• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于地质力学方法的深层致密气藏高效勘探技术:以库车坳陷迪北气藏为例

    徐珂 杨海军 张辉 赵斌 尹国庆 王志民 王海应

    徐珂, 杨海军, 张辉, 赵斌, 尹国庆, 王志民, 王海应, 2023. 基于地质力学方法的深层致密气藏高效勘探技术:以库车坳陷迪北气藏为例. 地球科学, 48(2): 621-639. doi: 10.3799/dqkx.2022.379
    引用本文: 徐珂, 杨海军, 张辉, 赵斌, 尹国庆, 王志民, 王海应, 2023. 基于地质力学方法的深层致密气藏高效勘探技术:以库车坳陷迪北气藏为例. 地球科学, 48(2): 621-639. doi: 10.3799/dqkx.2022.379
    Xu Ke, Yang Haijun, Zhang Hui, Zhao Bin, Yin Guoqing, Wang Zhimin, Wang Haiying, 2023. Efficient Exploration Technology of Deep Tight Gas Reservoir Based on Geomechanics Method: a Case Study of Dibei Gas Reservoir in Kuqa Depression. Earth Science, 48(2): 621-639. doi: 10.3799/dqkx.2022.379
    Citation: Xu Ke, Yang Haijun, Zhang Hui, Zhao Bin, Yin Guoqing, Wang Zhimin, Wang Haiying, 2023. Efficient Exploration Technology of Deep Tight Gas Reservoir Based on Geomechanics Method: a Case Study of Dibei Gas Reservoir in Kuqa Depression. Earth Science, 48(2): 621-639. doi: 10.3799/dqkx.2022.379

    基于地质力学方法的深层致密气藏高效勘探技术:以库车坳陷迪北气藏为例

    doi: 10.3799/dqkx.2022.379
    基金项目: 

    国家重大科技专项“库车坳陷深层-超深层天然气田开发示范工程” 2016ZX05051

    中国石油天然气股份有限公司重大科技专项“库车坳陷深层-超深层天然气田开发关键技术研究与应用” 2018E-1803

    详细信息
      作者简介:

      徐珂(1991-),男,高级工程师,博士,从事构造地质学与地质力学的科研和生产工作. ORCID:0000-0001-9062-9563. E-mail:xukee0505@163.com

    • 中图分类号: TE319

    Efficient Exploration Technology of Deep Tight Gas Reservoir Based on Geomechanics Method: a Case Study of Dibei Gas Reservoir in Kuqa Depression

    • 摘要: 为了明确库车坳陷迪北致密气藏有利储层分布及配套工程技术,提高勘探效率,在气藏分析基础上,基于地质力学方法,综合运用地质资料、钻井资料、测井资料,开展现今地应力场预测、裂缝有效性评价等研究,兼顾甜点钻遇和压裂改造效率,从地质工程一体化角度,量化优选定向井井眼轨迹.结果表明:(1)现今地应力和天然裂缝很大程度决定了深层致密气藏品质和压裂改造效率,影响气井产能;(2)迪北气藏非均质性强,岩石物理特征、现今地应力、裂缝有效性在井间差异明显,迪北气藏裂缝甜点分布离散,储层改造难度受地质因素的制约程度大;(3)天然裂缝是深层致密气藏优质甜点区发育的重要控制因素,并能降低压裂施工难度、提高压裂改造效率;(4)定向井应多穿低应力带、多穿天然裂缝,并充分考虑天然裂缝走向和地应力方向的匹配,以提高单井产量.直井钻探模式在迪北致密气藏的高效勘探上存在局限,定向井不但能兼顾甜点钻遇和压裂改造效率,在钻井安全稳定方面也具有优势,是深层致密气藏少井高效勘探的有效途径.

       

    • 图  1  库车坳陷构造单元划分与迪北气藏构造位置、迪北气藏侏罗系阿合组顶面构造图和地震剖面

      Fig.  1.  Division of structural units in Kuqa depression, structural location of Dibei gas reservoir, top structural map and seismic profile of Jurassic Ahe formation in Dibei gas reservoir

      图  2  库车坳陷北部构造带中新生代地层系统(据王珂等,2022修改)

      Fig.  2.  Mesozoic-Cenozoic stratigraphic system in the northern structural belt of Kuqa depression (modified according to Wang et al., 2022)

