O Isotopes. Marine and Petroleum Geology, 113: 104143. https://doi.org/10.1016/j.marpetgeo.2019.104143 [13] Liu, D. W., Cai, C. F., Hu, Y. J., et al., 2021. Multistage Dolomitization and Formation of Ultra⁃Deep Lower Cambrian Longwangmiao Formation Reservoir in Central Sichuan Basin, China. Marine and Petroleum Geology, 123: 104752. https://doi.org/10.1016/j.marpetgeo.2020.104752 [14] Liu, N., Qiu, N. S., Chang, J., et al., 2017. Hydrocarbon Migration and Accumulation of the Suqiao Buried⁃Hill Zone in Wen'an Slope, Jizhong Subbasin, Bohai Bay Basin, China. Marine and Petroleum Geology, 86: 512-525. https://doi.org/10.1016/j.marpetgeo.2017.05.040 [15] Liu, Y., Chen, L. X., Liang, B., et al., 2011. Comparison of Karst Features of Typical Carbonate Buried Hills in China. Marine Geology Frontiers, 27(3): 6-10 (in Chinese with English abstract). [16] Luo, J., Luo, X. P., Chen, A. Q., et al., 2020. Development and Distribution Characteristics and Controlling Factors of Hydrocarbon Source Rocks in Southern Sichuan⁃Northern Guizhou, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(5): 590-603 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2020.05.08 [17] Ma, L. C., Wang, Y. S., Jing, A. Y., 2020. Discovery and Significance of Subtle Buried Hills in Jiyang Depression, Bohai Bay Basin. Petroleum Geology & Experiment, 42(1): 13-18 (in Chinese with English abstract). [18] Nie, M. L., Wen, Z. X., Wang, Z. M., et al., 2020. Genesis and Evaporative Fractionation of Subsalt Condensate in the Northeastern Margin of the Amu Darya Basin. Journal of Petroleum Science and Engineering, 188: 106674. https://doi.org/10.1016/j.petrol.2019.106674 [19] Niu, C. M., Yang, H. F., Zhao, D. J., et al., 2022. Study on the Ultra⁃Late Hydrocarbon Accumulation and Migration Lagging Effect in Laizhouwan Sag, Bohai Sea. Earth Science, 47(2): 464-478 (in Chinese with English abstract). [20] Pan, J. G., Wei, P. S., Cai, Z. X., et al., 2012. Reservoir Architectural System in the Middle⁃Lower Ordovician Carbonate Rock of Tazhong Areas in Tarim. Earth Science, 37(4): 751-762 (in Chinese with English abstract). [21] Qi, Z. Q., Cheng, C. R., Sun, X. H., et al., 2008. Evolution of Karst Paleogeomorphology and Development Features of Paleokarstic Caves in the Qianmiqiao Buried Hill in Huabei Oil Fields. Marine Origin Petroleum Geology, 13(4): 37-43 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2008.04.006 [22] Shi, J. J., Li, L. L., Du, L., et al., 2019. Dynamic Damage of Fault to Caprock and Its Influence on Hydrocarbon Transport: A Case Study of Gangdong Fault in Qikou Sag, Bohai Bay Basin. Acta Petrolei Sinica, 40(8): 956-964 (in Chinese with English abstract). [23] Shi, Z., 2019. The Research on Palaeokarst Characteristics and Development Model in Nanpu Sag and Surrounding Uplift (Dissertation). China University of Petroleum, Qingdao (in Chinese with English abstract). [24] Su, J., Wang, X. M., Yang, H. J., et al., 2021. Hydrothermal Alteration and Hydrocarbon Accumulations in Ultra⁃Deep Carbonate Reservoirs along a Strike⁃Slip Fault System, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 203: 108605. https://doi.org/10.1016/j.petrol.2021.108605 [25] Sun, M. L., Liu, G. D., Dong, Y. X., 2010. Characteristics of Abnormal Pressure and Its Relationship with Hydrocarbon Accumulation in Nanpu Sag, Bohai Bay Basin. Geoscience, 24(6): 1126-1131 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2010.06.014 [26] Tang, J. R., Wang, H., Meng, L. J., et al., 2016. Pressure Evolution and Its Effect on Petroleum Accumulation in Nanpu Sag, Bohai Bay Basin. Earth Science, 41(5): 809-820 (in Chinese with English abstract). [27] Tian, L. X., Liu, J., Zhang, X. T., et al., 2020. Discovery and Accumulation Pattern of HZ26⁃6 Large⁃Medium Sized Pan⁃Buried Hill Oil and Gas Field in Pearl River Mouth Basin. China Offshore Oil and Gas, 32(4): 1-11 (in Chinese with English abstract). [28] Tian, X. P., Zhang, W., Zhou, L. D., et al., 2021. Karst Model of Paleozoic Carbonate Buried Hill in No. 2 Fault Zone of Nanpu Sag. Lithologic Reservoirs, 33(6): 93-101 (in Chinese with English abstract). [29] Wang, Q., Hao, F., Xu, C. G., et al., 2018. Origin and Accumulation Characterization of Petroleum in Buried Hill Reservoirs in Shaxibei Area, Bohai Sea. Oil & Gas Geology, 39(4): 676-684 (in Chinese with English abstract). [30] Wang, Z., Lü, X. X., Li, Y., et al., 2021. Natural Fracture Opening Preservation and Reactivation in Deep Sandstones of the Kuqa Foreland Thrust Belt, Tarim Basin. Marine and Petroleum Geology, 127: 104956. https://doi.org/10.1016/j.marpetgeo.2021.104956 [31] Xie, W. R., Deng, H. W., Wang, H. L., et al., 2008. Palaeogene Reservoir Rocks in Central Bohai Gulf Depression and Their Controls. Sedimentary Geology and Tethyan Geology, 28(3): 101-107 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2008.03.018 [32] Xie, Y. H., 2020. Gas Resources and Accumulation Model of BZ19⁃6 Archean Buried⁃Hill Large⁃Scale Gas Reservoir in Bozhong Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 42(5): 858-866 (in Chinese with English abstract). [33] Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In⁃Situ Calcite U⁃Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract). [34] Xu, Z. Q., Yang, J. S., Li, H. Q., et al., 2012. Indosinian Collision⁃Orogenic System of Chinese Continent and Its Orogenic Mechanism. Acta Petrologica Sinica, 28(6): 1697-1709 (in Chinese with English abstract). [35] Xue, Y. A., Li, H. Y., Xu, P., et al., 2021. Recognition of Oil and Gas Accumulation of Mesozoic Covered Buried Hills in Bohai Sea Area and the Discovery of BZ 13⁃2 Oilfield. China Offshore Oil and Gas, 33(1): 13-22 (in Chinese with English abstract). [36] Xue, Y. A., Niu, C. M., Wang, D. Y., et al., 2019. New Understanding of Shallow Hydrocarbon Migration and New Exploration Progress in the Bohai Sea. Acta Petrolei Sinica, 40(S2): 29-37 (in Chinese with English abstract). [37] Yang, S. C., Qi, L. N., Li, S. B., 2012. Fracture Types, Development Phases and Controlling Factors of Chengbei 20 Buried Hills in Chengdao Area. Journal of China University of Petroleum (Edition of Natural Science), 36(5): 1-6 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.05.001 [38] Yang, Y. M., Luo, J., Xu, Y. L., et al., 2020. Reservoir Characteristics and Controlling Factors of Carbonate Buried Hill in the Lower Paleozoic of Bonan Low Uplift. Fault⁃Block Oil & Gas Field, 27(4): 448-453 (in Chinese with English abstract). [39] Ye, T., Chen, A. Q., Hou, M. C., et al., 2021a. Characteristic of the Bodong Segment of the Tanlu Fault Zone, Bohai Sea Area, Eastern China: Implications for Hydrocarbon Exploration and Regional Tectonic Evolution. Journal of Petroleum Science and Engineering, 201: 108478. https://doi.org/10.1016/j.petrol.2021.108478 [40] Ye, T., Chen, A. Q., Niu, C. M., et al., 2021b. Structural, Petrophysical and Lithological Characterization of Crystalline Bedrock Buried⁃Hill Reservoirs: A Case Study of the Southern Jinzhou Oilfield in Offshore Bohai Bay Basin, North China. Journal of Petroleum Science and Engineering, 196: 107950. https://doi.org/10.1016/j.petrol.2020.107950 [41] Yu, Y. X., Yin, J. Y., Zheng, J. Z., et al., 2015. Division and Resources Evaluation of Hydrocarbon Plays in the Amu Darya Basin, Central Asia. Petroleum Exploration and Development, 42(6): 819-826. https://doi.org/10.1016/S1876⁃3804(15)30078⁃1 [42] Zeng, L. B., Qi, J. F., Wang, Y. X., 2007. Origin Type of Tectonic Fractures and Geological Conditions in Low⁃Permeability Reservoirs. Acta Petrolei Sinica, 28(4): 52-56 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2007.04.010 [43] Zhang, T. F., Bao, Z. Y., Ma, M., et al., 2009. Dissolution Kinetic Characteristics and Morphology Evolution of Oolitic Limestone. Acta Sedimentologica Sinica, 27(6): 1033-1042 (in Chinese with English abstract). [44] Zhao, X. Z., Wang, Q., Jin, F. M., et al., 2012. Main Controlling Factors and Exploration Practice of Subtle Buried⁃Hill Hydrocarbon Reservoir in Jizhong Depression. Acta Petrolei Sinica, 33(S1): 71-79 (in Chinese with English abstract). doi: 10.7623/syxb2012S1009 [45] Zhu, Q. J., Su, Y. P., Chen, Y. H., 2002. Mechanism and Controlling of Natural Fracture Forming in Ordovician, Lunnan Area. Journal of Geological Hazards and Environment Preservation, 13(4): 64-69 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2002.04.016 [46] Zou, C. N., Zhang, G. Y., Tao S. Z., et al., 2010. Geological Features, Major Discoveries and Unconventional Petroleum Geology in the Global Petroleum Exploration. Petroleum Exploration and Development, 37(2): 129-145. https://doi.org/10.1016/S1876⁃3804(10)60021⁃3 [47] 陈安清, 侯明才, 陈洪德, 等, 2017. 中国海相碳酸盐岩勘探领域拓展历程及沉积学的基本驱动作用. 沉积学报, 35(5): 1054-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705016.htm [48] 陈安清, 张晓星, 密文天, 等, 2019. 鄂尔多斯盆地西南部中侏罗统直罗组储集砂体特征及聚砂成藏模式. 地球科学与环境学报, 41(5): 517-528. doi: 10.3969/j.issn.1672-6561.2019.05.002 [49] 褚榕, 刘海涛, 王海学, 等, 2019. 不同类型断层控制油气垂向富集的差异——以渤海湾盆地歧口凹陷歧南斜坡区为例. 石油学报, 40(8): 928-940. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908004.htm [50] 邓运华, 2015. 渤海大中型潜山油气田形成机理与勘探实践. 石油学报, 36(3): 253-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201503002.htm [51] 董月霞, 赵宗举, 曹中宏, 等, 2015. 南堡凹陷奥陶系碳酸盐岩岩溶残丘圈闭勘探潜力及意义. 石油学报, 36(6): 653-663. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506002.htm [52] 侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19⁃6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm [53] 纪友亮, 胡光明, 黄建军, 等, 2006. 渤海湾地区中生代地层剥蚀量及中、新生代构造演化研究. 地质学报, 80(3): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603006.htm [54] 金民东, 谭秀成, 曾伟, 等, 2016. 四川盆地磨溪‒高石梯地区加里东‒海西期龙王庙组构造古地貌恢复及地质意义. 沉积学报, 34(4): 634-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604003.htm [55] 李胜勇, 胡林, 甘军, 等, 2021. 琼东南盆地深水区陵南低凸起古潜山油气成藏条件. 海洋地质前沿, 37(7): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202107008.htm [56] 李振宏, 王欣, 杨遂正, 等, 2006. 鄂尔多斯盆地奥陶系岩溶储层控制因素分析. 