• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究

    王闯 董金玉 刘汉东 黄志全 赵亚文 杨兴隆

    王闯, 董金玉, 刘汉东, 黄志全, 赵亚文, 杨兴隆, 2022. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究. 地球科学, 47(12): 4428-4441. doi: 10.3799/dqkx.2022.396
    引用本文: 王闯, 董金玉, 刘汉东, 黄志全, 赵亚文, 杨兴隆, 2022. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究. 地球科学, 47(12): 4428-4441. doi: 10.3799/dqkx.2022.396
    Wang Chuang, Dong Jinyu, Liu Handong, Huang Zhiquan, Zhao Yawen, Yang Xinglong, 2022. Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Three Sections Locked Rock Slope. Earth Science, 47(12): 4428-4441. doi: 10.3799/dqkx.2022.396
    Citation: Wang Chuang, Dong Jinyu, Liu Handong, Huang Zhiquan, Zhao Yawen, Yang Xinglong, 2022. Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Three Sections Locked Rock Slope. Earth Science, 47(12): 4428-4441. doi: 10.3799/dqkx.2022.396

    三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究

    doi: 10.3799/dqkx.2022.396
    基金项目: 

    国家重点研发计划项目 2019YFC1509704

    国家自然科学基金项目 U1704243

    国家自然科学基金项目 41741019

    国家自然科学基金项目 41977249

    国家自然科学基金项目 42090052

    中原科技创新领军人才计划 214200510030

    河南省重点研发专项 221111321500

    华北水利水电大学高层次人才引进项目 202111002

    详细信息
      作者简介:

      王闯(1991-),男,博士,讲师,主要从事岩土体动力特性方面的研究工作.ORCID:0000-0002-9157-0417.E-mail:wangchuang@ncwu.edu.cn

      通讯作者:

      董金玉,博士,教授,主要从事岩土体动力特性方面的研究工作.E-mail: dongjy0552@126.com

    • 中图分类号: P642.2

    Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Three Sections Locked Rock Slope

    • 摘要:

      设计和制作了三段式锁固型岩质边坡模型,并进行了大型振动台试验,对三段式锁固型岩质边坡在地震作用下的动力响应和变形破坏模式进行了分析.研究结果表明:三段式锁固型边坡模型的自振频率随振动次数的增加而逐渐降低,阻尼比则随振动次数的增加而逐渐增大;边坡模型水平加速度放大系数表现出明显的高程放大效应和趋表效应;在不同类型输入波的作用下,边坡加速度响应存在着明显的差异;加速度放大系数随着输入波频率的增加表现出先增加后减小的变化规律,且在频率为15 Hz时峰值加速度放大系数达到最大值;随着输入波振幅的增加,坡体加速度放大系数总体上表现为先增加后减小的变化趋势;在地震波的作用下,位于坡体顶部裂缝和底部软弱夹层之间的锁固段出现多条裂缝,并不断发展呈X型贯通,最终在坡体内部形成3级滑面,并在持续的振动作用下,边坡沿着3级滑面发生滑动破坏.

       

    • 图  1  边坡模型

      Fig.  1.  Slope model

      图  2  模型尺寸及传感器布置(单位:mm)

      Fig.  2.  Layout of acceleration transducer (unit: mm)

      图  3  正弦波时程曲线

      Fig.  3.  Acceleration history of the sine wave

      图  4  输入的卧龙波

      a.时程曲线;b.频谱曲线

      Fig.  4.  The input WL wave

      图  5  输入的El波

      a.时程曲线;b.频谱曲线

      Fig.  5.  The input El wave

      图  6  不同白噪声激励下模型边坡第一阶自振频率和阻尼比变化曲线

      Fig.  6.  First order natural frequency and damping ratio curve of model slope under different white noise excitation

      图  7  加速度放大系数的等值线图

      a.压缩4倍卧龙波0.1 g; b.压缩4倍卧龙波0.2 g; c.压缩4倍El波0.1 g; d.压缩4倍El波0.2 g; e.20 Hz正弦波0.1 g; f.20 Hz正弦波0.2 g

      Fig.  7.  Contour maps of acceleration amplification coefficient

      图  8  边坡模型的加速度动力响应

      a.坡面; b.坡体内部竖直方向上; c.坡体内部水平方向上

      Fig.  8.  Acceleration dynamic response of slope model

      图  9  不同频率正弦波输入下坡面水平加速度放大系数

      a.幅值0.1 g; b.幅值0.2 g

      Fig.  9.  Horizontal acceleration amplification factor of slope surface under different frequency sine wave inputs