      图  3  岩心和成像测井上可见大量发育的层理缝

      a. DX1井FMI图像,高角度裂缝和低角度层理缝十分发育;b. DT2井岩心,发育一系列层理缝,缝内充填碳质、泥质,可见高角度天然裂缝截止于层面,岩心多在层理面破碎

      Fig.  3.  A large number of bedding fractures can be seen on the core and imaging logging

      图  4  DX1井地应力剖面和相对产气量

      Fig.  4.  In situ stress profile and relative gas production of well DX1

      图  5  多重地质因素下的地应力场和天然裂缝非均质分布

      江同文等(2021)修改;a. 互层岩体具有“多中和面”; b. 复杂边界条件下地应力和大然裂缝的非均质分布

      Fig.  5.  In-situ stress field and heterogeneous distribution of fractures under multiple geological factors

      图  6  压裂缝与天然裂缝的相交过程分解

      Fig.  6.  Decomposition of intersecting process between compression fracture and natural fracture

      图  7  临界应力裂缝原理示意图

      a. 地壳中存在一系列裂缝,但其中只有一部分裂缝处于临界应力的优势状态(标为红色);b. a图中处于临界应力状态的红色裂缝均处于莫尔-库仑破坏线上方,即莫尔圆的上部

      Fig.  7.  Schematic diagram of critical-stress-fracture principle

      图  8  裂缝开启率随地层孔隙压力增大而增大

      Fig.  8.  Fracture opening rate increases with the increase of formation pore pressure

      图  9  迪北气藏现今地应力分布和裂缝有效性预测

      a. DB5井采用定向井向北西方向的低应力部位钻进;b. DB5井井周裂缝相对发育,裂缝有效性较好

      Fig.  9.  In situ stress distribution and prediction of fracture effectiveness of Dibei gas reservoir

      图  10  模拟DB5井在不同井斜角的井轨迹安全钻井液密度窗口

      Fig.  10.  Simulation of safe mud density window of well trajectory with different well deviation angles

      图  11  迪北气藏单井地应力方向和裂缝产状统计图

      a. 迪北气藏单井现今最大水平主应力方向;b. 迪北气藏单井裂缝走向(红色)和倾向(蓝色);c. 迪北气藏整体裂缝走向(红色)和倾向(蓝色)统计;d. 迪北气藏整体裂倾角统计

      Fig.  11.  Statistical diagram of in situ stress orientation and fracture occurrence of single well in Dibei gas reservoir

      图  12  不同钻井方向压裂形成的压裂缝网形态

      Fig.  12.  Fracture network formed by fracturing in different drilling directions

      图  13  DB5井地质力学综合柱状图

      Fig.  13.  Comprehensive histogram of geomechanics of well DB5

      图  14  DB5井裂缝开启性模拟

      a. 当井底注入压力为1.95 MPa/100 m,裂缝开启率为35%;b. 当井底注入压力为2.13 MPa/100 m,裂缝开启率为100%

      Fig.  14.  Fracture opening simulation of well DB5

      图  15  DB5井5 883.5~5 933.5 m压裂施工曲线

      Fig.  15.  Fracturing Operation Curve of 5 883.5~5 933.5 m in well Well DB5

      表  1  基于储层特征和地质力学分析的压裂改造层段和改造建议

      Table  1.   Fracturing reconstruction intervals and reconstruction suggestions based on reservoir characteristics and geomechanical analysis

