• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    电化学-水动力循环耦合井内生物反应器去除地下水中苯胺

    李爽 文章 朱棋 刘慧 杨舒婷

    李爽, 文章, 朱棋, 刘慧, 杨舒婷, 2022. 电化学-水动力循环耦合井内生物反应器去除地下水中苯胺. 地球科学, 47(11): 4176-4183. doi: 10.3799/dqkx.2022.375
    引用本文: 李爽, 文章, 朱棋, 刘慧, 杨舒婷, 2022. 电化学-水动力循环耦合井内生物反应器去除地下水中苯胺. 地球科学, 47(11): 4176-4183. doi: 10.3799/dqkx.2022.375
    Li Shuang, Wen Zhang, Zhu Qi, Liu Hui, Yang Shuting, 2022. Removal of Aniline from Groundwater by an Electrochemical-Hydrodynamic Cyclic Coupling In-Well Bioreactor. Earth Science, 47(11): 4176-4183. doi: 10.3799/dqkx.2022.375
    Citation: Li Shuang, Wen Zhang, Zhu Qi, Liu Hui, Yang Shuting, 2022. Removal of Aniline from Groundwater by an Electrochemical-Hydrodynamic Cyclic Coupling In-Well Bioreactor. Earth Science, 47(11): 4176-4183. doi: 10.3799/dqkx.2022.375

    电化学-水动力循环耦合井内生物反应器去除地下水中苯胺

    doi: 10.3799/dqkx.2022.375
    基金项目: 

    国家重点研发计划项目 2018YFC1802504

    国家自然科学基金项目 42022018

    详细信息
      作者简介:

      李爽(1997-),女,硕士研究生,从事地下水污染与防治工作.ORCID:0000-0002-7525-4457. E-mail:763056016@qq.com

      通讯作者:

      文章,ORCID: 0000-0001-9672-3219. E-mail: wenz@cug.edu.cn

    • 中图分类号: X523

    Removal of Aniline from Groundwater by an Electrochemical-Hydrodynamic Cyclic Coupling In-Well Bioreactor

    • 摘要: 为使含水层中苯胺污染的原位修复过程高效安全且不产生二次污染,提出了一种电化学-水动力循环下的井内生物反应器修复地下水中苯胺的方法.在水动力循环系统的驱动下,评价了苯胺在水动力循环系统的挥发情况并且通过电化学手段提供氧气,井内生物反应器提供修复载体,在砂槽模拟的含水层体系中开展井内生物反应器降解苯胺的修复实验,并对生长曲线及含水层中苯胺修复进行了模拟.289 h的修复使体系内苯胺平均浓度从298 mg/L降低到132 mg/L,去除率为56.5%.运行过程中,监测点苯胺平均浓度在48 h内去除速率为1.10 mg/(L·h),48~72 h内去除速率为0.85 mg/(L·h),72 h到289 h内苯胺去除速率维持在0.65 mg/(L·h),氧化降解逐步减弱.该过程符合Michaelis-Menten方程,反应速率为:-6.71×10-7/(15+t2.该修复系统是基于地下水动力循环技术的改进,有望应用于有机污染地下水修复.

       

    • 图  1  实验装置

      Fig.  1.  Diagram of experimental device

      图  2  不同浓度苯胺条件下微生物生长曲线及其拟合曲线

      Fig.  2.  Microbial growth curves and their fitting curves under different concentrations of aniline

      图  3  挂膜前和挂膜后的生物载体

      Fig.  3.  Biological carriers before and after membrane hanging

      图  4  砂槽体系中初始时刻载体不同部位的生物量分布情况

      Fig.  4.  Biomass distribution of different parts of the carrier at the initial time in the sand tank system

      图  5  含水层监测点苯胺平均浓度和井筒中DO随时间的变化

      Fig.  5.  The average concentration of aniline in aquifer monitoring points and the change of DO in wellbore with time

