• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    早‒中中新世古珠江三角洲沉积格局及其控制因素

    彭光荣 杜家元 冯进 丁琳 李智高 李小平

    彭光荣, 杜家元, 冯进, 丁琳, 李智高, 李小平, 2022. 早‒中中新世古珠江三角洲沉积格局及其控制因素. 地球科学, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390
    引用本文: 彭光荣, 杜家元, 冯进, 丁琳, 李智高, 李小平, 2022. 早‒中中新世古珠江三角洲沉积格局及其控制因素. 地球科学, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390
    Peng Guangrong, Du Jiayuan, Feng Jin, Ding Lin, Li Zhigao, Li Xiaoping, 2022. Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors. Earth Science, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390
    Citation: Peng Guangrong, Du Jiayuan, Feng Jin, Ding Lin, Li Zhigao, Li Xiaoping, 2022. Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors. Earth Science, 47(11): 3989-4004. doi: 10.3799/dqkx.2022.390

    早‒中中新世古珠江三角洲沉积格局及其控制因素

    doi: 10.3799/dqkx.2022.390
    基金项目: 

    中海石油(中国)有限公司深圳分公司科研项目 CCL2021SZPS0113

    详细信息
      作者简介:

      彭光荣(1978-),男,硕士,高级工程师,主要从事石油地质与油气勘探综合研究工作. ORCID:0000-0003-2014-4653. E-mail:penggr@cnooc.com.cn

    • 中图分类号: P539.2;P736.2

    Depositional Setting of Ancient Pearl River Delta during Early-to-Middle Miocene: Implications for Forcing Factors

    • 摘要: 古珠江三角洲是珠江口盆地油气勘探的重要目标,但对其总体沉积面貌的揭示仍未充分,在一定程度上限制了对区内有利砂体和潜在岩性圈闭的锁定.本次研究综合利用重矿物、岩心、钻井和区域三维地震数据,采用地震沉积学综合分析手段精确复现了早‒中中新世古珠江三角洲的宏观沉积格局和相带展布.重矿物分析结果显示,古珠江分流河道体系向近端侧主要发源于西侧、东侧两个主河道分支,进而确定了古珠江三角洲“双支主控”的宏观基本格局.此外,经过对这两个分支河道体系重矿物组合特征对比,发现其分别与现代西江、东/北江有一定相似性,这可能表明中新世古珠江干流的流路与现今具有较高对比性.同时,针对分流河道和外缘条带砂的精细地震地貌分析显示出中新世古珠江三角洲可能受到河流‒波浪‒潮汐混合动力过程的影响,并且持续的西南向古水流对整体相带展布也具有明显的控制作用.

       

    • 图  1  研究区位置和珠江流域范围图

      1. 黑潮;2. 黑潮南海分支;3. 广东沿岸流;4. 南海暖流;5. 沿岸流

      Fig.  1.  Location of the study area and map of the Pearl River basin

      图  2  珠江口盆地珠一坳陷构造单元分布、三维工区位置及具有重矿物数据的钻井井位

      Fig.  2.  Location map showing the tectonic elements, 3D-survey locations and well locations with heavy mineral data in Zhu Ⅰ depression, Pearl River Mouth basin

      图  3  珠江口盆地珠一坳陷地层柱状图和层序划分方案

      Fig.  3.  Stratigraphic column and sequence division scheme in Zhu Ⅰ depression, Pearl River Mouth basin

      图  4  珠一坳陷内SW-NE方向关键井联井剖面(剖面位置见图 2

      Fig.  4.  Well correlation of key wells in SW-NE direction in Zhu Ⅰ depression (see location in Fig. 2)

      图  5  珠江口盆地珠一坳陷关键钻井重矿物组合及分布情况

      Fig.  5.  Heavy mineral combination and distribution of key drilling wells in ZhuⅠdepression, Pearl River Mouth basin

      图  6  珠江流域及珠一坳陷珠江组典型样品碎屑锆石年龄谱系对比

      Fig.  6.  Comparison of detrital zircon age spectra in typical samples from Zhujiang Formatin of Zhu I depression and the Pearl River drainage basin

