Stochastic Fracture Simulation Based on Three-Dimensional Laser Scan Technology: a Case Study of Kuqa River Outcrop in Kuqa Depression
-
摘要: 库车坳陷是塔里木盆地重要的天然气勘探开发目标区,其大北-克深地区含气层系下白垩统埋深超过7 500 m,岩性致密孔隙度平均为4.8%,但仍然获得高产工业气流,岩层内所发育的裂缝成为天然气高产的核心要素. 因此利用合理技术对裂缝数据进行有效表达是明确深层致密砂岩裂缝发育特征及空间分布规律的关键,是有效开发裂缝型气藏前提. 利用三维激光扫描能够获得大数据的优势,运用点数据拼接、去噪、切割处理方法,直接识别点云数据中的有效裂缝信息,并结合野外剖面实测获得的裂缝数据对所识别的裂缝信息进行修正处理,建立目标区域裂缝信息地质知识库. 确定目标区域裂缝发育的空间范围,裂缝密度发育规律,裂缝方位分布状态,为后期随机模拟确定约束条件. 在三维激光扫描点云处理数据的约束下,应用随机模拟技术的fisher函数能够较好的表现裂缝发育区域单条裂缝之间方位偏转现象,体现自然裂缝的随机发育特征. 利用裂缝开度信息,应用Oda计算方法对对每条裂缝的渗流能力进行了计算分析,定量确定裂缝发育区对围岩流体渗流影响的大小.库车坳陷库车河剖面计算结果显示:右侧裂缝簇导致的渗流带宽度可达3.1 m,延伸长度平均为2.6 m;中间区域所展现裂缝簇渗流带宽度1.2 m,延伸长度平均为1.4 m;左侧裂缝簇渗流带宽度约0.9 m,延伸长度仅仅为0.33 m左右,这与野外数据吻合. 与人工对比显示:数据处理面积是人工测量的25倍,所消费的时间仅仅是人工处理的1/10,大大提高了工作效率.由此可见裂缝簇内裂缝密集程度越高,对流体渗流影响就越大,流体在裂缝簇渗流扩展的宽度,影响的范围就越广,较好的表达了库车深层裂缝致密气藏的特征. 说明基于激光扫描技术的裂缝随机模拟技术能够真实的表达裂缝三维空间展布状态,以及对流体渗流的贡献.Abstract: The Kuqa Depression is an important natural gas exploration target area in the Tarim Basin. Although the gas-bearing layer from the lower Cretaceous in the Dabei-Keshen area is buried deeper than 7500 m, and the average lithologic tight porosity is 4.8%, the area is still getting high-yield industrial gas stream. Fractures developed in rock formations have become the key factor for high natural gas production. Therefore, using reasonable techniques to effectively express fractured atais the key to clarifying the development characteristics and spatial distribution off ractures in deep tight sandstone, and is the premise for the effective development off ractured gas reservoirs. The advantages of big data can be obtained by using 3D laser scanning. Using point data splicing, denoising, and cutting methods, directly identifying the effective fracture information in the point cloud data, and analyzing the identified fracture information in combination with the fracture data obtained from the field profile measurement are incredibly useful to establish a geological knowledge base of fracture information in the target area. Identifying the spatial extent of fracture development in the target area, the development law of fracture density, and the azimuthal distribution of fractures helps to determine the constraints for the later random simulation. Under the constraints of 3D laser scanning point cloud processing data, the fisher function using stochastic simulation technology can better represent the azimuthal deflection phenomenon between single fractures in the fracture development area, reflecting the random development characteristics of natural fractures. Using the fracture opening information, the Oda calculation method is used to calculate and analyze the seepage capacity of each fracture, and the influence of the fracture development area on the surrounding rock fluid seepage is quantitatively determined. The calculation results of the Kuqa River section in the Kuqa Depression show that the vadose zone caused by the fracture cluster on the right side can reach 3.1m in width and 2.6m in extension; The vadose zone of the fracture cluster in the middle area is 1.2m wide and the extension length is 1.4 m; The width of the fracture cluster vadose zone on the left is about 0.9m, and its extension length is only about 0.33m.Itisconsistentwithfielddata. It can be seen that the higher the density of fractures in the fracture cluster, the greater the impact on fluid vadose zone. The wider the width of the fluid vadose zone expansion in the fracture cluster, the scope of influence wider. This better expresses the characteristics of deep fractured tight gas reservoirs in Kuqa. It shows that the stochastic simulation technology of fractures based on laser scanning technology can truly express the three-dimensional spatial distribution of fractures and the contribution of luidflow through porous medium.
-
表 1 模拟结果与剖面实测数据对比
Table 1. Comparison between simulation results and measured datas of profile
左侧(平均) 右侧(平均) 密度(m/m2) 长度(m) 方位(°) 面积
(m2)时间
(h)密度(m/m2) 长度(m) 方位(°) 面积
(m2)时间
(h)剖面实测 0.130 0.330 334 4 4 1.32 2.53 341 4 8 模拟计算 0.154 0.308 337 100 0.5 1.22 2.61 338 140 0.8 误差 15% 7% 0.9% - - 8% 3.06% 0.8% - - -
[1] Baecher, G. B., 1983. Statistical Analysis of Rock Mass Fracturing. Journal of the International Association for Mathematical Geology, 15(2): 329-348. doi: 10.1007/BF01036074 [2] Bao, Y. C., Liu, Q. H., Du, X. F., et al., 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171(in Chinese with English abstract). [3] Bellian, J. A., Kerans, C., Jennette, D. C., et al., 2005. Digital Outcrop Models: Applications of Terrestrial Scanning Lidar Technology in Stratigraphic Modeling. Journal of Sedimentary Research, 75(2): 166-176. doi: 10.2110/jsr.2005.013 [4] Cao, T., Xiao, A. C., Wu, L., et al., 2017. Automatic Fracture Detection Based on Terrestrial Laser Scanning Data: A New Method and Case Study. Computers & Geosciences, 106: 209-216. [5] Casini, G., Hunt, D. W., Monsen, E., et al., 2016. Fracture Characterization and Modeling from Vortual Outcrops. AAPG Bulletin, 100(1): 41-61. doi: 10.1306/09141514228 [6] Dang, F. N., Han, W. T., Zheng, Y. N., 2007. 3D Numerical Simulation of Failure Process of Concrete. Chinese Journal of Computational Mechanics, 24(6): 829-833(in Chinese with English abstract). [7] Deng, S. G., Li, Z. Q., 2009. Simulation of Array Laterolog Response of Fracture in Fractured Reservoir. Earth Science, 34(5): 841-847(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.05.017 [8] Ding, W. L., Yin, S., Wang, X. H., et al., 2015. Assessment Method and Characterization of Tight Sandstone Gas Reservoir Fractures. Earth Science Frontiers, 22(4): 173-187(in Chinese with English abstract). [9] Dong, S. Q., Zeng, L. B., Xu, C. S., et al., 2018. Some Progress in Reservoir Fracture Stochastic Modeling Researc. OGP, 53(3): 625-642(in Chinese with English abstract). [10] Dowd, P. A., Xu, C., Mardia, K. V., et al., 2007. A Comparison of Methods for the Stochastic Simulation of Rock Fractures. Mathematical Geology, 39(7): 697-714. doi: 10.1007/s11004-007-9116-6 [11] Feng, C., Zhang, L., 2019. Application of Delaunay Triangulation Method in Noise Map. Geomatics & Spatial Information Technology, 42(10): 80-82(in Chinese with English abstract). doi: 10.3969/j.issn.1672-5867.2019.10.023 [12] Gong, L., Gao, M. Z., Zeng, L. B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208(in Chinese with English abstract). [13] He, D. F., Zhou, X. Y., Yang, H. J., et al., 2009. Geological Structure and its Controls on Giant Oil and Gas Fields inKuqa Depression, Tarim Basin. Geotectonica et Metallogenia, 2009, 33(1): 19-32(in Chinese with English abstract). [14] Huang, Y. Y., Wang, G. W., Song, L. T., et al., 2022. Fracture Logging Identification and Effectiveness Analysis of Shale Reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin. Journal of Palaeogeography, 24(3): 540-554(in Chinese with English abstract). [15] Ivanova, V. M., Sousa, R., Murrihy, B., et al., 2014. Mathematical Algorithm Development and Parametric Studies with the Geofrac Three-Dimensional Stochastic Model of Natural Rock Fracture Systems. Computers & Geosciences, 67: 100-109. [16] Jia, C. Z., 1999. Structural Characteristics and Oil and Gas Accumulation Rules in Tarim Basin. Xinjiang Petroleum Geology, 20(3): 177-183(in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.1999.03.001 [17] Jia, C. Z., Zou, C. N., Li, J. Z., et a., 2012. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China. Acta Petrolei Sinica, 33(3): 343-350(in Chinese with English abstract). [18] Karim, F. M., Durlofsky, L. J., Aziz, K., 2004. An Efficient Discrete Fracture Model Applicable for General-Purpose Reservoir Simulators. Society of Petroleum Engineers Journal, 9(2): 227-236. [19] Kemeny, J., Post, R., 2003. Estimating Three-Dimensional Rock Discontinuity Orientation from Digital Images of Fracture traces. Computers & Geosciences, 29(1): 65-77. [20] Lato, M. J., Diederichs, M. S., Hutchinson, D. J., 2010. Bias Correction for View-Limited Lidar Scanning of Rock Outcrops for Structural Characterization. Rock Mechanics and Rock Engineering, 43(5): 615-628. doi: 10.1007/s00603-010-0086-5 [21] Lehmer, E., 1938. On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson. Ann. Math, 39: 350-360. doi: 10.2307/1968791 [22] Li, Y., Hou, G. T., Hari, K. R., et al., 2018. The Model of Fracture Development in the Faulted Folds: The Role of Folding and Faulting. Marine and Petroleum Geology, 89: 243-251. doi: 10.1016/j.marpetgeo.2017.05.025 [23] Li, Y., Qi, J. F., Shi, J., et al., 2017. Characteristics of Mesozoic Basin in Kuqa Depression, Tarim Basin. Geotectonica et Metallogenia, 41(5): 829-842(in Chinese with English abstract). [24] Lin, L. B., Yu, Y., Nan, H. L., et al., 2021. ReservoirTightening Process and Its Coupling Relationship with Hydrocarbon Accumulation in the Fourth Member of Upper Triassic Xujiahe Formation in the Western Sichuan Depression, Sichuan Basin. Oil & Geology, 42(4): 816-828(in Chinese with English abstract). [25] Lu, H. F., Jia, D., Chen, C. M., et al., 1999. Nature and Timing of the Kuqa Cenozoic Structures. Earth Science Frontiers, 6(4): 215-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.04.003 [26] Lv, W. Y., Zeng, L. B., Liu, J., et al., 2016. Fracture Research Progress in Low Permeability Tighe Reservoirs. Geological Science and Technology Information, 35(4): 74-83(in Chinese with English abstract). [27] Marr, D., Hildreth, E., 1980. Theory of Edge Detection. Proceedings of the Royal Society of London. London, UK. [28] Oda, M., Hatsuyama, Y., Ohnishi, Y., 1987. Numerical Experiments on Permeability Tensor and Its Application ti Jointed Granite at Stripa Mine. Journal of Geophysical Research, 92: 8037-8048. doi: 10.1029/JB092iB08p08037 [29] Ren, Y. P., 2019. Terrestrial Lidar Based Fracturing and Folding Mechanism Analyzing and Fracture Network Modeling(Dissertation). Zhejiang University, Hangzhou(in Chinese with English abstract). [30] Shi, C. Q., Li, Y., Yuan, W. F., et al., 2021. Characteristics on Reservoir Architecture and Quality of Tight Sandstone Reservoirs: Taking Jurassic Ahe Formation in Dibei Area of Kuqa Foreland Basin As an Example. Journal of China University of Mining & Technology, 50(5): 877-892(in Chinese with English abstract). [31] Su, X., 2020. Flow Behavior in Granite Fractures and Mechanism of Hydraulic Fracture Propagation(Dissertation). Chongqing University, Chongqing(in Chinese with English abstract). [32] Tang, Y., Mei, L. F., Tang, W. J., et al., 2010. Property Analysis and Stochastic Modelling of Fractured Reservoirs. Journal of Southwest Petroleum University(Science & Technology Edition), 32(4): 56-66 (in Chinese with English abstract). [33] Tian, Y. P., Liu, X., Li, X., et al., 2011. Finite Element Method of 3-D Numerical Simulation on Tectonic Stress Field. Earth Science Frontiers, 36(2): 375-380(in Chinese with English abstract). [34] Wang, K., Zhang, R. H., Zeng, Q. R., et al., 2022. Characteristics and Formation Mechanism of Lower Cretaceous Deep and Ultra-Deep Reservoir in Bozi-Dabei Area, Kuqa Depression. Journal of China University of Mining & Technology, 51(2): 257-274(in Chinese with English abstract). [35] Wang, Z., Xue, H. Y., Sun, D., 2020. Automatic Stitching Method and Precision Analysis of 3D Point Cloud Based on Visual Tracking Technology. Bulletin of Surveying and Mapping, 2020(S1): 164-167(in Chinese with English abstract). [36] Xu, J. S., Wang, J. X., Chen, X. Q., et al., 2022. Effects of Poisson Ratio on In-Situ Stress Field Near the Jiali Fault Along the Sichuan-Tibet Railway. Earth Science Frontiers, 47(3): 818-830(in Chinese with English abstract). [37] Yang, H. J., Zhang, R. H., Yang, X. Z., et al., 2018. Characteristics and Reservoir Improvement Effect of Structural Fracture in Ultra-Deep Tight Sandstone Reservoir: A Case Study of Keshen Gasfield, Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 29(7): 942-950(in Chinese with English abstract). [38] Zeng, Q. L., Zhang, R. H., Lu, W. Z., et al., 2017. Fracture Development Characteristics and Controlling Factors Based on 3D Laser Scanning Technology: An Outcrop Case Study of Suohan Village, Kuqa Foreland Area, Tarim Basin. Natural Gas Geoscience, 28(3): 397-409(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201703007.htm [39] Zhu, X. M., Pan, R., Zhu, S., F., et al., 2018. Research Progress and Core Issue in Tight Reservoir Exploration. Earth Science Frontiers, 25(2): 141-146(in Chinese with English abstract). [40] 鲍怡晨, 刘强虎, 杜晓峰, 等, 2021. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284 [41] 党发宁, 韩文涛, 郑娅娜, 等, 2007. 混凝土破裂过程的三维数值模型. 计算力学学报, 24(6): 829-833. doi: 10.3969/j.issn.1007-4708.2007.06.021 [42] 邓少贵, 李智强, 2009. 裂缝性储层裂缝的阵列侧向测井响应数值模拟. 地球科学, 34(5): 841-847. http://www.earth-science.net/article/id/1897 [43] 丁文龙, 尹帅, 王兴华, 等, 2015. 致密砂岩气储层裂缝评价方法与表征. 地学前缘, 22(4): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504022.htm [44] 董少群, 曾联波, Xu C. S., 等, 2018. 储层裂缝随机建模方法演技进展. 石油地球物理勘探, 53(3): 625-642. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201803023.htm [45] 冯驰, 张黎明, 2019. Delaunay三角剖分法在噪声地图中的应用. 测绘与空间地理信息, 42(10): 80-82. doi: 10.3969/j.issn.1672-5867.2019.10.023 [46] 巩磊, 高铭泽, 曾联波, 等, 2017. 影响致密砂岩储层裂缝分布的主控因素分布——以库车前陆盆地侏罗系-新近系为例. 天然气地球科学, 28(2): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702003.htm [47] 何登发, 周新源, 杨海军, 等, 2009. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 33(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901004.htm [48] 黄玉越, 王贵文, 宋连腾, 等, 2022. 准噶尔盆地玛湖凹陷二叠系风成组页岩储集层裂缝测井识别与有效性分析. 古地理学报, 24(3): 540-554. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203010.htm [49] 贾承造, 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD903.000.htm [50] 贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景. 石油学报, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm [51] 李勇, 漆家褔, 师俊, 等, 2017. 塔里木盆地库车坳陷中生代盆地性状及成因分析. 大地构造与成矿学, 41(5): 829-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705003.htm [52] 林良彪, 余瑜, 南红丽, 等, 2021. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系. 石油与天然气地质, 42(4): 816-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104005.htm [53] 卢华复, 贾东, 陈楚铭, 等, 2017. 库车新生代构造性质和变形时间. 地学前缘, 6(4): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904003.htm [54] 吕文雅, 曾联波, 刘静, 等, 2016. 致密低渗透储层裂缝研究进展. 地质科技情报. 35(4): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604012.htm [55] 任宇鹏, 2019. 基于激光雷达的褶皱裂缝力学系统及裂缝分布模型构建(博士毕业论文). 杭州: 浙江大学. [56] 史超群, 李勇, 袁文芳, 等, 2021. 致密砂岩储层构型特征及评价: 以库车前陆盆地迪北地区侏罗系阿合组为例. 中国矿业大学学报, 50(5): 877-892. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105006.htm [57] 苏小鹏, 2020. 干热岩裂缝渗流及储层水力压裂缝网扩展机理研究(博士毕业论文). 重庆: 重庆大学. [58] 唐永, 梅廉夫, 唐文军, 等, 2010. 裂缝性储层属性分析与随机模拟. 西南石油大学学报(自然科学版), 32(4): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201004013.htm [59] 田宜平, 刘雄, 李星, 等, 2011. 构造应力场三维数值模拟的有限单元法. 地球科学, 36(2): 375-380. doi: 10.3799/dqkx.2011.041 [60] 王珂, 张荣虎, 曾庆鲁, 等, 2022. 库车坳陷博孜-大北地区下白垩统深层-超深层储层特征及成因机制. 中国矿业大学学报, 51(2): 257-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202202010.htm [61] 王智, 薛慧艳, 孙迪, 等, 2020. 基于视觉追踪技术的三维点云自动拼接方法及精度分析. 测绘通报, (S1): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2020S1040.htm [62] 许俊闪, 王建新, 陈兴强, 等, 2022. 泊松比对川藏铁路嘉黎断裂附近地应力场的影响. 地球科学, 47(3): 818-830. doi: 10.3799/dqkx.2022.029 [63] 杨海军, 张荣虎, 杨宪彰, 等, 2018. 超深层致密砂岩构造裂缝特征及其对储层的改造作用: 以塔里木盆地库车坳陷克深气田白垩系为例. 天然气地球科学, 29(7): 942-950. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201807003.htm [64] 曾庆鲁, 张荣虎, 卢文忠, 等, 2017. 基于三维激光扫描技术的裂缝发育规律和控制因素研究——以塔里木盆地库车前陆区索罕村露头剖面为例. 天然气地球科学. 28(3): 397-409. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201703007.htm [65] 朱筱敏, 潘荣, 朱世发, 等, 2018. 致密储层研究进展和热点问题分析. 地学前缘, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm