Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Three Sections Locked Rock Slope
-
摘要:
设计和制作了三段式锁固型岩质边坡模型,并进行了大型振动台试验,对三段式锁固型岩质边坡在地震作用下的动力响应和变形破坏模式进行了分析.研究结果表明:三段式锁固型边坡模型的自振频率随振动次数的增加而逐渐降低,阻尼比则随振动次数的增加而逐渐增大;边坡模型水平加速度放大系数表现出明显的高程放大效应和趋表效应;在不同类型输入波的作用下,边坡加速度响应存在着明显的差异;加速度放大系数随着输入波频率的增加表现出先增加后减小的变化规律,且在频率为15 Hz时峰值加速度放大系数达到最大值;随着输入波振幅的增加,坡体加速度放大系数总体上表现为先增加后减小的变化趋势;在地震波的作用下,位于坡体顶部裂缝和底部软弱夹层之间的锁固段出现多条裂缝,并不断发展呈X型贯通,最终在坡体内部形成3级滑面,并在持续的振动作用下,边坡沿着3级滑面发生滑动破坏.
Abstract:A three sections locked rock slope model was designed and produced, and a large-scale shaking table test was carried out to analyze the dynamic response and deformation failure mode of the three sections locked rock slope under earthquake action. The research results show that the natural vibration frequency of the three sections locked slope model decreases gradually with the increase of vibration times, and the damping ratio increases gradually with the increase of vibration times; the horizontal acceleration amplification factor of the slope model shows obvious elevation amplification effect and surface effect. Under the action of different types of input waves, there are obvious differences in the slope acceleration response: the acceleration amplification coefficient increases first and then decreases with the increase of input wave frequency, and the peak acceleration amplification coefficient reaches the maximum value when the frequency is 15 Hz. With the increase of the amplitude of the input wave, the acceleration amplification coefficient of the slope increases first and then decreases. Under the action of seismic wave, multiple cracks appear in the locking section between the crack at the top of the slope and the weak interlayer at the bottom, and continue to develop in an X-shaped connection. Finally, a 3-level slip surface is formed in the slope, and the slope slides along the 3-level slip surface under the action of continuous vibration.
-
表 1 模型试验主要相似常数
Table 1. Main similarity constants in model test
物理量 相似关系 相似常数 密度(ρ) Cρ 1 长度(L) CL 16 时间(t) Ct 4 弹性模量(E) CE = CρCL2Ct-2 16 泊松比(μ) Cμ 1 内摩擦角(φ) Cφ 1 黏聚力(c) Cc = CE 16 加速度(a) Ca = CECρ-1CL-1 1 频率(f) Cf = Ct-1 0.25 应力(σ) Cσ = CECε 16 表 2 相似材料物理力学参数
Table 2. Physical and mechanical parameters of similar materials
位置 密度(g/cm3) 抗压强度(MPa) 抗拉强度(MPa) 弹性模量(MPa) 泊松比 内摩擦角(°) 黏聚力(kPa) 坡体 2.50 0.853 0.099 124.46 0.12 34.8 294.0 软弱层 2.32 - - 4.8 0.35 10.0 10.0 表 3 试验加载方案
Table 3. Physical and mechanical parameters
工况 激励方式 加速度峰值(m/s2) 频率(Hz) 时间压缩比 1~3 卧龙波 1 - 4, 2, 1 4~6 El波 1 - 4, 2, 1 7~14 正弦波 1 5, 10, 15, 20, 25,
30, 35, 40- 15 白噪声 0.05 - - 16~18 卧龙波 2 - 4, 2, 1 19~21 El波 2 - 4, 2, 1 22 白噪声 0.05 - - 23~30 正弦波 2 5, 10, 15, 20, 25,
30, 35, 40- 31 白噪声 0.05 - - 32 卧龙波 3 - 4 33 正弦波 3 10 - 34 白噪声 0.05 - - 35 卧龙波 4 - 4 36 正弦波 4 10 - 37 白噪声 0.05 - - 38 卧龙波 5 - 4 39 正弦波 5 10 - 40 白噪声 0.05 - - 41 卧龙波 6 - 4 42 正弦波 6 10 - 43 白噪声 0.05 - - 44 卧龙波 7 - 4 45 正弦波 7 10 - 46 白噪声 0.05 - - 47 卧龙波 8 - 4 48 正弦波 8 10 - 49 白噪声 0.05 - - -
