Progress and Development Trends of Fault Activities Dating Technologies in Basins
-
摘要: 断层的活动期次对盆地的形成与演化及油气运移成藏起着重要的控制作用,精确厘定断层活动期次及其年龄是盆地构造及油气成藏研究中的一项必不可少的工作,也一直是研究中的一个难点.针对这一问题,论文基于断层带内部结构的分析及前人研究成果,简要评述了常用的自生伊利石K-Ar/Ar-Ar定年法和石英电子自旋共振ESR(electron spin resonance)定年技术,重点综述了方解石激光原位U-Pb定年、石英流体包裹体40Ar/39Ar定年和低温热年代学技术应用于断层活动时间研究的基本原理、实验方法和典型实例,并探讨了存在的问题,分析了发展的趋势,指明了下一步研究的方向.认为这些技术对断层活动期次和油气勘探研究具有重要指导意义,未来将在盆地断裂研究中发挥重要作用,有着广阔的应用前景.
-
关键词:
- 断层 /
- 方解石U-Pb定年 /
- 流体包裹体40Ar/39Ar定年 /
- 低温热年代学 /
- 赤铁矿(U-Th)/He定年 /
- 石油地质
Abstract: Fault activities play an important role in the formation and evolution of the basin and the petroleum migration and accumulation. Accurately determining the ages and active period of the fault is an indispensable work in the study of basin tectonics and petroleum accumulation, and has always been a difficult work in the geological study. In view of this problem, based on the analysis of the internal structure of the fault zone and previous research results, the commonly used authigenic illite K-Ar/Ar-Ar dating method and quartz ESR dating technology were briefly reviewed in this study. And this paper mainly focuses on discussing the basic principles, experimental methods and typical examples of laser in situ calcite U-Pb dating, quartz fluid inclusions 40Ar/39Ar dating and low-temperature thermochronology technology which applied to the study of fault activity time. The presently existing problems and development trends were analyzed, and the next research direction was pointed out. It is believed that laser in situ calcite U-Pb dating, quartz fluid inclusions 40Ar/39Ar dating and low-temperature thermochronology techniques have important guiding significance for the study of fault activities and petroleum exploration, and will play an important role in the study of basin faults in the future, with broad application prospects. -
图 2 法罗群岛断层方解石特征、元素分布及U-Pb定年结果
据Roberts and Walker(2016); a, b. 方解石样品特征;c, d. 方解石图像特征;e, f. 测年结果
Fig. 2. Characteristics, element distribution and U-Pb dating results of fault calcites in the Faroe Islands
图 5 半坑古油藏断裂带石英脉真空击碎40Ar/39Ar年龄谱与等时线
据刘昭茜等(2011);a. 40Ar/39Ar反等时线;b. 40Ar/39Ar年龄谱,空心点未参与等时线计算
Fig. 5. Vacuum crushing 40Ar/39Ar age spectrum and isochron of quartz vein in fault zone of the Bankeng Paleo-reservoir
图 6 断层作用的热效应示意图
据Malusà and Fitzgerald(2019)修改
Fig. 6. Schematic diagram of thermal effect on fault activities
图 7 扩散域直径(a=0.5 μm和a=0.05 μm)与赤铁矿90%的4He丢失条件关系图
Fig. 7. The relationship between the diameter of diffusion zone (a=0.5 μm and a=0.05 μm) and 4He loss conditions with 90% of hematite
图 8 美国德纳理断裂中赤铁矿(U-Th)/He定年揭示的断层活动与热液活动
Fig. 8. Fault and hydrothermal activities revealed by hematite (U-Th)/He dating in the Denali fault in the United States
表 1 断层活动不同定年方法特点小结表
Table 1. Characteristics summary of different dating methods for fault activities
定年方法 定年对象 定年意义 优点 适用范围/局限性 地质分析方法 断层断穿的地层、岩体、褶皱等相互关系 相对形成时代 简便易行,可以对其他定年方法确定的年龄进行约束 间接的、定性的研究方法,仅提供大致或相对的断层活动时间 生长指数法、古落差法、断层活动速率法等 基于断层错断的两盘地层和地层沉积时间及厚度 相对活动强度 简便易行,可以对其他定年方法确定的年龄进行约束 间接的、定性的研究方法,为相对的时间;地层沉积时间很难精确确定 伊利石K(Ar)⁃Ar 断层泥中的自生伊利石 断层活动绝对时间 直接定量研究方法,适用广泛,测定的为绝对年龄 难以排除碎屑的干扰,很难获得纯净的伊利石年龄,大多为混合年龄,年龄分布区间大 方解石原位U⁃Pb 断裂带中方解石脉、滑抹晶体、胶结的方解石 断层活动绝对时间 直接定量方法,精度较高、分辨率高 特别适用于碳酸盐岩地区的断层分析;封闭性、封闭温度、标样、多期流体活动或热改造的影响等争议较大 流体包裹体40Ar⁃39Ar 断裂带中石英脉、石英滑抹晶体、胶结的石英 断层活动绝对时间 定量研究方法,精度高、分辨率高 特别适用于碎屑岩或火山岩地区的断层分析;受多期流体作用的影响,油气样品需注意有机杂气的干扰 磷灰石、锆石裂变径迹和(U⁃Th)/He 断裂带中的矿物或者两盘地层 断层活动绝对时间 直接定量方法,可重建断层热历史 受断层活动热效应影响,采样要求比较高,控制影响因素较多 赤铁矿(U⁃Th)/He 断裂带中的赤铁矿矿物 断层变形绝对时间 定量研究方法,具有较好的应用前景 样品处理要求高,矿物内4He扩散行为和封闭温度等争议较大 -