      图  10  输入波幅值对坡面加速度放大系数的影响

      Fig.  10.  Effect of input wave amplitude on slope acceleration amplification coefficient

      图  11  输入波幅值对坡面测点加速度放大系数的影响

      Fig.  11.  Effect of input wave amplitude on slope acceleration amplification coefficient

      图  12  水平方向上正弦波输入下加速度放大系数(A22~A19)

      Fig.  12.  Acceleration amplification factor (A22-A19) under sine wave input in horizontal direction

      图  13  竖直方向上不同频率正弦波输入下加速度放大系数(A4⁃A10⁃A15⁃A19)

      Fig.  13.  Acceleration amplification factor under different frequency sine wave input in vertical direction (A4⁃A10⁃A15⁃A19)

      图  14  试验中边坡模型的变形破坏情况输入

      a.软弱夹层末端出现拉裂(卧龙波0.3 g); b.锁固段出现竖直拉裂缝(正弦波0.3 g); c.锁固段处裂缝贯通(卧龙波0.4 g); d.坡体浅部出现裂纹(正弦波0.4 g); e.坡体浅部现块体滑落(卧龙波0.5 g); f.预制裂缝后部岩体出现破碎(正弦波0.5 g); g.形成3级滑面(卧龙波0.6 g); h.坡体沿着3级滑面滑动破坏(正弦波0.6 g)

      Fig.  14.  Input of deformation and failure of model slope in test

      表  1  模型试验主要相似常数

      Table  1.   Main similarity constants in model test

      物理量 相似关系 相似常数
      密度(ρ) Cρ 1
      长度(L) CL 16
      时间(t) Ct 4
      弹性模量(E) CE = CρCL2Ct-2 16
      泊松比(μ) Cμ 1
      内摩擦角(φ) Cφ 1
      黏聚力(c) Cc = CE 16
      加速度(a) Ca = CECρ-1CL-1 1
      频率(f) Cf = Ct-1 0.25
      应力(σ) Cσ = CECε 16
      下载: 导出CSV

      表  2  相似材料物理力学参数

      Table  2.   Physical and mechanical parameters of similar materials

      位置 密度(g/cm3) 抗压强度(MPa) 抗拉强度(MPa) 弹性模量(MPa) 泊松比 内摩擦角(°) 黏聚力(kPa)
      坡体 2.50 0.853 0.099 124.46 0.12 34.8 294.0
      软弱层 2.32 - - 4.8 0.35 10.0 10.0
      下载: 导出CSV

