• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于摩擦与变形耗能的滚石切向恢复系数影响因素

    黄福有 张路青 周剑 马显东

    黄福有, 张路青, 周剑, 马显东, 2022. 基于摩擦与变形耗能的滚石切向恢复系数影响因素. 地球科学, 47(12): 4583-4595. doi: 10.3799/dqkx.2022.369
    引用本文: 黄福有, 张路青, 周剑, 马显东, 2022. 基于摩擦与变形耗能的滚石切向恢复系数影响因素. 地球科学, 47(12): 4583-4595. doi: 10.3799/dqkx.2022.369
    Huang Fuyou, Zhang Luqing, Zhou Jian, Ma Xiandong, 2022. Influence Factors of Tangential Restitution Coefficient of Rolling Stone Based on Friction and Deformation Energy Dissipation. Earth Science, 47(12): 4583-4595. doi: 10.3799/dqkx.2022.369
    Citation: Huang Fuyou, Zhang Luqing, Zhou Jian, Ma Xiandong, 2022. Influence Factors of Tangential Restitution Coefficient of Rolling Stone Based on Friction and Deformation Energy Dissipation. Earth Science, 47(12): 4583-4595. doi: 10.3799/dqkx.2022.369

    基于摩擦与变形耗能的滚石切向恢复系数影响因素

    doi: 10.3799/dqkx.2022.369
    基金项目: 

    国家重点研发计划项目 2019YFC1509703

    第二次青藏高原综合科学考察研究资助项目 2019QZKK0904

    中国科学院重点部署项目 KFZD-SW430

    国家自然科学基金项目 41972287

    详细信息
      作者简介:

      黄福有(1994-),男,硕士研究生,主要从事地质工程和地质灾害方面的研究工.ORCID:0000-0003-2444-5488.E-mail:huangfuyou@mail.iggcas.ac.cn

    • 中图分类号: P642.21

    Influence Factors of Tangential Restitution Coefficient of Rolling Stone Based on Friction and Deformation Energy Dissipation

    • 摘要:

      切向恢复系数是滚石碰撞回弹的重要控制参数,目前的理论公式不能完全反映其作用机制,这是滚石动力学研究的一个难点问题.为此,根据滚石不同的回弹状态,提出基于入射角度变化的切向力模型;进一步,以切向接触理论和动能定理为基础,考虑碰撞过程中切向的摩擦耗能与变形耗能,推导了切向恢复系数的理论公式;最后研究入射速度、入射角、被撞击物体的变形模量对切向恢复系数的影响.结果表明:滚动回弹的切向恢复系数主要受切向变形量的影响;滑动回弹时,入射速度对切向恢复系数的影响参数为

      \begin{document}$ {v}^{\frac{1}{20}} $\end{document}

      ,切向恢复系数随着其增加而缓慢减少;入射角度对切向恢复系数的影响参数为

      $ \frac{\mathrm{c}\mathrm{o}{\mathrm{s}}^{\frac{1}{20}}{\beta }_{i}}{\mathrm{t}\mathrm{a}\mathrm{n}{\beta }_{i}} $

      ,切向恢复系数随其增加而增大;被撞击物体的变形模量对切向恢复系数的影响参数为

      $ {E}_{2}^{-\frac{5}{8}} $

      ,切向恢复系数随其增加而增加.基于摩擦与变形耗能的切向恢复系数计算公式为滚石的碰撞回弹过程提供了新的计算模型.