[1] Armstrong, E.M., Ault, A.K., Bradbury, K.K., et al., 2022. A Multi-Proxy Approach Using Zircon (U-Th)/He Thermochronometry and Biomarker Thermal Maturity to Robustly Capture Earthquake Temperature Rise along the Punchbowl Fault, California. Geochemistry, Geophysics, Geosystems, 23(4): e2021GC010291. https://doi.org/10.1029/2021GC010291 [2] Ault, A. K., 2020. Hematite Fault Rock Thermochronometry and Textures Inform Fault Zone Processes. Journal of Structural Geology, 133: 104002. https://doi.org/10.1016/j.jsg.2020.104002 [3] Ault, A.K., Jensen, J.L., McDermott, R.G., et al., 2019. Nanoscale Evidence for Temperature-Induced Transient Rheology and PostseismicFault Healing. Geology, 47: 1203-1207. https://doi.org/10.1130/G46317.1 [4] Ault, A.K., Frenzel, M., Reiners, P.W., et al., 2016. Record of PaleofluidCirculation in Faults Revealed by Hematite (U-Th)/He and Apatite Fission-Track Dating: anExample From Gower Peninsula Fault Fissures, Wales. Lithosphere, 8(4): 379-385. https://doi.org/10.1130/L522.1 [5] Ault, A.K., Reiners, P.W., Evans, J.P., et al., 2015. Linking Hematite (U-Th)/He Dating with the Microtextural Record of Seismicity in the Wasatch Fault Damage Zone, Utah, USA. Geology, 43(9): 771-774. https://doi.org/10.1130/G36897.1 [6] Bai, X. J., Jiang, Y. D., Hu, R. G., et al., 2018. Revealing Mineralization and Subsequent Hydrothermal Events: Insights from 40Ar/39Ar Isochron and Novel Gas Mixing Lines of Hydrothermal Quartzs by Progressive Crushing. Chemical Geology, 483: 332-341. https://doi.org/10.1016/j.chemgeo.2018.02.039 [7] Caine, J., Evans, J. P., Forster, C., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24: 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 [8] Chen, W., Wu, Z.P., Hou, F., et al., 2021. Internal Structures of Fault Zones and Their Relationship with Hydrocarbon Migration and Acumulation. Acta Petrolei Sinica, 31(5): 774-780(in Chinese with English abstract). [9] Chen, W., Wan, . Y.S., Li, H.Q., et al., 2011. Isotope Geochronology: Technique and Application. Acta Geologica Sinica, 85(11): 1917-1947(in Chinese with English abstract). [10] Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: a Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006 [11] Clauer, N., Zwingmann, H., Liewig, N., et al., 2012. Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals: a Tentative Explanation for Age Identities and Differences. Earth-Science Reviews, 115(1/2): 76-96. https://doi.org/10.1016/j.earscirev.2012.07.003 [12] Davids, C., Benowitz, J.A., Layer, P.W., et al., 2018. Direct 40Ar/39Ar K-feldspar Dating of Late Permian-EarlyTriassic Brittle Faulting in Northern Norway. Terra Nova, 30: 263-269. https://doi.org/10.1111/ter.12333 [13] Davids, C., Wemmer, K., Zwingmann, H., et al., 2013. K-Ar Illite and Apatite Fission Track Constraints on Brittle Faulting and the Evolution of the Northern Norwegian Passive Margin. Tectonophysics, 608: 196-211. https://doi.org/10.1016/j.tecto.2013.09.035 [14] Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2): 159-178. https://doi.org/10.1016/j.precamres.2007.04.019 [15] Evenson, N.S., Reiners, P.W., Spencer, J.E., et al., 2014. Hematite and Mn Oxide (U-Th)/He Fates from the Buckskin-Rawhide Detachment System, Western