[1] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract). [2] Chen, H. R., Qin, S. Q., Xue, L., et al., 2018. A Physical Model Predicting Instability of Rock Slopes with Locked Segments along a Potential Slip Surface. Engineering Geology, 242: 34-43. https://doi.org/10.1016/j.enggeo.2018.05.012 [3] Chen, H. R., Qin, S. Q., Xue, L., et al., 2019. Modes of Mechanical Action between Locked Segments. Journal of Engineering Geology, 27(1): 1-13(in Chinese with English abstract). [4] Chen, H. R., Qin, S. Q., Xue, L., et al., 2021. Why the Xintan Landslide was not Triggered by the Heaviest Historical Rainfall: Mechanism and Review. Engineering Geology, 294: 106379. https://doi.org/10.1016/j.enggeo.2021.106379 [5] Chen, Z. L., Hu, X., Xu, Q., 2016. Experimental Study of Motion Characteristics of Rock Slopes with Weak Intercalation under Seismic Excitation. Journal of Mountain Science, 13(3): 546-556. https://doi.org/10.1007/s11629⁃014⁃3212⁃0 [6] Deng, Z. Y., Liu, X. R., Liu, Y. Q., et al., 2020. Model Test and Numerical Simulation on the Dynamic Stability of the Bedding Rock Slope under Frequent Microseisms. Earthquake Engineering and Engineering Vibration, 19(4): 919-935. https://doi.org/10.1007/s11803⁃020⁃0604⁃8 [7] Dong, J. Y., Wang, C., Huang, Z. Q., et al., 2021. Dynamic Response Characteristics and Instability Criteria of a Slope with a Middle Locked Segment. Soil Dynamics and Earthquake Engineering, 150: 106899. https://doi.org/10.1016/j.soildyn.2021.106899 [8] Dong, J. Y., Wang, C., Huang, Z. Q., et al., 2022. Shaking Table Model Test to Determine Dynamic Response Characteristics and Failure Modes of Steep Bedding Rock Slope. Rock Mechanics and Rock Engineering, 55(6): 3645-3658. https://doi.org/10.1007/s00603⁃022⁃02822⁃x [9] Dong, J. Y., Yang, G. X., Wu, F. Q., et al., 2011. The Large⁃Scale Shaking Table Test Study of Dynamic Response and Failure Mode of Bedding Rock Slope under Earthquake. Rock and Soil Mechanics, 32(10): 2977-2982, 2988(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.10.014 [10] Dong, J. Y., Yang, J. H., Wu, F. Q., et al., 2013. Large⁃Scale Shaking Table Test Research on Acceleration Response Rules of Bedding Layered Rock Slope and Its Blocking Mechanism of River. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3861-3867(in Chinese with English abstract). [11] Dong, J. Y., Yang, J. H., Yang, G. X., et al., 2012. Research on Similar Material Proportioning Test of Model Test Based on Orthogonal Design. Journal of China Coal Society, 37(1): 44-49(in Chinese with English abstract). [12] Fan, G., Zhang, J. J., Wu, J. B., et al., 2016. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mechanics and Rock Engineering, 49(8): 3243-3256. https://doi.org/10.1007/s00603⁃016⁃0971⁃7 [13] Guo, S. F., Qi, S. W., Yang, G. X., et al., 2017. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake. Applied Sciences, 7(10): 1008. https://doi.org/10.1007/s00603⁃016⁃0971⁃7 [14] He, J. X., Qi, S. W., Wang, Y. S., et al., 2020. Seismic Response of the Lengzhuguan Slope Caused by Topographic and Geological Effects. Engineering Geology, 265: 105431. https://doi.org/10.1016/j.enggeo.2019.105431 [15] He, J. X., Qi, S. W., Zhan, Z. F., et al., 2021. Seismic Response Characteristics and Deformation Evolution of the Bedding Rock Slope Using a Large⁃Scale Shaking Table. Landslides, 18: 2835-2853. https://doi.org/10.1007/s10346⁃021⁃01682⁃w [16] Huang, D., Zhang, X. J., Gu, D. M., 2018. Failure Pattern and Evolution Mechanism of Locking Section in Rock Slope with Three⁃Section Landslide Mode. Chinese Journal of Geotechnical Engineering, 40(9): 1601-1609(in Chinese with English abstract). [17] Huang, R. Q., 2009. Some Catastrophic Landslides since the Twentieth Century in the Southwest of China. Landslides, 6(1): 69-81. https://doi.org/10.1007/s10346⁃009⁃0142⁃y [18] Huang, R. Q., Chen, G. Q., Tang, P., 