       

    • 图  1  滚石运动过程示意图

      Fig.  1.  Movement process of rockfall

      图  2  斜碰撞瞬时示意图

      Fig.  2.  Schematic diagram of instantaneous oblique collision

      图  3  切向力与入射角的关系

      Fig.  3.  The relationship between tangential force and incident angle

      图  4  冲击力与入射角的关系

      Fig.  4.  The relationship between impact force and incident angle

      图  5  滚石切向荷载-变形曲线

      Fig.  5.  Tangential force-displacement curves of rolling stone

      图  6  不同入射速度下的切向恢复系数

      Fig.  6.  Tangential restitution coefficients at different incident velocities

      图  7  不同入射速度下切向恢复系数变化曲线

      Fig.  7.  Variation of restitution coefficient at different incident velocities

      图  8  不同入射角下的切向恢复系数

      Fig.  8.  Tangential restitution coefficient at different incident angles

      图  9  不同入射角下的恢复系数($ v= $20 m/s)

      Fig.  9.  Variation of coefficient of restitution under different incident angles($ v= $20 m/s)

      图  10  不同入射角下的耗能比例系数S

      Fig.  10.  The energy dissipation proportional coefficient S at different incident angles

      图  11  恢复系数随$ {E}_{2} $/$ {E}_{1} $变化曲线

      Fig.  11.  Variation of coefficient of restitution under different ratios of $ {E}_{2} $/$ {E}_{1} $

      表  1  滚石冲击计算参数

      Table  1.   Calculation parameters of rock fall impact

      滚石 防护物体
      变形模量$ {E}_{1} $(GPa) 泊松比
      $ {\mu }_{1} $
      半径R(m) 密度
      ρ(kg· m-3)
      变形
      模量$ {E}_{2} $(GPa)
      泊松比
      $ {\mu }_{2} $
      摩擦系数
      $ f $
      40 0.2 0.5 2 500 30 0.2 0.5
      下载: 导出CSV

      表  2  $ {\mathit{\beta }}_{\mathit{i}} $=1°时不同入射速度碰撞特征量统计

      Table  2.   Collision typical parameters quantity statistics under different incidence speeds($ {\beta }_{i} $=1°)

      (m· s-1)$ v $ $ {t}_{1} $
      (ms)
      $ T $
      (ms)
      $ {F}_{N\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      $ {F}_{T\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      恢复系数
      $ {e}_{n} $ $ {e}_{t} $
      10 1.456 3.058 12.264 0.183 0.622 0.743
      15 1.343 2.849 19.95 0.299 0.562 0.675
      20 1.267 2.711 28.175 0.423 0.523 0.631
      25 1.212 2.609 36.825 0.552 0.495 0.599
      30 1.170 2.527 45.832 0.687 0.473 0.573
      35 1.133 2.461 55.145 0.826 0.455 0.553
      40 1.104 2.405 64.728 0.971 0.439 0.536
      下载: 导出CSV

      表  3  $ {\mathit{\beta }}_{\mathit{i}} $=60°时不同入射速度碰撞特征量统计

      Table  3.   Collision typical parameters quantity statistics under different incidence speeds($ {\beta }_{i} $=60°)

      (m· s-1)$ v $ $ {t}_{1} $
      (ms)
      $ T $
      (ms)
      $ {F}_{N\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      $ {F}_{T\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      恢复系数
      $ {e}_{n} $ $ {e}_{t} $
      10 1.669 3.443 5.403 2.701 0.738 0.509
      15 1.539 3.209 8.789 4.394 0.667 0.501
      20 1.453 3.052 12.412 6.206 0.621 0.491
      25 1.389 2.936 16.224 8.112 0.587 0.487
      30 1.340 2.844 20.191 10.095 0.561 0.484
      35 1.299 2.769 24.294 12.147 0.540 0.481
      40 1.265 2.706 28.516 14.258 0.522 0.476
      下载: 导出CSV

      表  4  不同入射角度碰撞特征量统计($ \mathit{v}= $20 m/s)

      Table  4.   Collision typical parameters quantity statistics under different incident angles($ v= $20 m/s)