      表  3  试验加载方案

      Table  3.   Physical and mechanical parameters

      工况 激励方式 加速度峰值(m/s2) 频率(Hz) 时间压缩比
      1~3 卧龙波 1 - 4, 2, 1
      4~6 El波 1 - 4, 2, 1
      7~14 正弦波 1 5, 10, 15, 20, 25,
      30, 35, 40
      -
      15 白噪声 0.05 - -
      16~18 卧龙波 2 - 4, 2, 1
      19~21 El波 2 - 4, 2, 1
      22 白噪声 0.05 - -
      23~30 正弦波 2 5, 10, 15, 20, 25,
      30, 35, 40
      -
      31 白噪声 0.05 - -
      32 卧龙波 3 - 4
      33 正弦波 3 10 -
      34 白噪声 0.05 - -
      35 卧龙波 4 - 4
      36 正弦波 4 10 -
      37 白噪声 0.05 - -
      38 卧龙波 5 - 4
      39 正弦波 5 10 -
      40 白噪声 0.05 - -
      41 卧龙波 6 - 4
      42 正弦波 6 10 -
      43 白噪声 0.05 - -
      44 卧龙波 7 - 4
      45 正弦波 7 10 -
      46 白噪声 0.05 - -
      47 卧龙波 8 - 4
      48 正弦波 8 10 -
      49 白噪声 0.05 - -
      下载: 导出CSV
    • [1] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract).
      [2] Chen, H. R., Qin, S. Q., Xue, L., et al., 2018. A Physical Model Predicting Instability of Rock Slopes with Locked Segments along a Potential Slip Surface. Engineering Geology, 242: 34-43. https://doi.org/10.1016/j.enggeo.2018.05.012
      [3] Chen, H. R., Qin, S. Q., Xue, L., et al., 2019. Modes of Mechanical Action between Locked Segments. Journal of Engineering Geology, 27(1): 1-13(in Chinese with English abstract).
      [4] Chen, H. R., Qin, S. Q., Xue, L., et al., 2021. Why the Xintan Landslide was not Triggered by the Heaviest Historical Rainfall: Mechanism and Review. Engineering Geology, 294: 106379. https://doi.org/10.1016/j.enggeo.2021.106379
      [5] Chen, Z. L., Hu, X., Xu, Q., 2016. Experimental Study of Motion Characteristics of Rock Slopes with Weak Intercalation under Seismic Excitation. Journal of Mountain Science, 13(3): 546-556. https://doi.org/10.1007/s11629⁃014⁃3212⁃0
      [6] Deng, Z. Y., Liu, X. R., Liu, Y. Q., et al., 2020. Model Test and Numerical Simulation on the Dynamic Stability of the Bedding Rock Slope under Frequent Microseisms. Earthquake Engineering and Engineering Vibration, 19(4): 919-935. https://doi.org/10.1007/s11803⁃020⁃0604⁃8
      [7] Dong, J. Y., Wang, C., Huang, Z. Q., et al., 2021. Dynamic Response Characteristics and Instability Criteria of a Slope with a Middle Locked Segment. Soil Dynamics and Earthquake Engineering, 150: 106899. https://doi.org/10.1016/j.soildyn.2021.106899
      [8] Dong, J. Y., Wang, C., Huang, Z. Q., et al., 2022. Shaking Table Model Test to Determine Dynamic Response Characteristics and Failure Modes of Steep Bedding Rock Slope. Rock Mechanics and Rock Engineering, 55(6): 3645-3658. https://doi.org/10.1007/s00603⁃022⁃02822⁃x
      [9] Dong, J. Y., Yang, G. X., Wu, F. Q., et al., 2011. The Large⁃Scale Shaking Table Test Study of Dynamic Response and Failure Mode of Bedding Rock Slope under Earthquake. Rock and Soil Mechanics, 32(10): 2977-2982, 2988(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.10.014
      [10] Dong, J. Y., Yang, J. H., Wu, F. Q., et al., 2013. Large⁃Scale Shaking Table Test Research on Acceleration Response Rules of Bedding Layered Rock Slope and Its Blocking Mechanism of River. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3861-3867(in Chinese with English abstract).
      [11] Dong, J. Y., Yang, J. H., Yang, G. X., et al., 2012. Research on Similar Material Proportioning Test of Model Test Based on Orthogonal Design. Journal of China Coal Society, 37(1): 44-49(in Chinese with English abstract).
      [12] Fan, G., Zhang, J. J., Wu, J. B., et al., 2016. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mechanics and Rock Engineering, 49(8): 3243-3256. https://doi.org/10.1007/s00603⁃016⁃0971⁃7
      [13] Guo, S. F., Qi, S. W., Yang, G. X., et al., 2017. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake. Applied Sciences, 7(10): 1008. https://doi.org/10.1007/s00603⁃016⁃0971⁃7
      [14] He, J. X., Qi, S. W., Wang, Y. S., et al., 2020. Seismic Response of the Lengzhuguan Slope Caused by Topographic and Geological Effects. Engineering Geology, 265: 105431. https://doi.org/10.1016/j.enggeo.2019.105431