2017. Precursor Information of Locking Segment Landslides Based on Transient Characteristics. Chinese Journal of Rock Mechanics and Engineering, 36(3): 521-533(in Chinese with English abstract). [19] Huang, R. Q., Zhao, J. J., Ju, N. P., et al., 2013. Analysis of an Anti⁃Dip Landslide Triggered by the 2008 Wenchuan Earthquake in China. Natural Hazards, 68(2): 1021-1039. https://doi.org/10.1007/s11069⁃013⁃0671⁃5 [20] Liu, H. X., Xu, Q., Zhou, F., et al., 2015. Shaking Table Test for Seismic Responses of Slopes with a Weak Interlayer. Chinese Journal of Rock Mechanics and Engineering, 34(5): 994-1005(in Chinese with English abstract). [21] Liu, X. R., He, C. M., Liu, S. L., et al., 2018. Dynamic Response and Failure Mode of Slopes with Horizontal Soft and Hard Interbeddings under Frequent Microseisms. Arabian Journal for Science and Engineering, 43(10): 5397-5411. https://doi.org/10.1007/s13369-018-3143⁃0 [22] Pan, X. H., Qin, S. Q., Xue, L., 2018. Study on Failure Modes of Various Locked Segments in Rock Slopes Based on Physical Model Tests. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 39(6): 13-18(in Chinese with English abstract). [23] Pan, X. H., Xue, L., Qin, S. Q., et al., 2014. Types, Formation Conditions and Pre⁃Decision Method for Large Landslides with Potential Locked Patches. Journal of Engineering Geology, 22(6): 1159-1167(in Chinese with English abstract). [24] Qi, S., Lan, H., Dong, J. Y., 2015. An Analytical Solution to Slip Buckling Slope Failure Triggered by Earthquake. Engineering Geology, 194: 4-11. https://doi.org/10.1016/j.enggeo.2014.06.004 [25] Qi, S. W., Wu, F. Q., Sun, J. Z., 2003. Study on Dynamic Response Law of Slope. Science in China (Series E), 33(Suppl. 1): 28-40(in Chinese). [26] Qi, S. W., Zheng, B. W., Wu, F. Q., et al., 2020. A New Dynamic Direct Shear Testing Device on Rock Joints. Rock Mechanics and Rock Engineering, 53(10): 4787-4798. https://doi.org/10.1007/s00603⁃020⁃02175⁃3 [27] Qin, S. Q., Wang, Y. Y., Ma, P., 2010. Exponential Laws of Critical Displacement Evolution for Landslides and Avalanches. Chinese Journal of Rock Mechanics and Engineering, 29(5): 873-880(in Chinese with English abstract). [28] Tang, Z. H., Yu, X. L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042 (in Chinese with English abstract). [29] Wang, C., 2021. Study on Seismic Dynamic Failure Mechanism of Rock Slope with Lock Type (Dissertation). North China University of Water Resources and Electric Power, Zhengzhou(in Chinese with English abstract). [30] Xing, A. G., Wang, G. H., Yin, Y. P., et al., 2016. Investigation and Dynamic Analysis of a Catastrophic Rock Avalanche on September 23, 1991, Zhaotong, China. Landslides, 13(5): 1035-1047. https://doi.org/10.1007/s10346⁃015⁃0617⁃y [31] Xu, Q., Pei, X. J., Huang, R. Q., 2009. Large⁃Scale Landslides Induced by the Wenchuan Earthquake. Science Press, Beijing(in Chinese). [32] Xue, L., Qin, S. Q., Pan, X. H., et al., 2018. Mechanism and Physical Prediction Model of Instability of the Locked⁃Segment Type Slopes. Journal of Engineering Geology, 26(1): 179-192(in Chinese with English abstract). [33] Yang, G. X., Qi, S., Wu, F. Q., et al., 2017. Seismic Amplification of the Anti⁃Dip Rock Slope and Deformation Characteristics: A Large⁃Scale Shaking Table Test. Soil Dynamic and Earthquake Engineering. https://doi.org/10.1016/j.soildyn.2017.09.010 [34] Yang, G. X., Wu, F. Q., Dong, J. Y., et al., 2012b. Study of Dynamic Response Characters and Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702(in Chinese with English abstract). [35] Yang, G. X., Ye, H. L., Wu, F. Q., et al., 2012a. Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Antidip Layered Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2214-2221(in Chinese with English abstract). [36] Yang, Z. P., Tian, X., Jiang, Y. W., et al., 2020. Experimental Study on Dynamic Characteristics and Dynamic Responses of Accumulation Slopes under Frequent Microseisms. Arabian Journal of Geosciences, 13(16): 770. https://doi.org/10.1007/s12517⁃020⁃05781 [37] Zhan, Z. F., He, J. X., Zheng, B. W., et al., 2019a. Experimental Study on Similar Material Proportion of Slope Model. Progress in Geophysics, 34(3): 1236-1243(in Chinese with English abstract). [38] Zhan, Z. F., Qi, S. W., He, N. W., et al., 2019b. Shaking Table Test Study of Homogeneous Rock Slope Model under Strong Earthquake. Journal of Engineering Geology, 27(5): 946-954(in Chinese with English abstract). [39] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333 [40] 陈竑然, 秦四清, 薛雷, 等, 2019. 锁固段之间的力学作用模式. 工程地质学报, 27(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901001.htm [41] 董金玉, 杨国香, 伍法权, 等, 2011. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究. 岩土力学, 32(10): 2977-2982, 2988. doi: 10.3969/j.issn.1000-7598.2011.10.014 [42] 董金玉, 杨继红, 杨国香, 等, 2012. 基于正交设计的模型试验相似材料的配比试验研究. 煤炭学报, 37(1): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201009.htm [43] 董金玉, 杨继红, 伍法权, 等, 2013. 顺层岩质边坡加速度响应规律和滑动堵江机制大型振动台试验研究. 岩石力学与工程学报, 32(增刊2): 3861-3867. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2110.htm [44] 黄达, 张晓景, 顾东明, 2018. "三段式"岩石滑坡的锁固段破坏模式及演化机制. 岩土工程学报, 40(9): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809006.htm [45] 黄润秋, 陈国庆, 唐鹏, 2017. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究. 岩石力学与工程学报, 36(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm [46] 刘汉香, 许强, 周飞, 等, 2015. 含软弱夹层斜坡地震动力响应特性的振动台试验研究. 岩石力学与工程学报, 34(5): 994-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm [47] 泮晓华, 秦四清, 薛雷, 2018. 岩质斜坡锁固段破坏模式的物理模型试验研究. 华北水利水电大学学报(自然科学版), 39(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201806004.htm [48] 泮晓华, 薛雷, 秦四清, 等, 2014. 潜在锁固型滑坡的类型、形成条件和预判方法研究. 工程地质学报, 22(6): 1159-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201406023.htm [49] 祁生文, 伍法权, 孙进忠, 2003. 边坡动力响应规律研究. 中国科学(E辑), 33(增刊1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1003.htm [50] 秦四清, 王媛媛, 马平, 2010. 崩滑灾害临界位移演化的指数律. 岩石力学与工程学报, 29(5): 873-880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005005.htm [51] 唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960 [52] 王闯, 2021. 锁固型岩质边坡地震动力破坏机理研究(博士学位论文). 郑州: 华北水利水电大学. [53] 许强, 裴向军, 黄润秋, 2009. 汶川地震大型滑坡研究. 北京: 科学出版社. [54] 薛雷, 秦四清, 泮晓华, 等, 2018. 锁固型斜坡失稳机理及其物理预测模型. 工程地质学报, 26(1): 179-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801020.htm [55] 杨国香, 伍法权, 董金玉, 等, 2012b. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204008.htm [56] 杨国香, 叶海林, 伍法权, 等, 2012a. 反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究. 岩石力学与工程学报, 31(11): 2214-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211008.htm [57] 詹志发, 贺建先, 郑博文, 等, 2019a. 边坡模型相似材料配比试验研究. 地球物理学进展, 34(3): 1236-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903048.htm [58] 詹志发, 祁生文, 何乃武, 等, 2019b. 强震作用下均质岩质边坡动力响应的振动台模型试验研究. 工程地质学报, 27(5): 946-954. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905002.htm