      $ {\beta }_{i} $
      (°)
      $ {t}_{1} $
      (ms)
      $ T $
      (ms)
      $ {F}_{N\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      $ {F}_{T\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      恢复系数
      $ {e}_{n} $ $ {e}_{t} $
      1 1.267 2.708 28.345 0.438 0.523 0.631
      10 1.269 2.710 28.004 4.340 0.524 0.524
      20 1.281 2.735 26.476 8.472 0.530 0.419
      30 1.302 2.774 23.994 11.997 0.541 0.382
      45 1.356 2.874 18.810 9.405 0.569 0.193
      60 1.453 3.052 12.412 6.206 0.620 0.491
      75 1.658 3.423 5.623 2.811 0.731 0.745
      89 2.358 4.825 0.221 0.111 0.829 0.907
      下载: 导出CSV

      表  5  不同被撞击物体变形模量碰撞特征量

      Table  5.   Collision typical parameters quantity statistics under deformation modulus of different objects impacted($ v= $20 m/s, $ {\beta }_{i}= $60°)

      E2
      (MPa)
      $ {t}_{1} $
      (ms)
      $ T $
      (ms)
      $ {F}_{N\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      $ {F}_{T\mathrm{m}\mathrm{a}\mathrm{x}}/ $
      $ MN $
      恢复系数
      $ {e}_{n} $ $ {e}_{t} $
      10 28.578 69.193 0.631 0.315 0.173 0.352
      50 15.018 35.519 1.201 0.601 0.211 0.389
      100 11.387 26.663 1.584 0.792 0.230 0.405
      200 8.638 20.024 2.088 1.044 0.251 0.421
      500 6.005 13.736 3.002 1.501 0.283 0.441
      1 000 4.574 10.353 3.943 1.972 0.311 0.455
      10 000 1.971 4.278 9.151 4.575 0.457 0.483
      40 000 1.453 3.052 12.412 6.206 0.621 0.563
      下载: 导出CSV
    • [1] Azzoni, A., de Freitas, M. H., 1995. Experimentally Gained Parameters, Decisive for Rock Fall Analysis. Rock Mechanics and Rock Engineering, 28(2): 111-124. https://doi.org/10.1007/bf01020064
      [2] Brizmer, V., Kligerman, Y., Etsion, I., 2006. The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact. International Journal of Solids and Structures, 43(18): 5736-5749.
      [3] Buzzi, O., Giacomini, A., Spadari, M., 2012. Laboratory Investigation on High Values of Restitution Coefficients. Rock Mechanics and Rock Engineering, 45(1): 35-43. https://doi.org/10.1007/s00603-011-0183-0
      [4] Cagnoli, B., Manga, M., 2003. Pumice-Pumice Collisions and the Effect of the Impact Angle—Art. No. 1636. Geophysical Research Letters, 30(12): 1636.
      [5] Chau, K., Wong, R., Wu, J., 2002. Coefficient of Restitution and Rotational Motions of Rockfall Impacts. International Journal of Rock Mechanics and Mining Sciences, 39(1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
      [6] Chen, Y. L., 2013. Influence of Key Factors on Trajectories of Rockfalls. Chinese Journal of Geotechnical Engineering, 35(Suppl. 2): 191-196(in Chinese with English abstract).
      [7] Chen, Y. Q., Wang, Q. C., 2018. Correction Calculation of Impact Force of Rockfall Based on Hertz Contact Theory and Thornton Elastoplasticity Hypothesis. Science Technology and Engineering, 18(13): 37-41(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2018.13.006
      [8] Day, R. W., 1997. Case Studies of Rockfall in Soft versus Hard Rock. Environmental and Engineering Geoscience, 3(1): 133-140.
      [9] Dussauge, C., Grasso, J., Helmstetter, A., 2003. Statistical Analysis of Rockfall Volume Distributions: Implications for Rockfall Dynamics. Journal of Geophysical Research: Solid Earth, 108(B6): ETG2-1-ETG2-11.
      [10] Giani, G. P., Giacomini, A., Migliazza, M., et al., 2004. Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design. Rock Mechanics and Rock Engineering, 37(5): 369-389. https://doi.org/10.1007/s00603-004-0027-2