      图  7  珠一坳陷北部SW-NE方向地震剖面(剖面位置见图 2

      Fig.  7.  A regional SW-NE seismic profile across the Zhu I depression (see location in Fig.2)

      图  8  中新世古珠江三角洲典型地震地貌单元的岩心和测井响应特征

      Fig.  8.  Core and well log motifs of typical depositional elements of the Miocene Pearl River delta

      图  9  中新世古珠江三角洲典型地震地貌特征显示出河流‒波浪‒潮汐的混合动力过程

      Fig.  9.  Representative seismic geomorphology of the Miocene Pearl River delta showing a mixed river-wave-tidal-dominated process

      图  10  中新世古珠江三角洲代表性沉积相图(以SQT40层序为例)

      Fig.  10.  Representative sedimentary facies map of the Miocene Pearl River delta (SQT40)

      图  11  中新世古珠江三角洲沉积模式

      Fig.  11.  Depositonal model of the Miocene Pearl River delta

    • [1] Ainsworth, R. B., Vakarelov, B. K., Nanson, R. A., 2011. Dynamic Spatial and Temporal Prediction of Changes in Depositional Processes on Clastic Shorelines: Toward Improved Subsurface Uncertainty Reduction and Management. American Association of Petroleum Geologists Bulletin, 95: 267-297. https://doi.org/10.1306/06301010036
      [2] Bourget, J., Ainsworth, R. B., Thompson, S., 2014. Seismic Stratigraphy and Geomorphology of a Tide or Wave Dominated Shelf-Edge Delta (NW Australia): Process-Based Classification from 3D Seismic Attributes and Implications for the Prediction of Deep-Water Sands. Marine and Petroleum Geology, 57: 359-384. https://doi.org/10.1016/j.marpetgeo.2014.05.021
      [3] Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375.
      [4] Catuneanu, O., Abreu, V., Bhattacharya, J. P., et al., 2009. Towards the Standardization of Sequence Stratigraphy. Earth-Science Review, 92: 1-33. https://doi.org/10.1016/j.earscirev.2008.10.003
      [5] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      [6] Chen, Y. T., 1994. Character of the Heavy Mineral in the Surface Sediment of Lingding Yang in the Pearl River Mouth and Their Reflection to the Invasion of Shelf's Water. Acta Scientiarum Naturalium Universitatis Sunyatseni, 33(4): 103-110 (in Chinese with English abstract).
      [7] Darmadi, Y., Willis, B. J., Dorobek, S. L., 2007. Three-Dimensional Seismic Architecture of Fluvial Sequences on the Low-Gradient Sunda Shelf, Offshore Indonesia. Journal of Sedimentary Research, 77(3): 225-238. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      [8] Galloway, W. E., 1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems. Houston Geological Society, Houston, 87-98.
      [9] Gao, Y. D., Zhang, X. T., Li, Z. G., et al., 2021. Variability in Sequence Stratigraphic Architecture of Lower-Middle Miocene Pearl River Delta, Northern Enping Sag, Pearl River Mouth Basin: Implications for Lithological Trap Development. Earth Science, 46(5): 1758-1770 (in Chinese with English abstract).
      [10] Gong, Z. S., Li, S. T., 1997. Analysis and Hydrocarbon Accumulation of the Continental Margin Basin of the South China Sea. Science Press, Beijing, 532 (in Chinese).
      [11] He, M., Zhuo, H., Chen, W., et al., 2017. Sequence Stratigraphy and Depositional Architecture of the Pearl River Delta System, Northern South China Sea: An Interactive Response to Sea Level, Tectonics and Paleoceanography. Marine and Petroleum Geology, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022
      [12] Jackson, C. A. L., Grunhagen, H., Howell, J. A., et al., 2010.3D Imaging of Lower Delta-Plain Beach Ridge: Lower Brent Group, Northern North Sea. Journal of the Geological Society London, 167: 1225-1236. https://doi.org/10.1144/0016-76492010-053
      [13] Jiao, P., Guo, J. H., Wang, X. K., et al., 2018. Detrital Zircon Genesis and Provenance Tracing for Reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl River Mouth Basin. Oil & Gas Geology, 39(2): 239-253 (in Chinese with English abstract).
