Advance and Prospect for Seismic Dynamic Response of Anchored Rock Slope
-
摘要:
锚固岩质边坡具有良好的抗震效果,为深入了解其地震动响应机制,系统梳理了地震荷载下锚固岩质边坡动力响应的国内外研究文献,论述了地震作用下岩质边坡-锚固结构体系动力特性、锚固岩质边坡动力稳定性及其动力响应影响因素.基于现有研究成果,未来可进一步分析强震或频发微震等不同地震荷载形式下的锚固岩质边坡动力演化模式;借助基于演化模式的锚固岩质边坡地质力学模型,明晰地震荷载传递规律、锚固结构力学演化特征与锚固岩质边坡动力响应特性,综合揭示岩质边坡-锚固结构体系地震动耦联作用机理;开展具有大塑性变形能力的新型抗震锚固结构设计关键技术的创新、集成与标准化,并建立新型抗震锚固结构关键技术应用示范区.
Abstract:The anchored rock slope has great anti-seismic effect, hence its dynamic response mechanism under earthquake is worthy of in-depth understanding. In this paper it systematically reviews the literature on the seismic dynamic response of anchored rock slope. The dynamic characteristics, dynamic stability, and factors influencing dynamic response for anchored rock slope under earthquake are discussed. Future research includes three aspects. Firstly, the dynamic evolution pattern of anchored rock slope under different earthquake types such as macroseism or frequent microseism will be analyzed. Secondly, through the geomechanics model of anchored rock slope based on evolution mode, scholars will reveal the transmission law of seismic load, the mechanical evolution process of anchorage structure, the dynamic response characteristics of anchored rock slope, and the coupling mechanism of rock slope-anchorage structure system under earthquake. Thirdly, innovation, integration, and standardization of key technologies for new anti-seismic anchorage structures with severe plastic deformation will be carried out. Application demonstration area of key technologies for new anti-seismic anchorage structures will be established.
-
Key words:
- anchored rock slope /
- bolt /
- anchorage interface /
- earthquake /
- dynamic characteristic /
- stability /
- influencing factor /
- geotechnical engineering
-
图 2 地震荷载下岩质边坡-锚固结构体系中锚杆轴力分布
a.同一锚杆在不同时刻的轴力分布;b.不同位置锚杆在同一时刻的轴力分布;据言志信等(2019)修改
Fig. 2. Axial force distribution of bolt in rock slope⁃anchorage structure system under earthquake
图 3 地震荷载下岩质边坡-锚固结构体系中锚固界面剪应力分布
a.砂浆-岩体界面剪应力;b.锚杆-砂浆界面剪应力;图据龙哲等(2017)修改
Fig. 3. Shear stress distribution of anchorage interface in rock slope⁃anchorage structure system under earthquake
-
[1] An, C. L., Liang, Y., Wang, L. Q., et al., 2020. Three-Dimensional Optimization Design for the Direction Angle of Anchor Cable Reinforcement in Wedge Rock Slope. Rock and Soil Mechanics, 41(8): 2765-2772(in Chinese with English abstract). [2] Chai, B., Shi, X. S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646(in Chinese with English abstract). [3] Fu, X., Jin, W. Y., Zhang, J. J., et al., 2018. Seismic Response for Plane Sliding of Slope Reinforced by Anchor-Chain-Framed Ground Beams through Shaking Table Test. Rock and Soil Mechanics, 39(5): 1709-1719(in Chinese with English abstract). [4] Gu, X. B., Wang, Y. H., Ji, X. J., et al., 2021. The Analysis of Anchoring Mechanism of Rock Slope in Two Layers Based on the Nonlinear Twin⁃Shear Strength Criterion. Advances in Civil Engineering, (2021): 1-8. https://doi.org/10.1155/2021/5565320 [5] Guo, D. P., Hamada, M., 2012. Lessons Learnt from Seismic Damage Induced by the 2008 Wenchuan Earthquake. International Conference on Vibration, Structural Engineering and Measurement (ICVSEM2012), Shanghai. https://doi.org/10.4028/www.scientific.net/AMM.226⁃228.889 [6] Hatzor, Y. H., Arzi, A. A., Zaslavsky, Y., et al., 2004. Dynamic Stability Analysis of Jointed Rock Slopes Using the DDA Method: King Herod's Palace, Masada, Israel. International Journal of Rock Mechanics and Mining Sciences, 41(5): 813-832. https://doi.org/10.1016/j.ijrmms.2004.02.002 [7] He, Y., Liu, Y., Hazarika, H., et al., 2019. Stability Analysis of Seismic Slopes with Tensile Strength Cut⁃off. Computers and Geotechnics, 112: 245-256. https://doi.org/10.1016/j.compgeo.2019.04.029 [8] Hong, H. C., Xu, W. Y., 2006. Review and Prospect of Anchorage Properties of Reinforced Rockmass under Earthquake. Metal Mine, (3): 5-10, 84 (in Chinese with English abstract). [9] Huang, Q. X., Xu, X. T., Xu, C., et al., 2016. Dynamic Response Characteristics of an Anchored Rock Slope during Wenchuan Earthquake. Rock and Soil Mechanics, 37(6): 1729-1736(in Chinese with English abstract). [10] Huang, R. Q., 2009. Mechanism and Geomechanical Modes of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.021 [11] Jin, F. F., Yan, Z. X., Zhai, J. Y., et al., 2020. Study on the Influence Weights of Ground Motion Parameters on Seismic Responses of Anchored Rock Slope. Water Power, 46(2): 36-41(in Chinese with English abstract). [12] Kou, H., Li, N., Guo, S. F., 2018. Advances in Failure Mechanisms and Stability of Rock Slopes under Earthquake Action. Advances in Science and Technology of Water Resources, 38(4): 81-88(in Chinese with English abstract). [13] Lai, T. W., Le, H., Wu, Z. X., et al., 2021. Shaking Table Test Study on Basalt Fiber Reinforced Plastics in High Slope Protection. Rock and Soil Mechanics, 42(2): 390-400(in Chinese with English abstract). [14] Li, L. H., Zhao, Y. F., Wang, X. G., 2018. Centrifuge Experiment⁃Based Study on Slope Reinforcing Effect of Anchor Cable. Water Resources and Hydropower Engineering, 49(1): 143-148(in Chinese with English abstract). [15] Li, X. P., He, S. M., 2009. Seismically Induced Slope Instabilities and the Corresponding Treatments: The Case of a Road in the Wenchuan Earthquake Hit Region. Journal of Mountain Science, 6(1): 96-100. https://doi.org/10.1007/s11629⁃009⁃0197⁃1 [16] Li, Y. P., Yan, Z. X., 2019. Influence of Weak Interlayer Parameters for Anchored Interface Shear Action of Rock Slope under Earthquake. Journal of Vibration and Shock, 38(8): 48-53, 79(in Chinese with English abstract). [17] Lin, Y. L., Li, X. X., Zhang, B., 2013. Quasi⁃Static Analysis of Seismic Stability of Double⁃Directional Anchored Rock Slope under Extreme Conditions. Chinese Journal of Underground Space and Engineering, 9(5): 1186-1190, 1200(in Chinese with English abstract). [18] Liu, C. B., Yan, Z. X., Zhang, G. H., et al., 2020. Study on the Influence of Soft Layer Parameters on the Stability and Anchorage of Rock Slope. Journal of China Three Gorges University (Natural Sciences), 42(4): 28-34(in Chinese with English abstract). [19] Liu, J. H., Wang, Y., Fu, K. L., et al., 2012. Force Analysis of Anchor Bolts Reinforcing Rock Slope under Simple Harmonic Vibration Load. Rock and Soil Mechanics, 33(Suppl. 