      [11] He, S. M., Wu, Y., Li, X. P., 2009. Research on Restitution Coefficient of Rock Fall. Rock and Soil Mechanics, 30(3): 623-627(in Chinese with English abstract).
      [12] He, S. M., Zhuang, W. L., Zhang, X., et al., 2013. Research on Rockfall Impact Prevention of Chediguan Bridge Pier, Duwen Road. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3421-3427(in Chinese with English abstract).
      [13] Hu, X. L., Tang, H. M., Zhu, L. X., 2011. Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area. Earth Science, 36(6): 1149-1154(in Chinese with English abstract).
      [14] Kharaz, A., Gorham, D., Salman, A., 2001. An Experimental Study of the Elastic Rebound of Spheres. Powder Technology, 120(3): 281–291. doi: 10.1016/S0032-5910(01)00283-2
      [15] Labiouse, V., Heidenreich, B., 2009. Half-Scale Experimental Study of Rockfall Impacts on Sandy Slopes. Natural Hazards and Earth System Science, 9(104): 1981-1993.
      [16] Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract).
      [17] Liu, Y. J., 2002. Study on Fluidifying Theory of Large Highspeed Rockslide (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
      [18] Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract).
      [19] Lü, Q., Sun, H. Y., Zhai, S. K., et al., 2003. Evaluation Models of Rockfall Trajectory. Journal of Natural Disasters, 12(2): 79-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4574.2003.02.014
      [20] Maw, N., Barber, J. R., Fawcett, J. N., 1976. The Oblique Impact of Elastic Spheres. Wear, 38(1): 101-114. doi: 10.1016/0043-1648(76)90201-5
      [21] Mangwandi, C., Cheong, Y., Adams, M., et al., 2007. The Coefficient of Restitution of Different Representative Types of Granules. Chemical Engineering Science, 62(1): 437-450.
      [22] Mei, X. F., Hu, X. W., Luo, G., et al., 2019. A Study on the Coefficient of Restitution and Peak Impact of Rockfall Based on the Elastic-Plastic Theory. Journal of Vibration and Shock, 38(8): 14-20(in Chinese with English abstract).
      [23] Mindlin, R. D., 1949. Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics, 16(3): 259-268. doi: 10.1115/1.4009973
      [24] Qin, Z. Y., Lu, Q. S., 2006. Analysis of Impact Process Model Based on Restitution Coefficient. Journal of Dynamics and Control, (4): 294-298(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6553.2006.04.002
      [25] Scheiner, S., Pichler, B., Hellmich, C., et al., 2006. Loading of Soil-Covered Oil and Gas Pipelines Due to Adverse Soil Settlements: Protection against Thermal Dilatation-Induced Wear, Involving Geosynthetics. Computers and Geotechnics, 33(8): 371-380. doi: 10.1016/j.compgeo.2006.08.003
      [26] Schwager, T., Becker, V., Pöschel, T., 2008. Coefficient of Tangential Restitution for Viscoelastic Spheres. The European Physical Journal E, Soft Matter, 27(1): 107-114. https://doi.org/10.1140/epje/i2007-10356-3
      [27] Seifried, R., Schiehlen, W., Eberhard, P., 2005. Numerical and Experimental Evaluation of the Coefficient of Restitution for Repeated Impacts. International Journal of Impact Engineering, 32(1): 508-524.
      [28] Vu-Quoc, L., Lesburg, L., Zhang, X., 2004. An Accurate Tangential Force-Displacement Model for Granular-Flow Simulations: Contacting Spheres with Plastic Deformation, Force-Driven Formulation. Journal of Computational Physics, 196(1): 298-326. https://doi.org/10.1016/j.jcp.2003.10.025
      [29] Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958(in Chinese with English abstract).
      [30] Wu, C. Y., Li, L. Y., Thornton, C., 2003. Rebound Behavior of Spheres for Plastic Impacts. International Journal of Impact Engineering, 28: 929-946. doi: 10.1016/S0734-743X(03)00014-9