现代地质, 20(2): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200602014.htm [57] 刘阳, 陈利新, 梁彬, 等, 2011. 中国东部与西部典型碳酸盐岩潜山的岩溶特征. 海洋地质前沿, 27(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201103001.htm [58] 罗健, 罗小平, 陈安清, 等, 2020. 川南‒黔北地区下寒武统烃源岩发育分布特征及控制因素. 成都理工大学学报(自然科学版), 47(5): 590-603. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202005008.htm [59] 马立驰, 王永诗, 景安语, 2020. 渤海湾盆地济阳坳陷隐蔽潜山油藏新发现及其意义. 石油实验地质, 42(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001004.htm [60] 牛成民, 杨海风, 赵弟江, 等, 2022. 渤海海域莱州湾凹陷油气超晚期成藏与油气运移滞后效应. 地球科学, 47(2): 464-478. doi: 10.3799/dqkx.2021.099 [61] 潘建国, 卫平生, 蔡忠贤, 等, 2012. 塔中地区中‒下奥陶统碳酸盐岩孔洞‒裂缝储集系统划分及其特征. 地球科学, 37(4): 751-762. doi: 10.3799/dqkx.2012.084 [62] 齐振琴, 程昌茹, 孙秀会, 等, 2008. 千米桥古潜山岩溶地貌演化及古岩溶洞穴发育特征. 海相油气地质, 13(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200804011.htm [63] 史集建, 李丽丽, 杜琳, 等, 2019. 断层对盖层的动态破坏及其对油气输导的影响——以渤海湾盆地歧口凹陷港东断裂为例. 石油学报, 40(8): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908006.htm [64] 师政, 2019. 南堡凹陷及周边凸起古岩溶作用特征及发育模式研究(博士学位论文). 青岛: 中国石油大学. [65] 孙明亮, 柳广弟, 董月霞, 2010. 南堡凹陷异常压力分布与油气聚集. 现代地质, 24(6): 1126-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201006015.htm [66] 汤建荣, 王华, 孟令箭, 等, 2016. 渤海湾盆地南堡凹陷地层压力演化及其成藏意义. 地球科学, 41(5): 809-820. doi: 10.3799/dqkx.2016.068 [67] 田立新, 刘杰, 张向涛, 等, 2020. 珠江口盆地惠州26⁃6大中型泛潜山油气田勘探发现及成藏模式. 中国海上油气, 32(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004001.htm [68] 田晓平, 张汶, 周连德, 等, 2021. 南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式. 岩性油气藏, 33(6): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202106010.htm [69] 王奇, 郝芳, 徐长贵, 等, 2018. 渤海海域沙西北地区潜山油源及成藏特征. 石油与天然气地质, 39(4): 676-684. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804006.htm [70] 谢武仁, 邓宏文, 王洪亮, 等, 2008. 渤中凹陷古近系储层特征及其控制因素. 沉积与特提斯地质, 28(3): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200803019.htm [71] 谢玉洪, 2020. 渤海湾盆地渤中凹陷太古界潜山气藏BZ19⁃6的气源条件与成藏模式. 石油实验地质, 42(5): 858-866. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005023.htm [72] 徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U⁃Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376 [73] 许志琴, 杨经绥, 李化启, 等, 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, 28(6): 1697-1709. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206002.htm [74] 薛永安, 李慧勇, 许鹏, 等, 2021. 渤海海域中生界覆盖型潜山成藏认识与渤中13⁃2大油田发现. 中国海上油气, 33(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202101002.htm [75] 薛永安, 牛成民, 王德英, 等, 2019. 渤海海域浅层油气运移新认识与勘探新进展. 石油学报, 40(S2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2005.htm [76] 杨少春, 齐陆宁, 李拴豹, 2012. 埕岛地区埕北20潜山带裂缝类型、发育期次及控制因素. 中国石油大学学报(自然科学版), 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201205003.htm [77] 杨一珉, 罗健, 徐云龙, 等, 2020. 渤南低凸起下古生界碳酸盐岩潜山储层特征及控制因素. 断块油气田, 27(4): 448-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202004010.htm [78] 曾联波, 漆家福, 王永秀, 2007. 低渗透储层构造裂缝的成因类型及其形成地质条件. 石油学报, 28(4): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704009.htm [79] 张天付, 鲍征宇, 马明, 等, 2009. 鲕粒灰岩的溶解动力学特征和微观形貌的发育演化. 沉积学报, 27(6): 1033-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906003.htm [80] 赵贤正, 王权, 金凤鸣, 等, 2012. 冀中坳陷隐蔽型潜山油气藏主控因素与勘探实践. 石油学报, 33(S1): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2012S1011.htm [81] 朱庆杰, 苏幼坡, 陈艳华, 2002. 轮南地区奥陶系天然裂缝形成的控制因素与发育机理. 地质灾害与环境保护, 13(4): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB200204015.htm