Arizona: Gaining Insights into Hematite (U-Th)/He Systematic. American Journal of Science, 314(10): 1373-1435. https://doi.org/10.2475/10.2014.01 [16] Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7 [17] Gao, Y.X., Qiu, . K.F., Yu, H.C., et al., 2022. Principle, methods, and Geological Applications of Carbonates LA-ICP-MS U-Pb Geochronology. Acta Petrologica et Mineralogica, 41(4): 786-803(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.04.008 [18] Ge, X., Shen, C.B., Zhou, R.J., et al., 2022. Tracing Fluid Evolution in Sedimentary Basins with Calcite Geochemical, Isotopic and U-Pb Geochronological Data: Implications for Petroleum and Mineral Resource Accumulation in the Nanpanjiang Basin, South China. Geological Society of America Bulletin, 134(7-8): 2097-2114. https://doi.org/10.1130/B36168.1 [19] Guillong, M., Wotzlaw, J.F., Looser, N., et al., 2020. Evaluating the Reliability of U-Pb Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Carbonate Geochronology: Matrix Issues and a Potential Calcite Validation Reference Material. Geochronology, 2(1): 155-167. https://doi.org/10.5194/gchron-2-155-2020 [20] Hansman, R.J., Albert, R., Gerdes, A., et al., 2018. Absolute Ages of Multiple Generations of Brittle Structures by U-Pb Dating of Calcite. Geology, 46(3): 207-210. https://doi.org/10.1130/G39822.1 [21] Kelley, S., Turner, G., Butterfield, A. W., et al., 1986. The Source and Significance of Argon Isotopes in Fluid Inclusions from Areas of Mineralization. Earth and Planetary Science Letters, 79(3/4): 303-318. https://doi.org/10.1016/0012-821X(86)90187-1 [22] Koppers, A. A. P., 2002. ArArCALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098-3004(01)00095-4 [23] Kylander-Clark, A.R.C., 2020. Expanding The Limits of Laser-ablation U-Pb Calcite Geochronology. Geochronology, 2(2): 343-354. https://doi.org/10.5194/gchron-2-343-2020 [24] Lei, B.H., 2012. Review of Methods with Quantitative Studies of Activity Intensity of the Growth Fault. Advances in Earth Science, 27(9): 947-956(in Chinese with English abstract). [25] Liu, E.T., Pan, S.Q., Yan, D.T., et al., 2019. A New Technology of Basin Fluid Geochronology: In-Situ U-Pb Dating of Calcite. Earth Science, 44(3): 698-712(in Chinese with English abstract). [26] Liu E.T., Zhao J.X., Wang H., et al., 2021. LA-ICPMS in Situ U-Pb Geochronology of Low-Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies. Journal of Earth Science, 32(4): 872-879. https://doi.org/10.1007/s12583-020-1084-5 [27] Liu, Z.Q., Mei, L.F., Qiu, H.N., et al., 2011. 40Ar/39Ar Chronological Constraints on the Accumulation Period and Destruction Period of the Bankeng Paleo-Reservoir in the Southern Margin of the Middle Yangtze Block. Chinese Science Bulletin, 56(9): 2782-2790 (in Chinese). [28] Lv, H.T., Han, J., Zhang, J.B., et al., 2021. Development Characteristics and Formation Mechanism of Ultra-Deep Carbonate Fault-Dissolution Body in ShunbeiArea, Tarim Basin. Petroleum Geology & Experiment, 43(1): 14-22(in Chinese with English abstract). [29] Lv, Y.F., Fu, G., Zhang, Y.F., 2022. Fault Sealing Research. Petroleum Industry Press, Beijing (in Chinese). [30] Ludwig, K., 2008. User's Manual for Isoplot 3.7: a Geochronological Toolkit for Microsoft Excel. Berkeley, California, Berkeley Geochronology Center, Special Publication No. 4, 76. [31] Luo, Q., Bai, X.H., 1998. Theory and Practice of Fault