      [15] He, J. X., Qi, S. W., Zhan, Z. F., et al., 2021. Seismic Response Characteristics and Deformation Evolution of the Bedding Rock Slope Using a Large⁃Scale Shaking Table. Landslides, 18: 2835-2853. https://doi.org/10.1007/s10346⁃021⁃01682⁃w
      [16] Huang, D., Zhang, X. J., Gu, D. M., 2018. Failure Pattern and Evolution Mechanism of Locking Section in Rock Slope with Three⁃Section Landslide Mode. Chinese Journal of Geotechnical Engineering, 40(9): 1601-1609(in Chinese with English abstract).
      [17] Huang, R. Q., 2009. Some Catastrophic Landslides since the Twentieth Century in the Southwest of China. Landslides, 6(1): 69-81. https://doi.org/10.1007/s10346⁃009⁃0142⁃y
      [18] Huang, R. Q., Chen, G. Q., Tang, P., 2017. Precursor Information of Locking Segment Landslides Based on Transient Characteristics. Chinese Journal of Rock Mechanics and Engineering, 36(3): 521-533(in Chinese with English abstract).
      [19] Huang, R. Q., Zhao, J. J., Ju, N. P., et al., 2013. Analysis of an Anti⁃Dip Landslide Triggered by the 2008 Wenchuan Earthquake in China. Natural Hazards, 68(2): 1021-1039. https://doi.org/10.1007/s11069⁃013⁃0671⁃5
      [20] Liu, H. X., Xu, Q., Zhou, F., et al., 2015. Shaking Table Test for Seismic Responses of Slopes with a Weak Interlayer. Chinese Journal of Rock Mechanics and Engineering, 34(5): 994-1005(in Chinese with English abstract).
      [21] Liu, X. R., He, C. M., Liu, S. L., et al., 2018. Dynamic Response and Failure Mode of Slopes with Horizontal Soft and Hard Interbeddings under Frequent Microseisms. Arabian Journal for Science and Engineering, 43(10): 5397-5411. https://doi.org/10.1007/s13369-018-3143⁃0
      [22] Pan, X. H., Qin, S. Q., Xue, L., 2018. Study on Failure Modes of Various Locked Segments in Rock Slopes Based on Physical Model Tests. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 39(6): 13-18(in Chinese with English abstract).
      [23] Pan, X. H., Xue, L., Qin, S. Q., et al., 2014. Types, Formation Conditions and Pre⁃Decision Method for Large Landslides with Potential Locked Patches. Journal of Engineering Geology, 22(6): 1159-1167(in Chinese with English abstract).
      [24] Qi, S., Lan, H., Dong, J. Y., 2015. An Analytical Solution to Slip Buckling Slope Failure Triggered by Earthquake. Engineering Geology, 194: 4-11. https://doi.org/10.1016/j.enggeo.2014.06.004
      [25] Qi, S. W., Wu, F. Q., Sun, J. Z., 2003. Study on Dynamic Response Law of Slope. Science in China (Series E), 33(Suppl. 1): 28-40(in Chinese).
      [26] Qi, S. W., Zheng, B. W., Wu, F. Q., et al., 2020. A New Dynamic Direct Shear Testing Device on Rock Joints. Rock Mechanics and Rock Engineering, 53(10): 4787-4798. https://doi.org/10.1007/s00603⁃020⁃02175⁃3
      [27] Qin, S. Q., Wang, Y. Y., Ma, P., 2010. Exponential Laws of Critical Displacement Evolution for Landslides and Avalanches. Chinese Journal of Rock Mechanics and Engineering, 29(5): 873-880(in Chinese with English abstract).
      [28] Tang, Z. H., Yu, X. L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042 (in Chinese with English abstract).
      [29] Wang, C., 2021. Study on Seismic Dynamic Failure Mechanism of Rock Slope with Lock Type (Dissertation). North China University of Water Resources and Electric Power, Zhengzhou(in Chinese with English abstract).
      [30] Xing, A. G., Wang, G. H., Yin, Y. P., et al., 2016. Investigation and Dynamic Analysis of a Catastrophic Rock Avalanche on September 23, 1991, Zhaotong, China. Landslides, 13(5): 1035-1047. https://doi.org/10.1007/s10346⁃015⁃0617⁃y
      [31] Xu, Q., Pei, X. J., Huang, R. Q., 2009. Large⁃Scale Landslides Induced by the Wenchuan Earthquake. Science Press, Beijing(in Chinese).
      [32] Xue, L., Qin, S. Q., Pan, X. H., et al., 2018. Mechanism and Physical Prediction Model of Instability of the Locked⁃Segment Type Slopes. Journal of Engineering Geology, 26(1): 179-192(in Chinese with English abstract).
