[1] |
Alvarez-Cohen, L., Speitel, G. E., 2001. Kinetics of Aerobic Cometabolism of Chlorinated Solvents. Biodegradation, 12(2): 105-126. https://doi.org/10.1023/a:1012075322466
|
[2] |
Erdal, D., Cirpka, O.A., 2017. Preconditioning an Ensemble Kalman Filter for Groundwater Flow Using Environmental-Tracer Observations. Journal of Hydrology, 545: 42-54. https://doi.org/10.1016/j.jhydrol.2016.11.064
|
[3] |
Gibert, O., Ferguson, A. S., Kalin, R. M., et al., 2007. Performance of a Sequential Reactive Barrier for Bioremediation of Coal Tar Contaminated Groundwater. Environmental Science & Technology, 41(19): 6795-6801. https://doi.org/10.1021/es071527f
|
[4] |
He, Q., Song, J., Zhang, W., et al., 2020. Enhanced Simultaneous Nitrification, Denitrification and Phosphorus Removal through Mixed Carbon Source by Aerobic Granular Sludge. Journal of Hazardous Materials, 382: 121043. https://doi.org/10.1016/j.jhazmat.2019.121043
|
[5] |
Hou, L. F., Wu, Q. P., Gu, Q. H., et al., 2018. Community Structure Analysis and Biodegradation Potential of Aniline-Degrading Bacteria in Biofilters. Current Microbiology, 75(7): 918-924. https://doi.org/10.1007/s00284-018-1466-4
|
[6] |
Hu, R., Dai, S., Shao, D., et al., 2015. Efficient Removal of Phenol and Aniline from Aqueous Solutions Using Graphene Oxide/Polypyrrole Composites. Journal of Molecular Liquids, 203: 80-89. https://doi.org/10.1016/j.molliq.2014.12.046
|
[7] |
Itoh, N., Morinaga, N., Kouzai, T., 1993. Oxidation of Aniline to Nitrobenzene by Nonheme Bromoperoxidase. European Radiology Experimental, 29(4): 785-791.
|
[8] |
Jiang, Y., Wei, L., Yang, K., et al., 2017. Rapid Formation of Aniline-Degrading Aerobic Granular Sludge and Investigation of Its Microbial Community Succession. Journal of Cleaner Production, 166: 1235-1243. https://doi.org/10.1016/j.jclepro.2017.08.134
|
[9] |
Jiang, Y., Yang, K., Shang, Y., et al., 2019. Response and Recovery of Aerobic Granular Sludge to pH Shock for Simultaneous Removal of Aniline and Nitrogen. Chemosphere, 221: 366-374. https://doi.org/10.1016/j.chemosphere.2018.12.207
|
[10] |
Kahng, H. Y., Kukor, J. J., Oh, K. H., 2000. Characterization of Strain HY99, a Novel Microorganism Capable of Aerobic and Anaerobic Degradation of Aniline. FEMS Microbiology Letters, 190(2): 215-221. https://doi.org/10.1111/j.1574-6968.2000.tb09289.x
|
[11] |
Li, P., Pu, S.Q., Li, J.S., et al., 2021. Remediation of Aniline Contaminated Groundwater by Reaction Zone with the Sodium Persulfate Sustained Release Capsules Reaction Zone. China Environmental Science, 41(12): 5718-5727 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2021.12.028
|
[12] |
Li, X., Su, S.L., Wen, Z., et al., 2022. Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test. Earth Science, 47(2): 633-641 (in Chinese with English abstract).
|
[13] |
Liu, H., Lin, H., Song, B., et al., 2021. Stable-Isotope Probing Coupled with High-Throughput Sequencing Reveals Bacterial Taxa Capable of Degrading Aniline at Three Contaminated Sites with Contrasting pH. The Science of the Total Environment, 771: 144807. https://doi.org/10.1016/j.scitotenv.2020.144807
|
[14] |
Liu, L., Binning, P. J., Smets, B. F., 2015. Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism. Environmental Science & Technology, 49(4): 2230-2236. https://doi.org/10.1021/es5035393
|
[15] |
Liu, N., Ding, F., Wang, L., et al., 2016. Coupling of Bio-PRB and Enclosed In-Well Aeration System for Remediation of Nitrobenzene and Aniline in Groundwater. Environmental Science and Pollution Research, 23(10): 9972-9983. https://doi.org/10.1007/s11356-016-6206-3
|
[16] |
Liu, R.M., Teng, Q., Wen, K.P., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(4): 834-844. https://doi.org/10.1007/s12583-020-1349-z
|
[17] |
Liu, Y., Xie, W.J., Zheng, Y.S., et al., 2021. Electrolytic Circulation Well Drives Chemical Oxidation of TCE in a Simulated Aquifer. Earth Science Frontiers, 28(5): 197-207 (in Chinese with English abstract).
|
[18] |
Liu, Y., Yuan, S.H., Zhang, Y.Q., et al., 2020. Electrolytic Circulation Well Coupled with Oxidation and Reduction for Trichloroethylene Degradation in Groundwater. Hydrogeology & Engineering Geology, 47(3): 44-51 (in Chinese with English abstract).
|
[19] |
Wen, Y.J., Yang, Y.S., Ren, H.J., et al., 2015. Chemical-Biological Hybrid Reactive Zones and Their Impact on Biodiversity of Remediation of the Nitrobenzene and Aniline Contaminated Groundwater. Chemical Engineering Journal, 280: 233-240. https://doi.org/10.1016/j.cej.2015.05.123
|
[20] |
Yuan, S. H., Liu, Y., Zhang, P., et al., 2021. Electrolytic Groundwater Circulation Well for Trichloroethylene Degradation in a Simulated Aquifer. Science China Technological Sciences, 64(2): 251-260. https://doi.org/10.1007/s11431-019-1521-7
|
[21] |
Zhang, G. X., Ren, S. Z., Xu, M. Y., et al., 2011. Rhizobium borbori sp. nov., Aniline-Degrading Bacteria Isolated from Activated Sludge. International Journal of Systematic and Evolutionary Microbiology, 61(pt4): 816-822. https://doi.org/10.1099/ijs.0.022228-0
|
[22] |
Zhang, T., Zhang, J., Liu, S., et al., 2008. A Novel and Complete Gene Cluster Involved in the Degradation of Aniline by Delftia sp. AN3. Journal of Environmental Sciences (China), 20(6): 717-724. https://doi.org/10.1016/s1001-0742(08)62118-x
|
[23] |
Zhang, W., Zhang, Q., Li, M., et al., 2021. Microbial Community and Function Evaluation in the Start-up Period of Bioaugmented SBR Fed with Aniline Wastewater. Bioresource Technology, 319: 124148. https://doi.org/10.1016/j.biortech.2020.124148
|
[24] |
Zhao, S.F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
|
[25] |
Zhao, Y. S., Qu, D., Zhou, R., et al., 2016. Efficacy of Forming Biofilms by Pseudomonas Migulae AN-1 toward In Situ Bioremediation of Aniline-Contaminated Aquifer by Groundwater Circulation Wells. Environmental Science and Pollution Research, 23(12): 11568-11573. https://doi.org/10.1007/s11356-016-6737-7
|
[26] |
Zhu, Q., Wen, Z., Liu, H., 2019. Microbial Effects on Hydraulic Conductivity Estimation by Single-Well Injection Tests in a Petroleum-Contaminated Aquifer. Journal of Hydrology. 573: 352-364. https://doi.org/10.1016/j.jhydrol.2019.03.031
|
[27] |
李坡, 蒲思淇, 李劲松, 等, 2021. 过硫酸钠缓释胶囊反应带修复苯胺污染地下水. 中国环境科学, 41(12): 5718-5727. doi: 10.3969/j.issn.1000-6923.2021.12.028
|
[28] |
李旭, 苏世林, 文章, 等, 2022. 单井注抽试验测算地下水流速的数值分析. 地球科学, 47(2): 633-641. doi: 10.3799/dqkx.2021.102
|
[29] |
刘洋, 谢雯静, 郑云松, 等, 2021. 电化学循环井驱动模拟含水层化学氧化降解三氯乙烯. 地学前缘, 28(5): 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105026.htm
|
[30] |
刘洋, 袁松虎, 张耀强, 等, 2020. 电化学循环井耦合氧化-还原降解地下水中三氯乙烯. 水文地质工程地质, 47(3): 44-51.
|
[31] |
赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
|