Controlling Hydrocarbon: Research on Fault Activity and Oil and Gas Accumulation. China University of Geosciences Press, Wuhan (in Chinese) [32] Nuriel, P., Wotzlaw, J.F., Ovtcharova, M., et al., 2021. The Use of ASH-15 Flowstone as a Matrix-Matched Reference Material for Laser-Ablation U-Pb Geochronology of Calcite. Geochronology, 3: 35-47. https://doi.org/10.5194/gchron-3-35-2021 [33] Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., et al., 2017. The Onset of the Dead Sea Transform Based on Calcite Age-Strain Analyses. Geology, 45(7): 587-590. https://doi.org/10.1130/G38903.1 [34] Malusà, M. G, Fitzgerald, P.G., 2019. Fission-Ttrack Thermochronology and Its Application to Geology. Springer, Amsterdam, 222. [35] McDermott, R. G., Ault, A. K., Caine, J. S., 2021. Dating Fault Damage along the Eastern Denali Fault Zone with Hematite (U-Th)/He Thermochronometry. Earth and Planetary Science Letters, 563: 116872. https://doi.org/10.1016/j.epsl.2021.116872 [36] Meunier, A., Velde, B., Zalba, P., 2004. Illite K-Ar Dating and Crystal Growth Processes in Diagenetic Environments: a Critical Review. Terra Nova, 16: 296-304. https://doi.org/10.1111/j.1365-3121.2004.00563.x [37] Mottram, C.M., Kellett, D.A., Barresi, T., et al. 2020. Syncing Fault Rock Clocks: Direct Comparison of U-Pb Carbonate and K-Ar Illite Fault Dating Methods. Geology, 48(12): 1179-1183. https://doi.org/10.1130/G47778.1 [38] Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/C1JA10172B [39] Peacock, D. C. P., Dimmen, V., Rotevatn, A., et al., 2017. A Broader Classification of Damage Zones. Journal of Structural Geology, 102: 179-192. https://doi.org/10.1016/j.jsg.2017.08.004 [40] Pei, Y.W., Paton, D.A., Knipe, R.J., et al. 2015. A Review of Fault Sealing Behavior and its Evaluation in Silici Clastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011 [41] Peng, L., Shen, C. B., Yang, Z., et al., 2013. Apatite Fission-Track Data from Upper Cretaceous Formations in the Yuan'an Graben (China): Constraints on the Timing of Synsedimentary Fault Activity. Radiation Measurements, 50: 187-191. https://doi.org/10.1016/j.radmeas.2012.06.022 [42] Pevear, D. R., 1999. Illite and Hydrocarbon Exploration. Proceedings of the National Academy of Sciences of the United States of America, 96(7): 3440-3446. https://doi.org/10.1073/pnas.96.7.3440 [43] Qiu, H.N., Bai, X.J., 2019. Fluid Inclusion 40Ar/39Ar Dating Technique and Its Applications. Earth Science, 44(3): 685-697(in Chinese with English abstract). [44] Qiu, H.N., Dai, . T.M., 1989. 40Ar-39Ar Method for Determination of Mineral Fluid Inclusion Age. Chinese Science Bulletin, 34(9): 687-689 (in Chinese). doi: 10.1360/csb1989-34-9-687 [45] Qiu, H.N., Peng, L., 1997. 40Ar-39Ar Chronology and Fluid Inclusions. Press of University of Science and Technology of China, Hefei, 1-242 (in Chinese). [46] Qiu, H.N., Wu, H.Y., Feng, Z.H., et al., 2009. The Puzledom and Feasibility in Determining Emplacement Ages of Oil/Gas Reservoirs by 40Ar-39Ar Techniques. Geochimica, 38(1): 402-408(in Chinese with English abstract). [47] Qiu, H., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39: 451-454. https://doi.org/10.1130/G31885.1 [48] Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224-232. https://doi.org/10.1016/j.epsl.2007.01.028 [49] Rasbury, E.T., Cole, J.M., 2009. Directly Dating Geologic Events: U-Pb Dating of Carbonates. Reviews of