      [33] Yang, G. X., Qi, S., Wu, F. Q., et al., 2017. Seismic Amplification of the Anti⁃Dip Rock Slope and Deformation Characteristics: A Large⁃Scale Shaking Table Test. Soil Dynamic and Earthquake Engineering. https://doi.org/10.1016/j.soildyn.2017.09.010
      [34] Yang, G. X., Wu, F. Q., Dong, J. Y., et al., 2012b. Study of Dynamic Response Characters and Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702(in Chinese with English abstract).
      [35] Yang, G. X., Ye, H. L., Wu, F. Q., et al., 2012a. Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Antidip Layered Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2214-2221(in Chinese with English abstract).
      [36] Yang, Z. P., Tian, X., Jiang, Y. W., et al., 2020. Experimental Study on Dynamic Characteristics and Dynamic Responses of Accumulation Slopes under Frequent Microseisms. Arabian Journal of Geosciences, 13(16): 770. https://doi.org/10.1007/s12517⁃020⁃05781
      [37] Zhan, Z. F., He, J. X., Zheng, B. W., et al., 2019a. Experimental Study on Similar Material Proportion of Slope Model. Progress in Geophysics, 34(3): 1236-1243(in Chinese with English abstract).
      [38] Zhan, Z. F., Qi, S. W., He, N. W., et al., 2019b. Shaking Table Test Study of Homogeneous Rock Slope Model under Strong Earthquake. Journal of Engineering Geology, 27(5): 946-954(in Chinese with English abstract).
      [39] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      [40] 陈竑然, 秦四清, 薛雷, 等, 2019. 锁固段之间的力学作用模式. 工程地质学报, 27(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901001.htm
      [41] 董金玉, 杨国香, 伍法权, 等, 2011. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究. 岩土力学, 32(10): 2977-2982, 2988. doi: 10.3969/j.issn.1000-7598.2011.10.014
      [42] 董金玉, 杨继红, 杨国香, 等, 2012. 基于正交设计的模型试验相似材料的配比试验研究. 煤炭学报, 37(1): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201009.htm
      [43] 董金玉, 杨继红, 伍法权, 等, 2013. 顺层岩质边坡加速度响应规律和滑动堵江机制大型振动台试验研究. 岩石力学与工程学报, 32(增刊2): 3861-3867. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2110.htm
      [44] 黄达, 张晓景, 顾东明, 2018. "三段式"岩石滑坡的锁固段破坏模式及演化机制. 岩土工程学报, 40(9): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809006.htm
      [45] 黄润秋, 陈国庆, 唐鹏, 2017. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究. 岩石力学与工程学报, 36(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm
      [46] 刘汉香, 许强, 周飞, 等, 2015. 含软弱夹层斜坡地震动力响应特性的振动台试验研究. 岩石力学与工程学报, 34(5): 994-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm
      [47] 泮晓华, 秦四清, 薛雷, 2018. 岩质斜坡锁固段破坏模式的物理模型试验研究. 华北水利水电大学学报(自然科学版), 39(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201806004.htm
      [48] 泮晓华, 薛雷, 秦四清, 等, 2014. 潜在锁固型滑坡的类型、形成条件和预判方法研究. 工程地质学报, 22(6): 1159-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406023.htm
      [49] 祁生文, 伍法权, 孙进忠, 2003. 边坡动力响应规律研究. 中国科学(E辑), 33(增刊1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1003.htm
      [50] 秦四清, 王媛媛, 马平, 2010. 崩滑灾害临界位移演化的指数律. 岩石力学与工程学报, 29(5): 873-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005005.htm
      [51] 唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960
      [52] 王闯, 2021. 锁固型岩质边坡地震动力破坏机理研究(博士学位论文). 郑州: 华北水利水电大学.
      [53] 许强, 裴向军, 黄润秋, 2009. 汶川地震大型滑坡研究. 北京: 科学出版社.
      [54] 薛雷, 秦四清, 泮晓华, 等, 2018. 锁固型斜坡失稳机理及其物理预测模型. 工程地质学报, 26(1): 179-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801020.htm
      [55] 杨国香, 伍法权, 董金玉, 等, 2012b. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204008.htm
      [56] 杨国香, 叶海林, 伍法权, 等, 2012a. 反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究. 岩石力学与工程学报, 31(11): 2214-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211008.htm
      [57] 詹志发, 贺建先, 郑博文, 等, 2019a. 边坡模型相似材料配比试验研究. 地球物理学进展, 34(3): 1236-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903048.htm
      [58] 詹志发, 祁生文, 何乃武, 等, 2019b. 强震作用下均质岩质边坡动力响应的振动台模型试验研究. 工程地质学报, 27(5): 946-954. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905002.htm
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  92
    • HTML全文浏览量:  42
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-25
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回