      层段 深度(m) 岩石物理特征 地质力学特征 改造建议
      I 5 836.5~5 876.0 孔隙度4%~8%,渗透率0.1~21.0 mD,储集空间为粒内溶孔、微裂缝、微孔隙 1组/2条高角度裂缝,最小水平主应力约110~123 MPa,存在部分应力集中 建议进行加砂压裂,形成缝网、提高储层渗透性能
      II 5 883.5~5 933.5 孔隙度6%~12%,渗透率0.1~40.0 mD,储集空间为粒内溶孔、微裂缝、微孔隙 7组/48条高角度裂缝,最小水平主应力112~121 MPa,没有应力集中现象 建议进行酸化压裂,提高储层渗透性能
      III 5 942.5~5 989.0 孔隙度4%~8%,渗透率0.1~10.0 mD,储集空间为粒内溶孔、微裂缝、微孔隙 2组/5条高角度裂缝,最小水平主应力116~122 MPa,没有应力集中现象 建议进行加砂压裂,形成缝网、提高储层渗透性能
      IV 6 007.0~6 063.5 储层发育方解石胶结,孔隙度4%~8%,渗透率0.1~5.4 mD,储集空间为粒内溶孔、微裂缝、微孔隙 1组/2条高角度裂缝,最小水平主应力118~124 MPa,具有明显应力集中 建议进行大型加砂压裂,造缝提高储层渗透性能
      下载: 导出CSV
    • [1] Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091-7613(1995)0230683: ffapaf>2.3.co;2 doi: 10.1130/0091-7613(1995)0230683:ffapaf>2.3.co;2
      [2] Byerlee, J., Mjachkin, V., Summers, R., et al., 1978. Structures Developed in Fault Gouge during Stable Sliding and Stick-Slip. Tectonophysics, 44(1/2/3/4): 161-171. https://doi.org/10.1016/0040-1951(78)90068-9
      [3] Cai, Z. Z., Xu, K., Zhang, H., et al., 2022. Method and Practice for Increasing Drilling Rate and Production in Ultra-Deep Wells Based on Integrated Geology-Engineering. Xinjiang Petroleum Geology, 43(2): 206-213 (in Chinese with English abstract).
      [4] Deng, H. C., Zhou, W., Zhou, Q. M., et al., 2013. Quantification Characterization of the Valid Natural Fractures in the 2nd Xu Member, Xinchang Gas Field. Acta Petrologica Sinica, 29(3): 1087-1097 (in Chinese with English abstract).
      [5] Guo, J. G., Pang, X. Q., Liu, D. D., et al., 2012. Hydrocarbon Expulsion for Middle-Lower Jurassic Coal Measures and Evaluation of Potential Resource in Kuqa Depression. Natural Gas Geoscience, 23(2): 327-334 (in Chinese with English abstract).
      [6] Jiang, T. W., Sun, X. W., 2018. Development of Keshen Ultra-Deep and Ultra-High Pressure Gas Reservoirs in the Kuqa Foreland Basin, Tarim Basin: Understanding Points and Technical Countermeasures. Natural Gas Industry, 38(6): 1-9 (in Chinese with English abstract).
      [7] Jiang, T. W., Zhang, H., Xu, K., et al., 2021. Technology and Practice for Quantitative Optimization of Borehole Trajectory in Ultra-Deep Fractured Reservoir: a Case Study of Bozi A Gas Reservoir in Kelasu Structural Belt, Tarim Basin. China Petroleum Exploration, 26(4): 149-161 (in Chinese with English abstract).
      [8] Ju, W., Hou, G. T., Huang, S. Y., et al., 2013. Structural Fracture Distribution and Prediction of the Lower Jurassic Ahe Formation Sandstone in the Yinan-Tuzi Area, Kuqa Depression. Geotectonica et Metallogenia, 37(4): 592-602(in Chinese with English abstract).
      [9] Ju, W., Wang, K., Hou, G. T., et al., 2018. Prediction of natural fractures in the Lower Jurassic Ahe Formation of the Dibei Gasfield, Kuqa Depression, Tarim Basin, NW China. Geosciences Journal, 22(2): 241-252 (in Chinese with English abstract). doi: 10.1007/s12303-017-0039-z
      [10] Li, J., Li, J., Xie, Z. Y., et al., 2020. Oil and Gas Source and Accumulation of Zhongqiu 1 Trap in Qiulitage Structural Belt, Tarim Basin, NW China. Petroleum Exploration and Development, 47(3): 512-522 (in Chinese with English abstract).
      [11] Li, S. Y., Tang, X. M., He, J., et al., 2020. Fracture Characterization Combining Acoustic Reflection Imaging and Rock Mechanics. Acta Petrolei Sinica, 41(11): 1388-1395 (in Chinese with English abstract).
      [12] Li, Y., Xu, K., Zhang, H., et al., 2022. Special Geological Factors in Drilling Engineering of Ultra-Deep Oil and Gas Reservoir in Tarim Baisn. China Petroleum Exploration, 27(3): 88-98 (in Chinese with English abstract).
      [13] Liu, J. S., Mei, L. F., Ding, W. L., et al., 2022a. Asymmetric Propagation Mechanism of Hydraulic Fracture Networks in Continental Reservoirs. GSA Bulletin, 1-5. https://doi.org/10.1130/b36358.1