      [31] Yang, H. Q., Zhou, X. P., 2009. A New Approach to Calculate Trajectory of Rockfall. Rock and Soil Mechanics, 30(11): 3411-3416(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.032
      [32] Ye, S. Q., Gong, S. Q., 2015. Research on Normal Restitution Coefficient of Rockfall Collision by Model Tests. China Railway Science, 36(4): 13-19(in Chinese with English abstract).
      [33] Ye, S. Q., Gong, S. Q., Wang, L. F., et al., 2018. Research on Value of Tangential Restitution Coefficient for Rockfall Collision. China Railway Science, 39(1): 8-15(in Chinese with English abstract).
      [34] Zhang, L. Q., Yang, Z. F., Xu, B., 2004. Rock Falls and Rock Fall Hazards. Journal of Engineering Geology, 12(3): 225-231 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2004.03.001
      [35] Zhang, G. C., Tang, H. M., Xiang, X., 2012. Characteristic Parameters Theoretical Analysis of Rockfall Impact on Ground. Chinese Journal of Rock Mechanics and Engineering, 31(Suppl. 1): 2839-2846(in Chinese with English abstract).
      [36] Zhang, G. C., Xiang, X., Tang, H. M., 2011. Field Test and Numerical Calculation of Restitution Coefficient of Rockfall Collision. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1266-1273(in Chinese with English abstract).
      [37] 陈颖骐, 王全才, 2018. 基于Hertz弹性理论和Thornton弹塑性假设的滚石冲击力的修正计算. 科学技术与工程, 18(13): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201813006.htm
      [38] 陈宇龙, 2013. 滚石运动过程中关键参数的影响分析. 岩土工程学报, 35(增刊2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2032.htm
      [39] 何思明, 吴永, 李新坡, 2009. 滚石冲击碰撞恢复系数研究. 岩土力学, 30(3): 623-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903010.htm
      [40] 何思明, 庄卫林, 张雄, 等, 2013. 都汶公路彻底关大桥桥墩抗滚石冲击防护研究. 岩石力学与工程学报, 32(增刊2): 3421-3427. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2056.htm
      [41] 胡新丽, 唐辉明, 朱丽霞, 2011. 汶川震中岩浆岩高边坡破坏模式与崩塌机理. 地球科学, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121
      [42] 刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
      [43] 刘涌江, 2002. 大型高速岩质滑坡流体化理论研究(博士论文). 成都: 西南交通大学.
      [44] 罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
      [45] 吕庆, 孙红月, 翟三扣, 等, 2003. 边坡滚石运动的计算模型. 自然灾害学报, 12(2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200302013.htm
      [46] 梅雪峰, 胡卸文, 罗刚, 等, 2019. 基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究. 振动与冲击, 38(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908003.htm
      [47] 秦志英, 陆启韶, 2006. 基于恢复系数的碰撞过程模型分析. 动力学与控制学报, (4): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200604001.htm
      [48] 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
      [49] 杨海清, 周小平, 2009. 边坡落石运动轨迹计算新方法. 岩土力学, 30(11): 3411-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911041.htm
      [50] 叶四桥, 巩尚卿, 2015. 落石碰撞法向恢复系数的模型试验研究. 中国铁道科学, 36(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201504004.htm
      [51] 叶四桥, 巩尚卿, 王林峰, 等, 2018. 落石碰撞切向恢复系数的取值研究. 中国铁道科学, 39(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801003.htm
      [52] 张路青, 杨志法, 许兵, 2004. 滚石与滚石灾害. 工程地质学报, 12(3): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403000.htm
      [53] 章广成, 唐辉明, 向欣, 2012. 冲击地面过程中落石特征参量的理论分析. 岩石力学与工程学报, 31(增刊1): 2839-2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1030.htm
      [54] 章广成, 向欣, 唐辉明, 2011. 落石碰撞恢复系数的现场试验与数值计算. 岩石力学与工程学报, 30(6): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  72
    • HTML全文浏览量:  25
    • PDF下载量:  15
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-29
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回