1): 85-90(in Chinese with English abstract). [20] Liu, S. L., Yang, Z. P., Liu, X. R., et al., 2018. Shaking Table Model Test and Numerical Analysis of the Bedding Rock Slopes under Frequent Micro⁃Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 37(10): 2264-2276(in Chinese with English abstract). [21] Long, Z., 2020. Shear Effects on the Anchorage Interfaces of a Rock Slope Containing a Weak Layer under Seismic Action (Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract). [22] Long, Z., Yan, Z. X., Liu, C. B., 2020. Shear Effects on the Anchorage Interfaces and Seismic Responses of a Rock Slope Containing a Weak Layer under Seismic Action. Mathematical Problems in Engineering, (2020): 1-11. https://doi.org/10.1155/2020/1424167 [23] Long, Z., Yan, Z. X., Zhou, X. L., 2017. A Numeral Simulation of Anchored Interface Shear Stress for Bolt in Rock Mass Slope under Earthquake. Scientia Sinica Technologica, 47(10): 1049-1056(in Chinese). doi: 10.1360/N092017-00171 [24] Luo, G., Chen, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High⁃Altitude Extremely⁃Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract). [25] Lü, Q. C., Liu, Y. R., Yang, Q., 2017. Stability Analysis of Earthquake⁃Induced Rock Slope Based on Back Analysis of Shear Strength Parameters of Rock Mass. Engineering Geology, 228: 39-49. https://doi.org/10.1016/j.enggeo.2017.07.007 [26] Ma, H. S., Fu, X., Feng, X. G., et al., 2014. Large⁃Scale Shaking Table Test Study on Pre⁃Stressed Anchor Cable of Counter⁃Tilt Layer Rock Slope. 5th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Zhangjiajie. https://doi.org/10.1109/isdea.2014.139 [27] Miyagi, T., Yamashina, S., Esaka, F., et al., 2011. Massive Landslide Triggered by 2008 Iwate⁃Miyagi Inland Earthquake in the Aratozawa Dam Area, Tohoku, Japan. Landslides, 8(1): 99-108. https://doi.org/10.1007/s10346⁃010⁃0226⁃8 [28] Nie, B. S., Shen, Z. Z., Hou, B. L., et al., 2019. Dynamic Processes of Anchored Rock Slope with Discrete Element Method. South⁃to⁃North Water Transfers and Water Science & Technology, 17(2): 202-208(in Chinese with English abstract). [29] Nie, Y., Zhao, Y. F., Wang, X. G., et al., 2020. Seismic Response of Rock Slopes with the Anchor Cable in Centrifuge Modeling Tests. Advances in Civil Engineering, (2020): 1-12. https://doi.org/10.1155/2020/8170258 [30] Parise, M., Jibson, R. W., 2000. A Seismic Landslide Susceptibility Rating of Geologic Units Based on Analysis of Characteristics of Landslides Triggered by the 17 January, 1994 Northridge, California Earthquake. Engineering Geology, 58(3-4): 251-270. https://doi.org/10.1016/s0013⁃7952(00)00038⁃7 [31] Peng, N. B., Dong, Y., Zhu, Y., et al., 2020. Influence of Ground Motion Parameters on the Seismic Response of an Anchored Rock Slope. Advances in Civil Engineering, (2020): 1-10. https://doi.org/10.1155/2020/8825697 [32] Peng, N. B., Yan, Z. X., 2013. Dynamic Responses of Anchored Rock Slope under Earthquake: A Numerical Study. Disaster Advances, 6(2): 4-11. [33] Qi, K., Tan, Z. Y., 2018. Stability Analysis of an Intense Weathered Rock Slope and Optimum Reinforcement Design. Geotechnical and Geological Engineering, 36(2): 1049-1057. https://doi.org/10.1007/s10706⁃017⁃0373⁃y [34] Qi, S. W., Wu, F. Q., Liu, C. L., et al., 2004. Engineering Geology Analysis on Stability of Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 23(16): 2792-2797(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.16.024 [35] Ren, A. W., Wang, Y. J., Chen, Z. Y., et al., 2016. Performance of the Reinforced Right Abutment Slope of Zipingpu Dam during Magnitude 8.0 Earthquake, Wenchuan, China. Quarterly Journal of Engineering Geology and Hydrogeology, 49(4): 298-307. https://doi.org/10.1144/qjegh2015⁃033 [36] Ruan, X. B., Sun, S. L., Liu, W. L., 2013. Seismic Stability of Anchored Rock Slope Using Pseudo⁃Dynamic Method. Rock and Soil Mechanics, 34(S1): 293-300(in Chinese with English abstract). [37] Su, L. J., Sun, C. N., Yu, F. W., et al., 2018. Seismic Stability Analysis of Slopes with Pre⁃Existing Slip Surfaces. Journal of Mountain Science, 15(6): 1331-1341. https://doi.org/10.1007/s11629⁃017⁃4759⁃3 [38] Sun J., 2007. Rock Rheological Mechanics and Its Advance in Engineering Applications. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1081-1106(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.06.001 [39] Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China Lessons Learned from Decades of Research. Engineering Geology, 261: 1-16. https://doi.org/10.1016/j.enggeo.2019.105267 [40] Tiwari, R. C., Bhandary, N. P., Yatabe, R., 2014. Spectral Element Analysis to Evaluate the Stability of Long and Steep Slopes. Acta Geotechnica, 9(5): 753-770. https://doi.org/10.1007/s11440⁃013⁃0292⁃x [41] Wang, G. L., Wu, F. Q., Qi, S. W., et al., 2007. Research on Limit Analysis Upper Bound Method for Stability Evaluation of Anchored Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 26(12): 2556-2563(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.12.023 [42] Wang, G. L., Zhang, J. H., Li, J. W., et al., 2009. Study on Energy Method for Estimation of Highway Rock Slope Stability. Journal of Highway and Transportation Research and Development, 26(12): 1-6, 16(in Chinese with English abstract). doi: 10.3969/j.issn.1002-0268.2009.12.001 [43] Wang, J., Yao, L. K., Jiang, L. W., 2010. Research on Dynamic Response of Rock Blocks in Slope and Anti⁃Seismic Effect of Anchor Reinforcement to Rock Mass. Journal of Highway and Transportation Research and Development, 27(3): 6-11(in Chinese with English abstract). [44] Wang, L. Q., Zhu, L. F., Zheng, L. B., et al., 2021. Shear Test of Bolted Joint Rock Masses Considering Joint Roughness. China Journal Highway Transport, 34(6): 38-47(in Chinese with English abstract). [45] Wang, M., Li, H. B., Liu, Y. Q., et al., 2013. Reinforcement Mechanism of Bedding Rock Slopes with Prestressed Anchor Cable Subjected to Seismic Loads. Rock and Soil Mechanics, 34(12): 3555-3560(in Chinese with English abstract). [46] Wang, M., Luo, Q., 2009. Thoughts on Design of the Damaged Road by Wenchuan Earthquake Zone. Journal of Railway Engineering Society, (2): 21-24(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2009.02.006 [47] Wu, S. J., Jiang, Y. J., Deng, T., et al., 2017. Seismic Responses of Weak Interlayered Slope with Anchor⁃Frame Reinforcemet Using Model Slope on Shaking Table. Journal of Engineering Geology, 25(4): 1065-1072(in Chinese with English abstract). [48] Xie, H. P., Deng, J. H., Tai, J. J., et al., 2008. Wenchuan Large Earthquake and Post⁃Earthquake Reconstruction⁃Related Geotechnical Problems. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1781-1791(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.09.005 [49] Xiong, M., Huang, Y., 2017. Stochastic Seismic Response and Dynamic Reliability Analysis of Slopes: A Review. Soil Dynamics and Earthquake Engineering, 100: 458-464. https://doi.org/10.1016/j.soildyn.2017.06.017 [50] Xu, M., Tang, Y. F., Liu, X. S., et al., 2018. Seismic Dynamic Response of Rock Slope Anchored with Adaptive Anchor Cables. Rock and Soil Mechanics, 39(7): 2379-2386(in Chinese with English abstract). [51] Yan, M. J., Xia, Y. Y., Liu, T. T., 2018. Limit Analysis of Bedding Rock Slopes Reinforced by Prestressed Anchor Cables under Seismic Loads. Rock and Soil Mechanics, 39(7): 2691-2698(in Chinese with English abstract). [52] Yan, M. J., Xia, Y. Y., Liu, T. T., et al., 2019. Limit Analysis under Seismic Conditions of a Slope Reinforced with Prestressed Anchor Cables. Computers and Geotechnics, 108: 226-233. https://doi.org/10.1016/j.compgeo.2018.12.027 [53] Yan, M. J., Zhang, J. M., Tan, S. R., 2022. Research Status and Development of Rock Slope Stability Analysis under Seismic Conditions. Engineering Journal of Wuhan University, 55(1): 29-38(in Chinese with English abstract). [54] Yan, Z. X., Li, Y. P., Long, Z., et al., 2019. Interfacial Shearing of Anchored Rock Slopes with a Weak Layer under Earthquake Loading. Journal of Tsinghua University, 59(11): 910-916(in Chinese with English abstract). [55] Yan, Z. X., Liu, C. B., Long, Z., et al., 2020. Experimental Study on Seismic Response of Anchorage of Bedding Rock Slope with Weak Layer. Chinese Journal of Geotechnical Engineering, 42(12): 2180-2188(in Chinese with English abstract). [56] Yan, Z. X., Qu, W. R., Long, Z., et al., 2018. Influences of Anchorage Parameters on Distribution of Shear Stress at Anchorage Interface of Rock Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 40(11): 2110-2119(in Chinese with English abstract). [57] Yao A. J., Su Y. H., 2003. A Method for Stability of Slope Engineering with Complicated Rock⁃Mass. China Civil Engineering Journal, 36(11): 34-37(in Chinese with English abstract). doi: 10.3321/j.issn:1000-131X.2003.11.007 [58] Ye, H. L., Huang, R. Q., Zheng, Y. R., et al., 2010. Sensitivity Analysis of Parameters for Bolts in Rock Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 32(9): 1374-1379(in Chinese with English abstract). [59] Zhang, J. J., Niu, J. Y., Fu, X., et al., 2020a. Shaking Table Test of Seismic Responses of Anchor Cable and Lattice Beam Reinforced Slope. Journal of Mountain Science, 17(5): 1251-1268. https://doi.org/10.1007/s11629⁃019⁃5712⁃4 [60] Zhang, J. J., Niu, J. Y., Fu, X., et al., 2020b. Failure Modes of Slope Stabilized by Frame Beam with Prestressed Anchors. European Journal of Environmental and Civil Engineering, 26(6): 2120–2142. https://doi.org/10.1080/19648189.2020.1752806 [61] Zhang, Q. Y., Zhang, X. T., Xiang, W., 2006. Application of Sliding Block Computation Model in Stability Evaluation for Anchored Rockmass Slope. In: Putra, I. S., Suharto, D., eds., Fracture and Strength of Solids Vi, Pts 1 and 2, Key Engineering Materials. Trans Tech Publications Ltd, Durnten⁃Zurich, 1515-1519. https://doi.org/10.4028/www.scientific.net/kem.306⁃308.1515 [62] Zhang, W., 2021. Numerical Simulation of Dynamic Characteristics of Prestressed Anchor Rock Slope under Seismic Action. Nonferrous Metals Engineering, 11(3): 117-122(in Chinese with English abstract). [63] Zhao, Y. Z., Xia, Y. Y., Wang, Z. D., et al., 2021. The Real⁃Time Dynamic Newmark Sliding Block Displacement Method for Post⁃Earthquake Displacement of Anchored Rock Slope. Chinese Journal of Applied Mechanics, 38(5): 2057-2063(in Chinese with English abstract). doi: 10.11776/cjam.38.05.B194 [64] Zheng, Y., Wang, R. Q., Chen, C. X., et al., 2021. Dynamic Analysis of Anti⁃Dip Bedding Rock Slopes Reinforced by Pre⁃Stressed Cables Using Discrete Element Method. Engineering Analysis with Boundary Elements, 130: 79-93. https://doi.org/10.1016/j.enganabound.2021.05.014 [65] Zhou, D. P., Zhang, J. J., Tang, Y., 2010. Seismic Damage Analysis of Road Slopes in Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(3): 565-576(in Chinese with English abstract). [66] Zhou, W., Li, H. B., Liu, Y. Q., et al., 2016. Pseudo⁃Dynamic Analysis of Anchored Characteristics of Layered Rock Slopes Subjected to Seismic Loads. Chinese Journal of Rock Mechanics and Engineering, 35(Suppl. 2): 3570-3576(in Chinese with English abstract). [67] 安彩龙, 梁烨, 王亮清, 等, 2020. 岩质边坡楔形体锚索加固方向角三维优化设计. 岩土力学, 41(8): 2765-2772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008029.htm [68] 柴波, 史绪山, 杜娟, 等, 2022. 如何实现区域岩体结构精细化分析?综述与设想. 地球科学, 47(12): 4629-4646. [69] 付晓, 冀文有, 张建经, 等, 2018. 锚索框架梁加固平面滑动型边坡地震动力响应. 岩土力学, 39(5): 1709-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805021.htm [70] 洪海春, 徐卫亚, 2006. 地震作用下岩体锚固性能研究综述与展望. 金属矿山, 357(3): 5-10, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200603001.htm [71] 黄秋香, 徐湘涛, 徐超, 等, 2016. 汶川地震中锚固岩质边坡的动力响应特征. 岩土力学, 37(6): 1729-1736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606025.htm [72] 黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906023.htm [73] 靳飞飞, 言志信, 翟聚云, 等, 2020. 地震动参数对锚固岩质边坡地震响应影响权重研究. 水力发电, 46(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD202002008.htm [74] 寇昊, 李宁, 郭双枫, 2018. 地震作用下岩体边坡破坏机制及稳定性研究进展. 水利水电科技进展, 38(4): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201804016.htm [75] 赖天文, 雷浩, 武志信, 等, 2021. 玄武岩纤维增强复合材料在高边坡防护中的振动台试验研究. 岩土力学, 42(2): 390-400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102011.htm [76] 李林昊, 赵宇飞, 汪小刚, 2018. 预应力锚索边坡加固作用的离心机试验研究. 水利水电技术, 49(1): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201801022.htm [77] 李亚鹏, 言志信, 2019. 地震作用下软弱夹层参数对岩质边坡锚固界面剪切作用影响. 振动与冲击, 38(8): 48-53, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908008.htm [78] 林永亮, 李新星, 张波, 2013. 双向锚固岩石边坡抗滑稳定性拟静力分析. 地下空间与工程学报, 9(5): 1186-1190, 1200. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201305040.htm [79] 刘春波, 言志信, 张功会, 等, 2020. 软弱夹层参数对岩质边坡稳定性及锚固影响研究. 三峡大学学报(自然科学版), 42(4): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC202004005.htm [80] 刘建华, 汪优, 付康林, 等, 2012. 简谐振动荷载下锚杆加固岩质边坡的受力分析. 岩土力学, 33(增刊1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1014.htm [81] 刘树林, 杨忠平, 刘新荣, 等, 2018. 频发微小地震作用下顺层岩质边坡的振动台模型试验与数值分析. 岩石力学与工程学报, 37(10): 2264-2276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810007.htm [82] 龙哲, 2020. 地震作用下含软弱层岩体边坡锚固界面剪切作用研究(博士学位论文). 兰州: 兰州大学. [83] 龙哲, 言志信, 周小亮, 2017. 地震作用下岩体边坡锚固界面剪切作用数值模拟分析. 中国科学: 技术科学, 47(10): 1049-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201710011.htm [84] 罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133 [85] 聂柏松, 沈振中, 侯冰铃, 等, 2019. 基于离散单元法的锚固岩质边坡动力响应研究. 南水北调与水利科技, 17(2): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201902025.htm [86] 祁生文, 伍法权, 刘春玲, 等, 2004. 地震边坡稳定性的工程地质分析. 岩石力学与工程学报, 23(16): 2792-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200416024.htm [87] 阮晓波, 孙树林, 刘文亮, 2013. 锚固岩石边坡地震稳定性拟动力分析. 岩土力学, 34(增刊1): 293-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1045.htm [88] 孙钧, 2007. 岩石流变力学及其工程应用研究的若干进展. 岩石力学与工程学报, 26(6): 1081-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm [89] 王根龙, 伍法权, 祁生文, 等, 2007. 加锚岩质边坡稳定性评价的极限分析上限法研究. 岩石力学与工程学报, 26(12): 2556-2563. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712025.htm [90] 王根龙, 张军慧, 李巨文, 等, 2009. 公路岩质边坡稳定性评价的能量法研究. 公路交通科技, 26(12): 1-6, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200912000.htm [91] 王建, 姚令侃, 蒋良潍, 2010. 边坡岩石块体动力响应及锚固抗震效应研究. 公路交通科技, 27(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201003003.htm [92] 王亮清, 朱林锋, 郑罗斌, 等, 2021. 考虑节理粗糙度的锚固节理岩体剪切试验. 中国公路学报, 34(6): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106005.htm [93] 王茂, 罗庆, 2009. 汶川大地震中道路破坏及设计反思. 铁道工程学报, 26(2): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200902005.htm [94] 王秒, 李海波, 刘亚群, 等, 2013. 顺层岩质边坡预应力锚索抗震加固机制研究. 岩土力学, 34(12): 3555-3560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312032.htm [95] 吴尚杰, 蒋宇静, 邓涛, 等, 2017. 含软弱夹层锚框支护边坡的地震响应研究. 工程地质学报, 25(4): 1065-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201704021.htm [96] 谢和平, 邓建辉, 台佳佳, 等, 2008. 汶川大地震灾害与灾区重建的岩土工程问题. 岩石力学与工程学报, 27(9): 1781-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200809007.htm [97] 许明, 唐亚锋, 刘先珊, 等, 2018. 自适应锚索锚固岩质边坡地震动力响应分析. 岩土力学, 39(7): 2379-2386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807009.htm [98] 严敏嘉, 夏元友, 刘婷婷, 2018. 地震作用下预应力锚索加固顺层岩坡极限分析. 岩土力学, 39(7): 2691-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807044.htm [99] 严敏嘉, 张佳敏, 谭思蓉, 等, 2022. 地震作用下岩坡稳定性研究现状与发展. 武汉大学学报(工学版), 55(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202201004.htm [100] 言志信, 李亚鹏, 龙哲, 等, 2019. 地震作用下含软弱层锚固岩质边坡界面剪切作用. 清华大学学报(自然科学版), 59(11): 910-916. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201911006.htm [101] 言志信, 刘春波, 龙哲, 等, 2020. 含软弱层顺倾岩体边坡锚固地震响应试验研究. 岩土工程学报, 42(12): 2180-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012004.htm [102] 言志信, 屈文瑞, 龙哲, 等, 2018. 地震作用下锚固参数对岩体边坡锚固界面剪应力分布影响分析. 岩土工程学报, 40(11): 2110-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811022.htm [103] 姚爱军, 苏永华, 2003. 复杂岩质边坡锚固工程地震敏感性分析. 土木工程学报, 36(11): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200311007.htm [104] 叶海林, 黄润秋, 郑颖人, 等, 2010. 岩质边坡锚杆支护参数地震敏感性分析. 岩土工程学报, 32(9): 1374-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009013.htm [105] 张炜, 2021. 地震作用下预应力锚杆岩质边坡动力特性数值模拟研究. 有色金属工程, 11(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202103017.htm [106] 赵宇臻, 夏元友, 王智德, 等, 2021. 锚固岩质边坡震后位移实时动态Newmark滑块位移法. 应用力学学报, 38(5): 2057-2063. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202105043.htm [107] 周德培, 张建经, 汤涌, 2010. 汶川地震中道路边坡工程震害分析. 岩石力学与工程学报, 29(3): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003019.htm [108] 周炜, 李海波, 刘亚群, 等, 2016. 地震作用下顺层岩质边坡锚固特性的拟动力分析. 岩石力学与工程学报, 35(增刊2): 3570-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2015.htm