      [14] Liu, J. S., Yang, H. M., Xu, K., et al., 2022b. Genetic Mechanism of Transfer Zones in Rift Basins: Insights from Geomechanical Models. GSA Bulletin, 134(9/10): 2436-2452. https://doi.org/10.1130/b36151.1
      [15] Lu, Y. L., Lyu, H. Z., Cui, Y. J., et al., 2018. Method for Fracture Effectiveness Evaluation Based on 3D Mohr Circle and Its Application. Acta Petrolei Sinica, 39(5): 564-569 (in Chinese with English abstract).
      [16] Pang, X. Q., Peng, J. W., Jiang, Z. X., et al., 2019. Hydrocarbon Accumulation Processes and Mechanisms in Lower Jurassic Tight Sandstone Reservoirs in the Kuqa Subbasin, Tarim Basin, Northwest China: a Case Study of the Dibei Tight Gas Field. AAPG Bulletin, 103(4): 769-796. https://doi.org/10.1306/09181816529
      [17] Potluri, N. K., Zhu, D., Hill, A. D., 2005. The Effect of Natural Fractures on Hydraulic Fracture Propagation. Sheveningen, The Netherlands: SPE European Formation Damage Conference, SPE-94568-MS. https://doi.org/10.2118/94568-MS.
      [18] Shi, H., Luo, X. R., Lei, G. L., et al., 2018. Effects of Early Oil Emplacement on Reservoir Quality and Gas Migration in the Lower Jurassic Tight Sand Reservoirs of Dibei Gas Field, Kuqa Depression, Western China. Journal of Natural Gas Science and Engineering, 50: 250-258. https://doi.org/10.1016/j.jngse.2017.12.004
      [19] Tang, Y. G., Yang, X. Z., Xie, H. W., et al., 2021. Tight Gas Reservoir Characteristics and Exploration Potential of Jurassic Ahe Formation in Kuqa Depression, Tarim Basin. China Petroleum Exploration, 26(4): 113-124 (in Chinese with English abstract).
      [20] Tian, J., Liu, H. Y., Teng, X. Q., et al., 2019. Geology-Engineering Integration Practices throughout Well Lifecycle in Ultra-Deep Complex Gas Reservoirs of Kelasu Tectonic Belt, Tarim Basin. China Petroleum Exploration, 24(2): 165-173 (in Chinese with English abstract).
      [21] Tian, J., Yang, H. J., Wu, C., 2020. Discovery of Well Bozi 9 and Ultra-Deep Natural Gas Exploration Potential in the Kelasu Tectonic Zone of the Tarim Basin. Natural Gas Industry, 40(1): 11-19 (in Chinese with English abstract).
      [22] Wang, H. G., Shou, J. F., 2001. The Relationship between the Characteristics of Sand Bodies and the Properties of Lower Jurassic Reservoirs in Eastern Kuqa Depression, Tarim Basin. Petroleum Exploration and Development, (4): 33-35+14-6 (in Chinese with English abstract).
      [23] Wang, K., Xiao, A. C., Cao, T., 2022. Geological Structures and Petroleum Exploration Fields of the Northern Tectonic Belt in the Kua a Depression, Tarim Basin. Acta Geologica Sinica, 96(2): 368-386 (in Chinese with English abstract).
      [24] Wang, K., Yang, H. J., Li, Y., 2021. Geological Characteristics and Exploration Potential of the Northern Tectonic Belt of Kuqa Depression in Tarim Basin. Acta Petrolei Sinica, 42(7): 885-905 (in Chinese with English abstract).
      [25] Wang, P. W., Jin, Z. J., Pang, X. Q., et al., 2018. Characteristics of Dual Media in Tight-Sand Gas Reservoirs and Its Impact on Reservoir Quality: a Case Study of the Jurassic Reservoir from the Kuqa Depression, Tarim Basin, Northwest China. Geological Journal, 53(6): 2558-2568. https://doi.org/10.1002/gj.3091
      [26] Wang, T., Hu, W. R., Elsworth, D., et al., 2017. The Effect of Natural Fractures on Hydraulic Fracturing Propagation in Coal Seams. Journal of Petroleum Science and Engineering, 150: 180-190. https://doi.org/10.1016/j.petrol.2016.12.009
      [27] Wang, Z. M., 2014. Formation Mechanism and Enrichment Regularities of Kelasu Subsalt Deep Large Gas Field in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 25(2): 153-166 (in Chinese with English abstract).