      [14] Li, X. P., Liu, B. J., Ding, L., et al., 2016. Depositional Elements Definition of Marine Delta and Significance to Sand Body Correlation in Petroleum Exploration: From Hydrodynamic Analysis on Modern Pearl River Delta. Acta Sedimentologica Sinica, 34(3): 555-562 (in Chinese with English abstract).
      [15] Li, Z. G., Ding, L., Li, X. P., et al., 2022. Sedimentary Characteristics and Controlling Factors of the Western Zhu I Depression during the Early-Middle Miocene, Pearl River Mouth Basin. Journal of Palaeogeography, 24(1): 99-111 (in Chinese with English abstract).
      [16] Liang, W., Li, X. P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
      [17] Liu, A., Wu, S. M., Cheng, W. H., et al., 2011. Tectonic Subsidence History and Dynamic Mechanism of the Dongsha Rise in the Zhujiang River Mouth Basin. Acta Oceanologica Sinica, 33(6): 117-124 (in Chinese with English abstract).
      [18] Luan, X. W., Peng, X. C., Wang, Y. M., et al., 2010. Characteristics of Sand Waves on the Northern South China Sea Shelf and Its Formation. Acta Geologica Sinica, 84(2): 209-245 (in Chinese with English abstract).
      [19] Lüdmann, T., Wong, H. K., Wang, P., et al., 2001. Plio-Quaternary Sedimentation Processes and Neotectonics of the Northern Continental Margin of the South China Sea. Marine Geology, 172: 331-358. https://doi.org/10.1016/S0025-3227(00)00129-8
      [20] Maynard, J. R., 2006. Fluvial Response to Active Extension: Evidence from 3D Seismic Data from the Frio Formation (Oligo-Miocene) of the Texas Gulf of Mexico Coast, USA. Sedimentology, 53: 515-536. https://doi.org/10.1111/j.1365-3091.2006.00782.x
      [21] Mi, L. J., Zhang, X. T., Ding, L., et al., 2018. Distribution Characteristics and Exploration Strategy of Middle-Shallow Lithologic Reservoirs in Offshore Mature Exploration Areas: A Case Study on Huizhou Sag in the Pearl River Mouth Basin. China Petroleum Exploration, 23(6): 10-19 (in Chinese with English abstract).
      [22] Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. American Association of Petroleum Geologists Bulletin, 86: 1201-1216. https://doi.org/10.1306/61EEDC56-173E-11D7-8645000102C1865D
      [23] Paumard, V., Bourget, J., Payenberg, T., et al., 2020. Controls on Deep-Water Sand Delivery beyond the Shelf Edge: Accommodation, Sediment Supply, and Deltaic Process Regime. Journal of Sedimentary Research, 90(1): 104-130. https://doi.org/10.2110/jsr.2020.2
      [24] Peng, Y., Olariu, C., Steel, R. J., 2020. Recognizing Tide-and Wave-Dominated Compound Deltaic Clinothems in the Rock Record. Geology, 48(12): 1149-1153. https://doi.org/10.1111/sed.12240
      [25] Posamentier, H. W., Allen, G. P., 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts Sedimentology Paleontology, 7: 210. https://doi.org/10.2110/csp.99.07
      [26] Rossi, V. M., Steel, R. J., 2016. The Role of Tidal, Wave and River Currents in the Evolution of Mixed-Energy Deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63(4): 824-864. https://doi.org/10.1111/sed.12240
      [27] Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Paleogeography, 21(2): 216-239 (in Chinese with English abstract).
      [28] Shao, L., Pang, X., Qiao, P. J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
      [29] Wu, J., Ding, L., Zhang, X. Z., et al., 2022. Key Technologies of Lithologic Trap Exploration in Marine Delta of Enping Sag in Pearl River Mouth Basin. Journal of Yangtze University (Natural Science Edition), 19(1): 44-53 (in Chinese with English abstract).
      [30] Wu, J., Zhang, X. Z., Bai, H. J., et al., 2021. Miocene Tidal Control System and Its Lithologic Trap Exploration Significance in Yangjiang Sag, Pearl River Mouth Basin. Earth Science, 46(10): 3673-3689 (in Chinese with English abstract).
      [31] Wu, S. G., Liu, Z., Wang, W. Y., et al., 2004. Late Cenozoic Neotectonics in the Dongsha Islands Region and Its Responses to Collision between Chinese Continental Margin and Luzon. Oceanologia et Limnologia Sinica, 35(6): 481-490 (in Chinese with English abstract).
      [32] Xiang, X. H., Shao, L., Qiao, P. J., et al., 2011. Characteristics of Heavy Minerals in Pearl River Sediments and Their Implications for Provenance. Marine Geology & Quaternary Geology, 31(6): 27-35 (in Chinese with English abstract).
      [33] Zhang, X. T., Li, X. P., Xuan, C. J., et al., 2021. Exploration Practice and Direction of Lithologic Reservoirs in Non-Source Rock Strata in Shallow Water Areas of the Eastern South China Sea. Acta Petrolei Sinica, 42(6): 695-707 (in Chinese with English abstract).
      [34] Zhao, M., Shao, L., Qiao, P. J., et al., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract).
      [35] Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      [36] Zhuo, H. T., Wang, Y. M., Shi, H. S., et al., 2015. Contrasting Fluvial Styles across the Mid-Pleistocene Climate Transition in the Northern Shelf of the South China Sea: Evidence from 3D Seismic Data. Quaternary Science Reviews, 129: 128-146. https://doi.org/10.1016/j.quascirev.2015.10.012
      [37] 陈耀泰, 1994. 珠江口伶仃洋表层沉积物的重矿物特征及其对陆架水入侵的反映. 中山大学学报(自然科学版), 33(4): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ404.017.htm
      [38] 高阳东, 张向涛, 李智高, 等, 2021. 珠江口盆地恩平凹陷北带下‒中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758-1770. doi: 10.3799/dqkx.2021.011
      [39] 龚再升, 李思田, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社, 532.
      [40] 焦鹏, 郭建华, 王玺凯, 等, 2018. 珠江口盆地韩江‒陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪. 石油与天然气地质, 39(2): 239-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802005.htm
      [41] 李小平, 柳保军, 丁琳, 等, 2016. 海相三角洲沉积单元划分及其对勘探砂体对比的意义——基于现代珠江三角洲沉积水动力综合研究. 沉积学报, 34(3): 555-562. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603013.htm
      [42] 李智高, 丁琳, 李小平, 等, 2022. 珠江口盆地珠一坳陷西部中新世早‒中期沉积特征及控制因素. 古地理学报, 24(1): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202201008.htm
      [43] 梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩‒碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
      [44] 刘安, 吴世敏, 程卫华, 等, 2011. 珠江口盆地东沙隆起的沉降史及其动力机制. 海洋学报, 33(6): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201106015.htm
      [45] 栾锡武, 彭学超, 王英民, 等, 2010. 南海北部陆架海底沙波基本特征及属性. 地质学报, 84(2): 209-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002009.htm
      [46] 米立军, 张向涛, 丁琳, 等, 2018. 海上成熟探区中浅层岩性油气藏分布特点与勘探策略. 中国石油勘探, 23(6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201806002.htm
      [47] 邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      [48] 邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
      [49] 吴静, 丁琳, 张晓钊, 等, 2022. 珠江口盆地恩平凹陷海相三角洲岩性圈闭勘探的关键技术. 长江大学学报(自然科学版), 19(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL202201005.htm
      [50] 吴静, 张晓钊, 白海军, 等, 2021. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义. 地球科学, 46(10): 3673-3689. doi: 10.3799/dqkx.2021.017
      [51] 吴时国, 刘展, 王万银, 等, 2004. 东沙群岛海区晚新生代构造特征及其对弧‒陆碰撞的响应. 海洋与湖沼, 35(6): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ200406000.htm
      [52] 向绪洪, 邵磊, 乔培军, 等, 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201106005.htm
      [53] 张向涛, 李小平, 玄昌姬, 等, 2021. 南海东部浅水区非烃源岩层系岩性油藏勘探实践与方向. 石油学报, 42(6): 695-707. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202106001.htm
      [54] 赵梦, 邵磊, 乔培军, 等, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  218
    • HTML全文浏览量:  91
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-24
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回