      图  6  含水层中砂槽内苯胺浓度分布变化图

      Fig.  6.  Distribution change of aniline concentration in sand tank in aquifer

      a. t=0 h; b. t=120 h; c. t=196 h; d. t=289 h

      图  7  苯胺浓度模拟图

      Fig.  7.  Simulation dia gram of aniline concentration

      a.A2; b.A6;c.B3;d.B5;e.C1; f.C4; g.D2;h.D6; i.E1; j.E4; k.F3;j.F5

    • [1] Alvarez-Cohen, L., Speitel, G. E., 2001. Kinetics of Aerobic Cometabolism of Chlorinated Solvents. Biodegradation, 12(2): 105-126. https://doi.org/10.1023/a:1012075322466
      [2] Erdal, D., Cirpka, O.A., 2017. Preconditioning an Ensemble Kalman Filter for Groundwater Flow Using Environmental-Tracer Observations. Journal of Hydrology, 545: 42-54. https://doi.org/10.1016/j.jhydrol.2016.11.064
      [3] Gibert, O., Ferguson, A. S., Kalin, R. M., et al., 2007. Performance of a Sequential Reactive Barrier for Bioremediation of Coal Tar Contaminated Groundwater. Environmental Science & Technology, 41(19): 6795-6801. https://doi.org/10.1021/es071527f
      [4] He, Q., Song, J., Zhang, W., et al., 2020. Enhanced Simultaneous Nitrification, Denitrification and Phosphorus Removal through Mixed Carbon Source by Aerobic Granular Sludge. Journal of Hazardous Materials, 382: 121043. https://doi.org/10.1016/j.jhazmat.2019.121043
      [5] Hou, L. F., Wu, Q. P., Gu, Q. H., et al., 2018. Community Structure Analysis and Biodegradation Potential of Aniline-Degrading Bacteria in Biofilters. Current Microbiology, 75(7): 918-924. https://doi.org/10.1007/s00284-018-1466-4
      [6] Hu, R., Dai, S., Shao, D., et al., 2015. Efficient Removal of Phenol and Aniline from Aqueous Solutions Using Graphene Oxide/Polypyrrole Composites. Journal of Molecular Liquids, 203: 80-89. https://doi.org/10.1016/j.molliq.2014.12.046
      [7] Itoh, N., Morinaga, N., Kouzai, T., 1993. Oxidation of Aniline to Nitrobenzene by Nonheme Bromoperoxidase. European Radiology Experimental, 29(4): 785-791.
      [8] Jiang, Y., Wei, L., Yang, K., et al., 2017. Rapid Formation of Aniline-Degrading Aerobic Granular Sludge and Investigation of Its Microbial Community Succession. Journal of Cleaner Production, 166: 1235-1243. https://doi.org/10.1016/j.jclepro.2017.08.134
      [9] Jiang, Y., Yang, K., Shang, Y., et al., 2019. Response and Recovery of Aerobic Granular Sludge to pH Shock for Simultaneous Removal of Aniline and Nitrogen. Chemosphere, 221: 366-374. https://doi.org/10.1016/j.chemosphere.2018.12.207
      [10] Kahng, H. Y., Kukor, J. J., Oh, K. H., 2000. Characterization of Strain HY99, a Novel Microorganism Capable of Aerobic and Anaerobic Degradation of Aniline. FEMS Microbiology Letters, 190(2): 215-221. https://doi.org/10.1111/j.1574-6968.2000.tb09289.x
      [11] Li, P., Pu, S.Q., Li, J.S., et al., 2021. Remediation of Aniline Contaminated Groundwater by Reaction Zone with the Sodium Persulfate Sustained Release Capsules Reaction Zone. China Environmental Science, 41(12): 5718-5727 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2021.12.028
      [12] Li, X., Su, S.L., Wen, Z., et al., 2022. Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test. Earth Science, 47(2): 633-641 (in Chinese with English abstract).
      [13] Liu, H., Lin, H., Song, B., et al., 2021. Stable-Isotope Probing Coupled with High-Throughput Sequencing Reveals Bacterial Taxa Capable of Degrading Aniline at Three Contaminated Sites with Contrasting pH. The Science of the Total Environment, 771: 144807. https://doi.org/10.1016/j.scitotenv.2020.144807
      [14] Liu, L., Binning, P. J., Smets, B. F., 2015. Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism. Environmental Science & Technology, 49(4): 2230-2236. https://doi.org/10.1021/es5035393
      [15] Liu, N., Ding, F., Wang, L., et al., 2016. Coupling of Bio-PRB and Enclosed In-Well Aeration System for Remediation of Nitrobenzene and Aniline in Groundwater. Environmental Science and Pollution Research, 23(10): 9972-9983. https://doi.org/10.1007/s11356-016-6206-3
      [16] Liu, R.M., Teng, Q., Wen, K.P., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(4): 834-844. https://doi.org/10.1007/s12583-020-1349-z
      [17] Liu, Y., Xie, W.J., Zheng, Y.S., et al., 2021. Electrolytic Circulation Well Drives Chemical Oxidation of TCE in a Simulated Aquifer. Earth Science Frontiers, 28(5): 197-207 (in Chinese with English abstract).
      [18] Liu, Y., Yuan, S.H., Zhang, Y.Q., et al., 2020. Electrolytic Circulation Well Coupled with Oxidation and Reduction for Trichloroethylene Degradation in Groundwater. Hydrogeology & Engineering Geology, 47(3): 44-51 (in Chinese with English abstract).
      [19] Wen, Y.J., Yang, Y.S., Ren, H.J., et al., 2015. Chemical-Biological Hybrid Reactive Zones and Their Impact on Biodiversity of Remediation of the Nitrobenzene and Aniline Contaminated Groundwater. Chemical Engineering Journal, 280: 233-240. https://doi.org/10.1016/j.cej.2015.05.123
      [20] Yuan, S. H., Liu, Y., Zhang, P., et al., 2021. Electrolytic Groundwater Circulation Well for Trichloroethylene Degradation in a Simulated Aquifer. Science China Technological Sciences, 64(2): 251-260. https://doi.org/10.1007/s11431-019-1521-7
      [21] Zhang, G. X., Ren, S. Z., Xu, M. Y., et al., 2011. Rhizobium borbori sp. nov., Aniline-Degrading Bacteria Isolated from Activated Sludge. International Journal of Systematic and Evolutionary Microbiology, 61(pt4): 816-822. https://doi.org/10.1099/ijs.0.022228-0
      [22] Zhang, T., Zhang, J., Liu, S., et al., 2008. A Novel and Complete Gene Cluster Involved in the Degradation of Aniline by Delftia sp. AN3. Journal of Environmental Sciences (China), 20(6): 717-724. https://doi.org/10.1016/s1001-0742(08)62118-x
      [23] Zhang, W., Zhang, Q., Li, M., et al., 2021. Microbial Community and Function Evaluation in the Start-up Period of Bioaugmented SBR Fed with Aniline Wastewater. Bioresource Technology, 319: 124148. https://doi.org/10.1016/j.biortech.2020.124148
      [24] Zhao, S.F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
      [25] Zhao, Y. S., Qu, D., Zhou, R., et al., 2016. Efficacy of Forming Biofilms by Pseudomonas Migulae AN-1 toward In Situ Bioremediation of Aniline-Contaminated Aquifer by Groundwater Circulation Wells. Environmental Science and Pollution Research, 23(12): 11568-11573. https://doi.org/10.1007/s11356-016-6737-7
      [26] Zhu, Q., Wen, Z., Liu, H., 2019. Microbial Effects on Hydraulic Conductivity Estimation by Single-Well Injection Tests in a Petroleum-Contaminated Aquifer. Journal of Hydrology. 573: 352-364. https://doi.org/10.1016/j.jhydrol.2019.03.031
      [27] 李坡, 蒲思淇, 李劲松, 等, 2021. 过硫酸钠缓释胶囊反应带修复苯胺污染地下水. 中国环境科学, 41(12): 5718-5727. doi: 10.3969/j.issn.1000-6923.2021.12.028
      [28] 李旭, 苏世林, 文章, 等, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
      [29] 刘洋, 谢雯静, 郑云松, 等, 2021. 电化学循环井驱动模拟含水层化学氧化降解三氯乙烯. 地学前缘, 28(5): 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105026.htm
      [30] 刘洋, 袁松虎, 张耀强, 等, 2020. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯. 水文地质工程地质, 47(3): 44-51.
      [31] 赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    • 加载中
    图(7)
    计量
    • 文章访问数:  177
    • HTML全文浏览量:  48
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-14
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回