      [28] Wei, G. Q., Zhang, R. H., Zhi, F. Q., 2021. Formation Conditions and Exploration Directions of Mesozoic Structural-Lithologic Stratigraphic Reservoirs in the Eastern Kuqa Depression. Acta Petrolei Sinica, 42(9): 1113-1125 (in Chinese with English abstract).
      [29] Xu, K., Tian, J., Yang, H. J., et al., 2020. Prediction of Current In-Situ Stress Filed and Its Application of Deeply Buried Tight Reservoir, a Case Study of Keshen 10 Gas Reservoir in Kelasu Structural Belt, Tarim Basin. Journal of China University of Mining & Technology, 49(4): 708-720 (in Chinese with English abstract).
      [30] Xu, K., Tian, J., Yang, H. J., et al., 2022a. Effects and Practical Applications of Present-Day In-Situ Stress on Reservoir Quality in Ultra-Deep Layers of Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 33(1): 13-23 (in Chinese with English abstract).
      [31] Xu, K., Yang, H. J., Zhang, H., et al., 2022. Fracture Effectiveness Evaluation in Ultra-Deep Reservoirs Based on Geomechanical Method, Kuqa Depression, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 215: 110604. https://doi.org/10.1016/j.petrol.2022.110604
      [32] Xu, K., Zhang, H., Ju, W., 2022b. Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression. Earth Science. https://doi.org/10.3799/dqkx.2022.227
      [33] Xu, Z. X., Zhang, H., Yin, G. Q., et al., 2021. Key Technologies of Geology-Engineering Integration for Safe ROP Improvement and Production Increase of Ultra-Deep Wells. Natural Gas Industry, 41(11): 104-114 (in Chinese with English abstract).
      [34] Yang, H. J., Li, Y., Tang, Y. G., 2019. Discovery of Kelasu Subsalt Deep Large Gas Field, Tarim Basin. Xinjiang Petroleum Geology, 40(1): 12-20 (in Chinese with English abstract).
      [35] Yang, H. J., Zhang, H., Yin, G. Q., et al., 2018. Geology-Engineering Integration Based on Geomechanics Helps to Realize the High Efficiency Exploration of Fractured-Vuggy Carbonate Reservoir: A Case Study of West Yueman Block in Northern Tarim Basin. China Petroleum Exploration, 23(2): 27-36 (in Chinese with English abstract).
      [36] Yin, G. Q., Zhang, H., Wang, H. Y., et al., 2019. Application of Geology-Engineering Integration in Efficient Exploration in Structure KS24. Xinjiang Petroleum Geology, 40(4): 486-492 (in Chinese with English abstract).
      [37] Yin, G. Q., Zhang, H., Yuan, F., et al., 2015. Geomechanical Characteristics of Dolomite Reservoir and Its Application in Stimulation Optimization: An Example of East of Tazhong. Natural Gas Geoscience, 26(7): 1277-1288 (in Chinese with English abstract).
      [38] Zhang, R. H., Wang, Z. H., Yu, C. F., 2022. The sedimentary and reservoir characteristics and hydrocarbon exploration significance of Triassic Taliqike Formation in Kuqa Depression. Earth Science (in Chinese with English abstract).
      [39] Zhang, R. H., Wei, G. Q., Wang, K., 2021. Tectonic Thrust Nappe Activity and Sandstone Rock Response Characteristics in Foreland Thrust Belt: A Case Study of Middle and Lower Jurassic, Kuqa Depression, Tarim Basin. Acta Petrologica Sinica, 37(7): 2256-2270 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.17
      [40] Zoback, M. D., Peska, P., 1995. In-Situ Stress and Rock Strength in the GBRN/DOE Pathfinder Well, South Eugene Island, Gulf of Mexico. Journal of Petroleum Technology, 47(7): 582-585. https://doi.org/10.2118/29233-pa
      [41] 蔡振忠, 徐珂, 张辉, 等, 2022. 基于地质工程一体化的超深井提速提产——以塔里木盆地库车坳陷为例. 新疆石油地质, 43(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202202012.htm
      [42] 邓虎成, 周文, 周秋媚, 等, 2013. 新场气田须二气藏天然裂缝有效性定量表征方法及应用. 岩石学报, 29(3): 1087-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303029.htm
      [43] 郭继刚, 庞雄奇, 刘丹丹, 等, 2012. 库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价. 天然气地球科学, 23(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202019.htm
      [44] 江同文, 孙雄伟, 2018. 库车前陆盆地克深气田超深超高压气藏开发认识与技术对策. 天然气工业, 38(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806002.htm
      [45] 江同文, 张辉, 徐珂, 等, 2021. 超深层裂缝型储层最佳井眼轨迹量化优选技术与实践——以克拉苏构造带博孜A气藏为例. 中国石油勘探, 26(4): 149-161. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104012.htm
      [46] 鞠玮, 侯贵廷, 黄少英, 等, 2013. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测. 大地构造与成矿学, 37(4): 592-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304005.htm
      [47] 李剑, 李谨, 谢增业, 等, 2020. 塔里木盆地秋里塔格构造带中秋1圈闭油气来源与成藏. 石油勘探与开发, 47(3): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003008.htm
      [48] 李思亦, 唐晓明, 何娟, 等, 2020. 基于声波远探测和岩石力学分析的井旁裂缝有效性评价方法. 石油学报, 41(11): 1388-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202011008.htm
      [49] 李勇, 徐珂, 张辉, 等, 2022. 塔里木盆地超深油气钻探工程的特殊地质因素. 中国石油勘探, 27(3): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202203007.htm
      [50] 陆云龙, 吕洪志, 崔云江, 等, 2018. 基于三维莫尔圆的裂缝有效性评价方法及应用. 石油学报, 39(5): 564-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805007.htm
      [51] 唐雁刚, 杨宪彰, 谢会文, 等, 2021. 塔里木盆地库车坳陷侏罗系阿合组致密气藏特征与勘探潜力. 中国石油勘探, 26(4): 113-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104009.htm
      [52] 田军, 刘洪涛, 滕学清, 等, 2019. 塔里木盆地克拉苏构造带超深复杂气田井全生命周期地质工程一体化实践. 中国石油勘探, 24(2): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902004.htm
      [53] 田军, 杨海军, 吴超, 等, 2020. 博孜9井的发现与塔里木盆地超深层天然气勘探潜力. 天然气工业, 40(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202001004.htm
      [54] 王根海, 寿建峰, 2001. 库车坳陷东部下侏罗统砂体特征与储集层性质的关系. 石油勘探与开发, (4): 33-35+14-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200104012.htm
      [55] 王珂, 肖安成, 曹婷, 等, 2022. 塔里木盆地库车坳陷北部构造带地质结构与油气勘探领域. 地质学报, 96(2): 368-386. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202202003.htm
      [56] 王珂, 杨海军, 李勇, 等, 2021. 塔里木盆地库车坳陷北部构造带地质特征与勘探潜力. 石油学报, 42(7): 885-905. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107005.htm
      [57] 王招明, 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm
      [58] 魏国齐, 张荣虎, 智凤琴, 等, 2021. 库车坳陷东部中生界构造-岩性地层油气藏形成条件与勘探方向. 石油学报, 42(9): 1113-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202109001.htm
      [59] 胥志雄, 张辉, 尹国庆, 等, 2021. 超深井安全提速提产地质工程一体化关键技术. 天然气工业, 41(11): 104-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202111017.htm
      [60] 徐珂, 田军, 杨海军, 等, 2020. 深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例. 中国矿业大学学报, 49(4): 708-720. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004009.htm
      [61] 徐珂, 田军, 杨海军, 等, 2022a. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用. 天然气地球科学, 33(1): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201002.htm
      [62] 徐珂, 张辉, 鞠玮, 等, 2022b. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响. 地球科学.
      [63] 杨海军, 李勇, 唐雁刚, 等, 2019. 塔里木盆地克拉苏盐下深层大气田的发现. 新疆石油地质, 40(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901003.htm
      [64] 杨海军, 张辉, 尹国庆, 等. 2018. 基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探—以塔里木油田塔北南缘跃满西区块为例. 中国石油勘探, 23(2): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802004.htm
      [65] 尹国庆, 张辉, 王海应, 等. 2019. 地质工程一体化在克深24构造高效勘探中的应用. 新疆石油地质, 40(4): 486-492. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904015.htm
      [66] 尹国庆, 张辉, 袁芳, 等, 2015. 白云岩储层地质力学特征分析及在储层改造优化应用——以塔中东部为例. 天然气地球科学, 26(7): 1277-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507009.htm
      [67] 张荣虎, 王正和, 余朝丰, 等, 2022. 库车坳陷三叠系塔里奇克组沉积与储层特征及油气勘探意义. 地球科学: 1-21.
      [68] 张荣虎, 魏国齐, 王珂, 等, 2021. 前陆冲断带构造逆冲推覆作用与岩石响应特征——以库车坳陷东部中-下侏罗统为例. 岩石学报, 37(7): 2256-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107017.htm
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  20
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-12
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回