Geophysics, 47(3): 1-27. https://doi.org/10.1029/2007RG000246 [50] Rahl, J. M., Haines, S. H., van der Pluijm, B. A., 2011. Links between Orogenic Wedge Deformation and Erosional Exhumation: Evidence from Illite Age Analysis of Fault Rock and Detrital Thermochronology of Syn-Tectonic Conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, 307(1/2): 180-190. https://doi.org/10.1016/j.epsl.2011.04.036 [51] Ran, W.M., Luan, X.W., Shao, Z.F., et al., 2019. Research on Characteristics of Growth Faults in the Southern East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 39(1): 100-112(in Chinese with English abstract). [52] Reiners, P.W., Chan, M.A., Evenson, N.S., 2014. (U-Th)/He Geochronology and Chemical Compositions of Diagenetic Cement, Concretions, and Fracture-Filling Oxide Minerals in Mesozoic Sandstones of the Colorado Plateau. Geological Society of America Bulletin, 126(9-10): 1363-1383. https://doi.org/10.1130/B30983.1 [53] Ring, U., Gerdes, A., 2016. Kinematics of the Alpenrhein-Bodensee Graben System in the Central Alps: Oligocene/Miocene Transtension Due to Formation of the Western Alps Arc. Tectonics, 35(6): 1367-1391. https://doi.org/10.1002/2015TC004085 [54] Roberts, N. M. W., Holdsworth, R. E., 2022. Timescales of Faulting through Calcite Geochronology: a Review. Journal of Structural Geology, 158: 104578. https://doi.org/10.1016/j.jsg.2022.104578 [55] Roberts, N. M. W., Žák, J., Vacek, F., et al., 2021. No more Blind Dates with Calcite: Fluid-Flow Vs. Fault-Slip along the Očkov Thrust, Prague Basin. Geoscience Frontiers, 12(4): 101143. https://doi.org/10.1016/j.gsf.2021.101143 [56] Roberts, N.M., Walker, R.J., 2016. U-Pb Geochronology of Calcite-Mineralized Faults: Absolute Timing of Rift-Related Fault Events on the Northeast Atlantic Margin. Geology, 44(7): 531-534. https://doi.org/10.1130/G37868.1 [57] Shen, C.B., Ge, X., Mei, L.F., et al., 2020. Re-Os Isotopic Chronology of Petroleum-Bearing Systems. Science Press, Beijing, 1-186 (in Chinese) [58] Shen, C.B., Ge, X., Bai, X.J., et al., 2019. Re-Os Geochronology Constraints on the Neoproterozoic-Cambrian Hydrocarbon Accumulation in the Sichuan Basin. Earth Science, 44(3): 713-726(in Chinese with English abstract). [59] Shen, C.B., Mei, L.F., Fan, Y.F., et al., 2005. Advances and Prospects of Apatite Fission Track Thermochronology. Bulletin of Geological Science and Technology, 24(2): 57-63(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2005.02.011 [60] Środoń, J., 1999. Extracting K-Ar Ages from Shales: a Theoretical Test. Clay Minerals, 34: 375-378. https://doi.org/10.1180/000985599546163 [61] Su, S.M., Jiang, Y.L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum(Edition of Natural Science), 45(4): 32-41(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2021.04.004 [62] Tagami, T., 2019. Application of Fission-Track Thermochronology to Understand Fault Zones. Springer, Amsterdam, 221-233. [63] Tian, Y.T., Kohn, B.P., Gleadow, A.J.W., et al., 2013. Constructing the Longmen Shan Eastern Tibetan Plateau Margin: Insights from Low-Temperature Thermochronology. Tectonics, 32(3): 576-592. https://doi.org/10.1002/tect.20043 [64] van der Pluijm, B. A., Hall, C. M., Vrolijk, P. J., et al., 2001. The Dating of Shallow Faults in the Earth's Crust. Nature, 412(6843): 172-175. https://doi.org/10.1038/35084053 [65] van der Pluijm, B.A., Hal, C.M., 2014. Fault Zone (Thermochronology) in Encyclopedia of Scientific Dating Methods. Dordrecht, Springer, Amsterdam. [66] Vrolijk, P., Pevear, D., Covey, M., et al., 2018. Fault Gouge Dating: Historyand Evolution. Clay Minerals, 53(3): 305-324. https://doi.org/10.1180/clm.2018.22 [67] Wang, L.Z., Wang, L.Y., Peng, P.A., et al. 2018. A Thermal Event in the Ordos Basin: Insights from Illite 40Ar-39Ar Dating with Regression Analysis. Journal of Earth Science, 29(3): 629-638. https://doi.org/10.1007/s12583-017-0903-7 [68] Wang, X.M., Zhong, D.L., Wang, Y., 2008. A Case of Application Using Apatite Fission Track to Restrict the Time of Brittle Fault Movement. Progress in Geophysics, 23(5): 1444-1455(in Chinese with English abstract). [69] Xiao, M., Jiang, Y. D., Zhao, G. C., et al., 2022. Fluid Inclusion 40Ar/39Ar Geochronology of Andalusite from Syn-Tectonic Quartz Veins: New Perspectives on Dating Deformation and Metamorphism in Low-Pressure Metamorphic Belts. Geochimica et Cosmochimica Acta, 323: 141-163. https://doi.org/10.1016/j.gca.2022.01.025 [70] Xu, X.B., Deng, F., Wang, D., et al., 2022. Advances on Composition and Dating Methods of Fault Gouge and Weakening Mechanisms of Earthquake Faults in Bedrock Area. Bulletin of Geological Science and Technology, 1-11 (in Chinese with English abstract). [71] Yang, H.L., Chen, J., Yao, L., et al. 2019. Resetting of OSL/TL/ESR Signals by Frictional Heating in Experimentally Sheared Quartz Gouge at Seismic Slip Rates. Quaternary Geochronology, 49: 52-56. https://doi.org/10.1016/j.quageo.2018.05.005 [72] Yang, K.G., Liang, X.Z., Xie, J.L., et al., 2006. ESR Dating, the Principle and Application of a Method to Determine Active Ages of Brittle Faults. Advances in Earth Science, 21(2): 430-435(in Chinese with English abstract). [73] Yang, P., Wu, G.H., Nuriel, P., et al. 2021. In Situ LA-ICP-MS U-Pb Dating and Geochemical Characterization of Fault Zone Calcite in the Central Tarim Basin, Northwest China: Implications for Fluid Circulation and Fault Reactivation. Chemical Geology, 568: 120-125. https://doi.org/10.1016/j.chemgeo.2021.120125 [74] Yun, J.B., Shi, H.S., Zhu, J.Z., et al., 2010. Dating Petroleum Emplacement by Illite 40Ar/39Ar Laser Stepwise Heating. AAPG Bulletin, 94: 759-771. https://doi.org/10.1306/10210909102. [75] Zwingmann, H., Mancktelow, N., Antognini, M., et al. 2010a. Dating of Shallow Faults: New Constraints from the AlpTransit Tunnel Site(Switzerland). Geology, 38(6): 487-490. https://doi.org/10.1130/G30785.1 [76] Zwingmann, H., Yamada, K., Tagami, T., 2010b. Timing of Brittle Deformation within the Nojima Fault Zone, Japan. Chemical Geology, 275(3/4): 176-185. https://doi.org/10.1016/j.chemgeo.2010.05.006 [77] Zhang, Y. Q., Ma, Y. S., Yang, N., et al., 2003. Cenozoic Extensional Stress Evolution in North China. Journal of Geodynamics, 36(5): 591-613. https://doi.org/10.1016/j.jog.2003.08.001 [78] Zhao, Q., Yan, y., 2021. Dating of Shallow Crusted Faults by lllite K-Ar/Ar-Ar Ages: Principles and Potential. Advances in Earth Science, 36(7): 671-683 (in Chinese with English abstract). [79] Zhao, Z.X., Shi, W., 2019. LA-(MC-)ICP-MS U-Pb Dating Technique of Calcite and Its Application in Brittle Structures. Journal of Earth Sciences and Environment, 41(5): 505-516(in Chinese with English abstract). [80] Zheng, Y., Li, H.B., Wang, S.G., et al., 2019. Authigenic lllite Age Analysis for Fault Gouge and Its Application to the Longmen Shan Fault Belt. Acta Geoscientica Sinica, 40(1): 173-185(in Chinese with English abstract). [81] Zhu, G., Wang, W., Gu, C.C., et al., 2016. Late Mesozoic Evolution History of the Tan-Lu Fault Zone and Its Indication to Destruction Processes of the North China Craton. Acta Petrologica Sinica, 32(4): 935-949(in Chinese with English abstract). [82] 陈伟, 吴智平, 侯峰, 等, 2010. 断裂带内部结构特征及其与油气运聚关系. 石油学报, 31(5): 774-780. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201005014.htm [83] 陈文, 万渝生, 李华芹, 等, 2011. 同位素地质年龄测定技术及应用. 地质学报, 85(11): 1917-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111010.htm [84] 高伊雪, 邱昆峰, 于皓丞, 等, 2022. 碳酸盐矿物激光原位U-Pb定年基本原理、分析方法与地学应用. 岩石矿物学杂志, 41(4): 786-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202204008.htm [85] 刘恩涛, 潘松圻, 严德天, 等, 2019. 盆地流体年代学研究新技术: 方解石激光原位U-Pb定年法. 地球科学, 44(3): 698-712. doi: 10.3799/dqkx.2019.958 [86] 刘昭茜, 梅廉夫, 邱华宁, 等, 2011. 中扬子地块南缘半坑古油藏成藏期及破坏期的40Ar/39Ar年代学约束. 科学通报, 56(9): 2782-2790. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201133008.htm [87] 吕延防, 付广, 张云峰, 2002. 断层封闭性研究. 北京: 石油工业出版社. [88] 罗群, 白新华, 1998. 断裂控烃理论与实践——断裂活动与油气聚集研究. 武汉: 中国地质大学出版社. [89] 雷宝华, 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209005.htm [90] 吕海涛, 韩俊, 张继标, 等, 2021. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制. 石油实验地质, 43(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101003.htm [91] 邱华宁, 白秀娟, 2019. 流体包裹体40Ar/39Ar定年技术与应用. 地球科学, 44(3): 685-697. doi: 10.3799/dqkx.2019.007 [92] 邱华宁, 吴河勇, 冯子辉, 等, 2009. 油气成藏40Ar/39Ar定年难题与可行性分析. 地球化学, 38(1): 402-408. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200904012.htm [93] 邱华宁, 彭良, 1997. 40Ar/39Ar年代学与流体包裹体. 合肥: 中国科学技术大学出版社, 1-242. [94] 邱华宁, 戴橦谟, 1989. 40Ar/39Ar法测定矿物流体包裹体年龄. 科学通报, 34(9): 687-689. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198909012.htm [95] 冉伟民, 栾锡武, 邵珠福, 等. 2019. 东海陆架盆地南部生长断层活动特征. 海洋地质与第四纪地质, 39(1): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201901011.htm [96] 苏圣民, 蒋有录, 2021. 含油气盆地断裂带结构特征及其与油气运聚关系. 中国石油大学学报(自然科学版), 45(4): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202104005.htm [97] 沈传波, 葛翔, 梅廉夫, 等, 2020. 含油气系统铼-锇同位素年代学. 北京: 科学出版社, 1-186. [98] 沈传波, 葛翔, 白秀娟, 等, 2019. 四川盆地震旦-寒武系油气成藏的Re-Os年代学约束. 地球科学, 44(3): 713-726. doi: 10.3799/dqkx.2018.383 [99] 沈传波, 梅廉夫, 凡元芳, 等, 2005. 磷灰石裂变径迹热年代学研究的进展与展望. 地质科技情报, 24(2): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200502014.htm [100] 王先美, 钟大赉, 王毅, 2008. 利用磷灰石裂变径迹约束脆性断裂活动的时限. 地球物理学进展, 23(5): 1444-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200805014.htm [101] 徐先兵, 邓飞, 王墩, 等, 2022. 基岩区断层泥的物质组成、定年方法与地震断层弱化机制研究进展. 地质科技通报, https://doi.org/10.19509/j.cnki.dzkq.2022.0138. [102] 杨坤光, 梁兴中, 谢建磊, 等, 2006. ESR定年: 一种确定脆性断层活动年龄的方法原理与应用. 地球科学进展, 21(2): 430-435. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604013.htm [103] 赵子贤, 施炜, 2019. 方解石LA-(MC-)ICP-MS U-Pb定年技术及其在脆性构造中的应用. 地球科学与环境学报, 41(5): 505-516. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201905002.htm [104] 赵奇, 闫义, 2021. 伊利石K-Ar/Ar-Ar年龄约束浅地表断层活动时间: 原理和潜力. 地球科学进展, 36(7): 671-683. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202107003.htm [105] 郑勇, 李海兵, 王世广, 等, 2019. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用. 地球学报, 40(1): 173-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901012.htm [106] 朱光, 王薇, 顾承串, 等, 2016. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示. 岩石学报, 32(4): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm