Re-Os Dating of the Wusihe Paleo-Reservoir and Its Response to Emeishan Large Igneous Province Actvities in the Southwest Sichuan Basin
-
摘要: 在盆地形成演化的漫长过程中,岩浆的侵入、深部高温流体上涌等热事件会导致盆地存在热异常,从而对油气的生成演化起重要的控制作用.位于四川盆地西南部峨眉山大火成岩省中带的乌斯河上震旦统至下寒武统古油藏是开展火山作用与油气成藏演化关系研究的理想对象.针对该古油藏,论文开展了沥青镜质体反射率和有机元素含量分析以及Re-Os同位素测年工作,并结合前人相关钻井埋藏史、热历史以及峨眉山大火成岩省的研究成果,揭示了沥青的成因和演化,探讨了乌斯河油气成藏作用与火山活动的联系.研究结果表明:乌斯河古油藏沥青具有较高的沥青反射率(~2.27~2.77)及较低的H/C原子比(0.21~0.22),成因为经历了热裂解作用形成的焦沥青;沥青Re-Os同位素等时线年龄为~262 Ma,记录了原油热裂解、天然气生成的时间.对比四川盆地内部及川东北地区上震旦统至下寒武统油气成藏的关键时刻,乌斯河地区~262 Ma较早的原油裂解时间与邻区H1井异常的热事件时间(~260 Ma)、峨眉山大火成岩省的形成时代(257~263 Ma)近于一致. 这表明乌斯河地区油气成藏作用受同期大火成岩省火山活动的控制,焦沥青的形成及其Re-Os同位素年龄是对峨眉山超级地幔柱活动的响应. 研究从年代学的角度建立了四川盆地火山活动、异常热事件、烃源岩异常热演化与原油裂解天然气生成之间的联系,为峨眉山大火成岩省的油气成藏效应研究提供了一个典型实例.Abstract: During the long process of basin formation and evolution, thermal events such as magma intrusion and deep high temperature fluid upwelling will lead to thermal anomalies and directly control the petroleum evolution. Located in the inter-mediate zone of Emeishan large igneous province in southwest Sichuan Basin, the Upper Neoproterozoic-Lower Cambrian Wusihe paleo-reservoir is an ideal object on revealing the relationship between volcanism and the petroleum evolution. Integrating the bitumen reflectance (Rb), elementary composition and Re-Os isotope dating in this work as well as the burial history, thermal histories and key timings related to Emeishan large igneous province from published works, the origin and evolution of bitumen were discussed and the relationship between petroleum accumulation and volcanic activity was established in the Wusihe area. The high bitumen reflectivity (~2.27−2.77) and low H/C atomic ratio (0.21−0.22) of the solid bitumen indicate they are high maturity pyrobitumen formed by thermal cracking. The Re-Os dates (~262 Ma) of the solid bitumen recorded timing of crude oil cracking and gas generation. In addition, the nearly same timing among the oil cracking, abnormal thermal event revealed by H1 Well (~260 Ma), as well as the Eruptive time for the Emeishan igneous province (257−263 Ma) indicate the petroleum evolution in the Wusihe reservoir is controlled by volcanic activities in the Emeishan igneous province during the same period, and the formation of the pyrobitumen and its Re-Os isotopic age are the responses to the activities of the Emeishan super mantle plume. This study provides a typical example for the study of petroleum evolution effect in Emeishan large igneous province.
-
Key words:
- paleo-reservoir /
- Bitumen /
- Re-Os isotope /
- Volcanism /
- Emeishan large igneous province /
- petroleum geology
-
图 1 (a) 研究区区域地质图; (b)主要钻井热史图; (c)峨眉山大火成岩省年龄统计图
a. 据朱传庆等(2010)、吴越(2013),修改;b. 据朱传庆等(2010);c. 数据来源:何冰辉(2016);潘江涛等(2022)等
Fig. 1. (a)Regional geological map of studied area; (b) Thermal histories of main drilling wells in the SW Sichuan Basin; (c)Statistical histogram of ages for Emeishan large igneous province
图 3 乌斯河古油藏地质示意图及样品位置
(据熊索菲等,2016,修改)
Fig. 3. Geological map and sample location of Wusihe paleo-reservoir
图 4 乌斯河古油藏沥青样品手标本与镜下照片
c,d. 据熊索菲,2016;Cal. 方解石;Bit. 沥青;Q. 石英;Sp. 闪锌矿;Gn. 方铅矿
Fig. 4. Hand specimens and microscopic photographs of bitumen samples from paleo-reservoirs of the Wusihe area
图 7 峨眉山大火成岩省火山活动年龄统计图
数据来源:何冰辉(2016);潘江涛等(2022);周寅生等(2022)等
Fig. 7. Age statistics of volcanic activities in the Emeishan large igneous province
表 1 乌斯河古油藏沥青反射率测试数据表
Table 1. Experimental data of bitumen reflectance in the Wusihe paleo-reservoir
样品号 WSH21 WSH118 WSH119 WSH122 测点1 2.133 2.215 2.217 2.559 测点2 2.135 2.219 2.222 2.576 测点3 2.2 2.237 2.241 2.593 测点4 2.215 2.298 2.311 2.659 测点5 2.233 2.299 2.315 2.747 测点6 2.249 2.300 2.549 2.760 测点7 2.261 2.301 2.761 测点8 2.269 2.302 2.767 测点9 2.273 2.308 2.768 测点10 2.274 2.309 2.769 测点11 2.276 2.338 2.793 测点12 2.278 2.369 2.803 测点13 2.279 2.375 2.808 测点14 2.28 2.376 2.809 测点15 2.283 2.404 2.833 测点16 2.288 2.410 2.849 测点17 2.296 2.419 2.850 测点18 2.356 2.426 2.906 测点19 2.363 2.435 2.918 测点20 2.366 2.554 2.945 Rb平均值 2.265 2.345 2.309 2.774 标准离差SD 0.062 0.083 0.125 0.107 表 2 乌斯河古油藏沥青C、H、O、N元素及13C‰测试结果表
Table 2. Testing results of C, H, O, N elements and 13C ‰ of bitumen in Wusihe paleo-reservoir
原编号 井段(m) 层位 岩性 N% C% H% O% H/C O/C 13C‰ WSH-21 露头 寒武系 储层沥青 1.00 89.42 1.62 1.66 0.22 0.01 -36.22 WSH-118 露头 寒武系 储层沥青 1.11 90.29 1.60 1.07 0.21 0.01 -35.96 WSH-119 露头 寒武系 储层沥青 1.06 90.54 1.60 0.98 0.21 0.01 -36.22 WSH-120 露头 寒武系 储层沥青 1.04 90.42 1.58 1.00 0.21 0.01 / WSH-121 露头 寒武系 储层沥青 0.99 89.00 1.59 1.19 0.21 0.01 / WSH-122 露头 寒武系 储层沥青 1.00 90.83 1.57 0.83 0.21 0.01 -36.15 表 3 乌斯河古油藏沥青样品Re、Os测试数据表
Table 3. Experimental data of Re and Os for bitumen samples from the Wusihe paleo-reservoir
样号 Re(10-9) ± Os(10-12) ± 187Re/188Os ± 187Os/188Os ± rho WSH-118 201.47 0.663 5 449.33 36.422 248.96 1.515 3.17 0.023 0.598 WSH-119 50.53 0.177 1 921.55 12.648 171.34 1.113 2.83 0.021 0.619 WSH-21 97.21 0.243 3 400.52 18.670 187.79 0.840 2.91 0.015 0.590 WSH-122 82.53 0.207 3 008.88 22.230 179.64 1.190 2.88 0.026 0.619 -
[1] Campbell, I. H., 2007. Testing the Plume Theory. Chemical Geology, 241(3/4): 153-176. https://doi.org/10.1016/j.chemgeo.2007.01.024 [2] Cao, H. Y., Zhu, C. Q., Qiu, N. S., 2016. Maximum Paleotemperature of Main Paleozoic Argillutite in the Eastern Sichuan Basin. Chinese Journal of Geophysics, 59(3): 1017-1029(in Chinese with English abstract). [3] Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953 [4] Dong, C. Y., Liu, M. C., Li, D. J., et al., 2020. Gas Source Tracing of Lower Permian in Gaoshiti-Moxi Area, Sichuan Basin. Fault-Block Oil & Gas Field, 27(3): 273-277(in Chinese with English abstract). [5] Fang, Y. X., Liao, Y. H., Wu, L. L., et al., 2014. The Origin of Solid Bitumen in the Honghuayuan Formation (O1h) of the Majiang Paleo-Reservoir-Evidence from Catalytic Hydropyrolysates. Organic Geochemistry, 68: 107-117. https://doi.org/10.1016/j.orggeochem.2014.01.008 [6] Feng, Q. Q., Qiu, N. S., Fu, X. D., et al., 2022. Maturity Evolution of Permian Source Rocks in the Sichuan Basin, Southwestern China: The Role of the Emeishan Mantle Plume. Journal of Asian Earth Sciences, 229: 1367-9120. https://doi.org/10.1016/j.jseaes.2022.105180 [7] Feng, G. X., Chen, S. J., 1988. Relationship between Asphalt Reflectance and Vitrinite Recks. Natural Gas Industry, 8(1): 20-25(in Chinese). [8] Finlay, A. J., Selby, D., Osborne, M. J., 2011. Re-Os Geochronology and Fingerprinting of United Kingdom Atlantic Margin Oil: Temporal Implications for Regional Petroleum Systems. Geology, 39(5): 475-478. https://doi.org/10.1130/G31781.1 [9] Ge, X., Shen, C. B., Selby, D., et al., 2018. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights from Pyrobitumen Re-Os Geochronology and Apatite Fission Track Analysis. AAPG Bulletin, 102(8): 1429-1453. https://doi.org/10.1306/1107171616617170 [10] Ge, X., Shen, C. B., Selby, D., et al., 2016. Apatite Fission-track and Re-Os Geochronology of the Xuefeng Uplift, China: Temporal Implications for Dry Gas Associated Hydrocarbon Systems. Geology, 44(6): 491-494. https://doi.org/10.1130/G37666.1 [11] He, B., Xu, Y. G., Chung, S. L., et al., 2003. Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213(3/4): 391-405. https://doi.org/10.1016/S0012-821X(3)00323-6 [12] He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3/4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 [13] He, B., Xu, Y. G., Xiao, L., et al., 2003. Generation and Spatial Distribution of the Emeishan Large lgneous Province: New Evidence from Stratigraphic Records. Acta Geologica Sinica, 77(2): 194-202(in Chinese with English abstract). [14] He, B. H., 2016. Research Progress on Some Issues on the Emeishan Large Igneous Province. Advances in Earth Science, 31(1): 23-42(in Chinese with English abstract). [15] Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic-Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science China Earth Sciences, 63(8): 1041-1058. https://doi.org/10.1007/s11430-019-9604-4 [16] Huang, H., Huyskens, M. H., Yin, Q. Z., et al., 2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes Around the Guadalupian-Lopingian Boundary. Geology. https://doi.org/10.1130/G50183.1 [17] Huang, H., Cawood, P. A., Hou, M. C., et al., 2016. Silicic Ash Beds Bracket Emeishan Large Igneous Province to < 1 Ma at Similar to 260 Ma. Lithos, 264: 17-27. https://doi.org/10.1016/j.lithos.2016.08.013 [18] Hwang, R. J., Teerman, S. C., Carlson, R. M., 1998. Geochemical Comparison of Reservoir Solid Bitumens with Diverse Origins. Organic Geochemistry, 29(1/2/3): 505-517. https://doi.org/10.1016/S0146-6380(98)00078-3 [19] Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166-5162(89)90113-4 [20] Li, C., Sun, P. C., Meng, H. M, et al., 2022. Interpretation of Geological Significance of Re-Os Isotopic Age of Bitumen. Acta Petrologica Sinica, 38: 1595-1604(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.06.03 [21] Li, J. C., Zhou, X. X., Wei, Y. X., et al., 2019. Geochemical and Chronological Characteristics of Diabase in Baidu of Napo, Western Guangxi: the Magmatic Activity at the Outer Zone of Emeishan Large Igneous Province. Journal of Guilin University of Technology, 39(2): 282-290(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201902004.htm [22] Liang, X., Wu, L. L., Li, Y. D., et al., 2021. Oil Source Correlation and Its Relationship with Deeply Buried Hydrocarbon Accumulations in Tianjingshan Paleo-Uplift Area, Northern Segment of Western Sichuan Depression. Petroleum Geology & Experiment, 43: 96-111(in Chinese with English abstract). [23] Lillis, P. G., Selby, D., 2013. Evaluation of the Rhenium-Osmium Geochronometer in the Phosphoria Petroleum System, Bighorn Basin of Wyoming and Montana, USA. Geochimica et Cosmochimica Acta, 118: 312-330. https://doi.org/10.1016/j.gca.2013.04.021 [24] Ludwig, K., 2003. A Plotting and Regression Program for Radiogenic-Isotope Data, Version 3.00. United State Geol Survey, Open File Report, 1-70. [25] Mancuso, J. J., Kneller, W. A., Quick, J. C., 1989. Precambrian Vein Pyrobitumen: Evidence for Petroleum Generation and Migration 2 Ga ago. Precambrian Research, 44(2): 137-146. https://doi.org/10.1016/0301-9268(89)90079-X [26] Meyer, R. F., De Witt Jr., W., 1990. Definition and World Resources of Natural Bitumens. United States Department of the Interior, United States Geological Survey. 14 Gol'dberg, I., 1981. Prirodnye Bitumy SSSR. Leningrad, "Nedra", 195: 223 [27] Pan, H. T., Liu, H. H., Yuan, Y. S., et al., 2022. Late Permian Xuanwei Formation Tuff from the Western Margin of the Upper Yangtze: Constraints on Volcanic Activity and Paleotethyanarc Volcanism in the Emeishan Large Lgneous Province, Acta Geologica Sinica, 96(6): 1985-2000(in Chinese with English abstract). [28] Peucker-Ehrenbrink, B., Jahn, B. M., 2001. Rhenium-osmium Isotope Systematics and Platinum Group Element Concentrations: Loess and the Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(10): 2001GC000172. https://doi.org/10.1029/2001GC000172 [29] Pirajno, F., Occhipinti, S. A., 2000. Three Palaeoproterozoic Basins-Yerrida, Bryah and Padbury-Capricorn Orogen, Western Australia. Australian Journal of Earth Sciences, 47(4): 675-688. https://doi.org/10.1046/j.1440-0952. 2000.00800.x doi: 10.1046/j.1440-0952.2000.00800.x [30] Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian-Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559(in Chinese with English abstract). [31] Rogers, M. A., McAlary, J. D., Bailey, N. L., 1974. Significance of Reservoir Bitumens to Thermal-Maturation Studies, Western Canada Basin. 58(9): 1806-1824. [32] Selby, D., Creaser, R. A., 2005. Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes. Science, 308(5726): 1293-1295. https://doi.org/10.1126/science.1111081 [33] Selby, D., Creaser, R. A., Dewing, K., et al., 2005. Evaluation of Bitumen as a 187Re-187Os Geochronometer for Hydrocarbon Maturation and Migration: a Test Case from the Polaris MVT Deposit, Canada. Earth and Planetary Science Letters, 235(1/2): 1-15. https://doi.org/10.1016/j.epsl.2005.02.018 [34] Selby, D., Creaser, R. A., Fowler, M. G., 2007. Re-Os Elemental and Isotopic Systematics in Crude Oils. Geochimica et Cosmochimica Acta, 71(2): 378-386. https://doi.org/10.1016/j.gca.2006.09.005 [35] Shen, C. B., Ge, X., Bai. X. J., et al., 2019. Re-Os Geochronology Constraints on the Neoproterozoic-Cambrian Hydrocarbon Accumulation in the Sichuan Basin. Earth Science, 44(3): 713-726((in Chinese with English abstract). [36] Shen, C. B., Ge, X., Mei, L. F., et al., 2020. Re-Os Isotopic Geochronology of Petroleum Systems. Science Press, Beijing(in Chinese). [37] Shen, C. B., Ge, X., Ruan, X. Y., et al., 2011. Advances in the Study of Re-Os Geochronology and Tracing of Hydrocarbon Generation and Accumulation Generation and Accumulation. Mineralogy and Petrology, 31(4): 87-93(in Chinese with English abstract). [38] Shi, C. H., Cao, J., Bao, J. P., et al., 2015. Source Characterization of Highly Mature Pyrobitumens Using Trace and Rare Earth Element Geochemistry: Sinian-Paleozoic Paleo-Oil Reservoirs in South China. Organic Geochemistry, 83/84: 77-93. https://doi.org/10.1016/j.orggeochem. 2015.03.008 doi: 10.1016/j.orggeochem.2015.03.008 [39] Shi, C. H., Cao, J., Selby, D., et al., 2020. Hydrocarbon Evolution of the Over-Mature Sinian Dengying Reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re-Os Geochronology. Marine and Petroleum Geology, 122: 104726. https://doi.org/10.1016/j.marpetgeo.2020.104726 [40] Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099-1102 doi: 10.1126/science.271.5252.1099 [41] Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385 [42] Song, X. Y., Hou, Z. Q., Wang, Y. L., et al., 2002. The Mantle Plume Features of Emeishan Basalts. Mineralogy and Petrology, ,27(4): 27-32(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2002.04.006 [43] Stevenson, J., Mancuso, J., Frizado, J., et al., 1990. Solid Pyrobitumen in Veins, Panel Mine, Elliot Lake District, Ontario. Canadian Mineralogist, 28: 161-169. [44] Su, A., Chen, H. H., Feng, Y. X., et al., 2020. Dating and Characterizing Primary Gas Accumulation in Precambrian Dolomite Reservoirs, Central Sichuan Basin, China: Insights from Pyrobitumen Re-Os and Dolomite U-Pb Geochronology. Precambrian Research, 350: 105897. https://doi.org/10.1016/j.precamres.2020.105897 [45] Vandenbroucke, M., Behar, F., Rudkiewicz, J. L., 1999. Kinetic Modelling of Petroleum Formation and Cracking: Implications from the High Pressure/High Temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30(9): 1105-1125. https://doi.org/10.1016/S0146-6380(99)00089-3 [46] Wang, G. L., Li, N. X., Gao, B., et al., 2013. Thermochemical Sulfate Reduction in Fossil Ordovician Deposits of the Majiang Area: Evidence from a Molecular-Marker Investigation. Chinese Science Bulletin, 58(28): 3588-3594. https://doi.org/10.1007/s11434-013-5843-x [47] Wang, H. J., Zhang, S. C., Wang, X. M., 2013. How to Achieve the Precise Dating of Hydrocarbon Accumulation. Natural Gas Geoscience, 24: 210-217(in Chinese with English abstract). [48] Wang, R. H., Tan, Q. Y., Fu, J. Y., et al., 2011. The Sedimentary-Tectonic Evolution and Sedimentary Response of Mantle Plume in Emeisha. Earth Science Frontiers, 18(3): 201-210(in Chinese with English abstract). [49] Wignall, P., 2005. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements, 1(5): 293-297. https://doi.org/10.2113/gselements.1.5.293. [50] Wu, Y., Zhang, C. Q., Mao, J. W., et al., 2013. The Relationship between Oil-Gas Organic Matter and MVT Mineralization: A Case Study of the Chipu Lead-Zinc Deposit, Sichuan. Acta Geoscientica Sinica, 34(4): 425-436(in Chinese with English abstract). [51] Wu, Z. J., Peng, P. N., Fu, J. M., et al., 2000. Chapter 15 Bitumen Associated with Petroleum Formation, Evolution and Alteration: Review and Case Studies in China. Developments in Petroleum Science, 40: 401-443. https://doi.org/10.1016/S0376-7361(9)70286-9 [52] Wu, Y., 2013. The Age and Ore-Forming Process of MVT Deposit in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [53] Xiong. S. F., Yao. S. Z., Gong. Y. J., et al., . 2016. Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China. Earth Science, 41(1): 105-120(in Chinese with English abstract). [54] Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. https://doi.org/10.1016/j.gca.2008.04.019 [55] Xu, Y. G., 2002. Mantle Plume Structure, Large Igneous Provinces and Their Geological Effects. Earth Science Frontiers, (4): 341-353(in Chinese). doi: 10.3321/j.issn:1005-2321.2002.04.014 [56] Xu, Y. G., He, B., Luo, Z. Y., et al., 2022. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspective. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39(in Chinese with English abstract). [57] Xue, N., Zhu, Y. G., Lv, X. X., et al., 2020. Advances in geochronology of hydrocarbon accumulation. Natural Gas Geoscience, 31(12): 1733-1748(in Chinese with English abstract). [58] Yang, P., Wang, Z. J., Yin, F., et al., 2014. Identification of Oil Resource and Analysis of Hydrocarbon Migration and Accumulation of Majiang Paleo-Reservoir: Evidence from Oil-Gas Geochemistry. Geology in China, 41(3): 982-994(in Chinese with English abstract). [59] Yuan, H. F., Liang, J. J., Gong, D. Y., et al., 2012. Formation and Evolution of Sinian Oil and Gas Pools in Typical Structures, Sichuan Basin, China. Petroleum Science, 9(2): 129-140. https://doi.org/10.1007/s12182-012-0193-x [60] Zhang, C. Q., 2008. The Genetic Model of Mississippi Valley-Type Deposits(MVT) in the Boundary Area of Sichuan, Yunnan and Guizhou Provinces, China. Chinese Academy of Geological Sciences(in Chinese with English abstract). [61] Zhang, X. Y., Li, J. G., 1999. Distribution of Natural Bitumen, Oil and Gas Seedlings and the Relationship Between oil and Gas Exploration in Southern China. Journal of Southwest Petroleum Institute, 21(2): 36-40(in Chinese). [62] Zhang, Z. C., Hou, T., Cheng, Z. G., 2022. Mineralization related to Large Igneous Provinces. Acta Geoscientica Sinica, 96(1): 131-154(in Chinese with English abstract). [63] Zhang, Z. S., 1988. Determination of Pyropitch and Its Reflectivity. Xinjiang Petroleum Geology, 2(1): 1-4(in Chinese). [64] Zhao, B. S., Li, R. X., Qin, X. L., et al., 2021. Biomarkers and Re-Os Geochronology of Solid Bitumen in the Beiba Dome, Northern Sichuan Basin, China: Implications for Solid Bitumen Origin and Petroleum System Evolution. Marine and Petroleum Geology, 126: 104916. https://doi.org/10.1016/j.marpetgeo.2021.104916 [65] Zhao, J. Z., 2002. Geochronology of Petroleum Accumulation: New Advances and the Future Trend. Advances in Earth Science, 2002(3): 378-383(in Chinese with English abstract). [66] Zheng, P., Shi, Y. H., Zhou, C. Y., et al., 2014. Natural Gas Sources in the Dengyingang Longwangmiao Fms in the Gaoshiti-Maoxi Area, Sichuan Basin. Natural Gas Industry, 34: 50-54(in Chinese with English abstract). [67] Zheng, X. Z., 2012. Geological Features and Genesis of WuSiHe Pb-Zn Deposit, Sichuan(Dissertation). Chang'an University, Xi'an(in Chinese with English abstract). [68] Zhou, M. F., Malpas, J., Song, X. Y., et al., 2002. A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 196(3/4): 113-122. https://doi.org/10.1016/S0012-821X(1)00608-2 [69] Zhou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41: 278-293(in Chinese with English abstract). doi: 10.11698/PED.2014.03.03 [70] Zhou, Y. S., Yang, J. H., Huang, Y., et al., 2022. Provenance of the Lower Triassic Feixianguan Formation in Southwestern Guizhou Province and Reconstruction of Volcanic Denudation Sequence in Emeishan Large Igneous Province. Acta Geoscientica Sinica, 1-18(in Chinese with English abstract). [71] Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71-88. https://doi.org/10.1007/s00531-016-1404-2 [72] Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010. The Effect of Emeishan Supper Mantle to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127(in Chinese with English abstract). [73] Zi, J. W., Fan, W. M., Wang, Y. J., et al., 2010. U-Pb Geochronology and Geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane, SW China, with Implications for the Age of Emeishan Volcanism. American Journal of Science, 310: 1054-1080. https://doi.org/10.2475/09.2010.11 [74] 曹环宇, 朱传庆, 邱楠生, 2016. 川东地区古生界主要泥页岩最高古温度特征. 地球物理学报, 59(3): 1017-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603023.htm [75] 董才源, 刘满仓, 李德江, 等, 2020. 四川盆地高石梯-磨溪地区下二叠统气源示踪. 断块油气田, 27(3): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202003002.htm [76] 丰国秀, 陈盛吉, 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG198803006.htm [77] 何斌, 徐义刚, 肖龙, 等, 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据. 地质学报, 77(2): 194-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302012.htm [78] 何冰辉, 2016. 关于峨眉山大火成岩省一些问题的研究现状. 地球科学进展, 31(1): 23-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm [79] 李超, 孙鹏程, 孟会明, 等, 2022. 沥青Re-Os同位素年龄地质意义解读. 岩石学报, 38: 1595-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202206003.htm [80] 李锦诚, 周旭霞, 韦永先, 等, 2019. 桂西那坡百都辉绿岩年代学及地球化学特征: 峨眉山大火成岩省基性岩浆活动的证据. 桂林理工大学学报39(2): 282-290. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201902004.htm [81] 梁霄, 吴亮亮, 李亚丁, 等, 2021. 川西坳陷天井山古油藏油源判识及其与深层油气成藏关系厘定. 石油实验地质, 43: 96-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202101011.htm [82] 潘江涛, 刘红豪, 袁永盛, 等, 2022. 上扬子西缘晚二叠世宣威组凝灰岩: 对峨眉山大火成岩省火山活动及古特提斯弧火山作用的约束. 地质学报, 96(6): 1985-2000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202206006.htm [83] 饶松, 朱传庆, 王强, 等, 2013. 四川盆地震旦系-下古生界烃源岩热演化模式及主控因素. 地球物理学报, 56(5): 1549-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305014.htm [84] 沈传波, 梅廉夫, 阮小燕, 等, 2011. 油气成藏定年的Re-Os同位素方法应用研究. 矿物岩石, 31(4): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201104015.htm [85] 沈传波, 葛翔, 白秀娟, 2019. 四川盆地震旦-寒武系油气成藏的Re-Os年代学约束. 地球科学, 44(3): 713-726. doi: 10.3799/dqkx.2018.383 [86] 沈传波, 葛翔, 梅廉夫, 等, 编著, 2020. 含油气系统铼-锇同位素年代学, 科学出版社, 1-186. [87] 宋谢炎, 侯增谦, 汪云亮, 等, 2002. 峨眉山玄武岩的地幔热柱成因. 矿物岩石, 27(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200204005.htm [88] 王华健, 张水昌, 王晓梅, 2013. 如何实现油气成藏期的精确定年. 天然气地球科学, 24: 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302003.htm [89] 王瑞华, 谭钦银, 付建元, 等, 2011. 峨眉山地幔柱沉积-构造演化及沉积响应. 地学前缘, 18(3): 201-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103021.htm [90] 吴越, 2013. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制(博士毕业论文). 北京: 中国地质大学. [91] 吴越, 张长青, 毛景文, 等, 2013. 油气有机质与MVT铅锌矿床的成矿——以四川赤普铅锌矿为例. 地球学报, 34(4): 425-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304006.htm [92] 熊索菲, 姚书振, 宫勇军, 等, 2016. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探. 地球科学, 41(1): 105-120. doi: 10.3799/dqkx.2016.008 [93] 徐义刚, 2002. 地幔柱构造、大火成岩省及其地质效应. 地学前缘, (4): 341-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204020.htm [94] 徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htm [95] 薛楠, 朱光有, 吕修祥, 等, 2020. 油气成藏年代学研究进展. 天然气地球科学, 31(12): 1733-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202012007.htm [96] 杨平, 汪正江, 印峰, 等, 2014. 麻江古油藏油源识别与油气运聚分析: 来自油气地球化学的证据. 中国地质, 41(3): 982-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403023.htm [97] 张长青, 2008. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型. 中国地质科学院. [98] 张招崇, 侯通, 程志国, 2022. 大火成岩省的成矿效应. 地质学报, 96(1): 131-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201009.htm [99] 张子枢, 1988. 焦沥青及其反射率的测定. 新疆石油地质, 2(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD198802004.htm [100] 张学玉, 李建国, 1999. 中国南方天然沥青、油气苗分布与找油关系. 西南石油学院院报, 21(2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY902.009.htm [101] 赵靖舟, 2002. 油气成藏年代学研究进展及发展趋势. 地球科学进展, 2002(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200203013.htm [102] 邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布, 资源潜力及勘探发现. 石油勘探与开发, 41: 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm [103] 郑平, 施雨华, 邹春艳, 等, 2014. 高石梯-磨溪地区灯影组、龙王庙组天然气气源分析. 天然气工业, 34: 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403011.htm [104] 郑绪忠, 2012. 四川乌斯河铅锌矿床地质特征及矿床成因(博士毕业论文). 西安: 长安大学. [105] 周寅生, 杨江海, 黄燕, 等, 2022. 黔西南下三叠统飞仙关组沉积物源分析对于峨眉山大火成岩省火山剥蚀序列的重建约束. 地质学报: 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207007.htm [106] 朱传庆, 田云涛, 徐明, 等, 2010. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201001014.htm