Dynamic Response Analysis of Slope Rock Mass with Complex Shape Based on Indirect Boundary Element Method
-
摘要:
地震作用下山体边坡的动力响应规律与地震波入射角度显著相关,本文基于间接边界元方法研究SH波倾斜入射下边坡的动力响应特征.基于间接边界元理论研发了用于边坡岩体动力响应分析的边界元程序,通过计算平直裂隙对弹性波的反射及散射波波场对程序进行验证,并详细探讨了不同类型的边坡在各种入射角度的应力波作用下的响应特性.SH波铅直向入射时,半圆形凹陷地形的谷肩位置地震动振幅最小,而半圆形凸起地形的最高点位置振幅最大,单面坡的坡肩位置地震动最大,楔形凸起地形的坡顶地震动最强烈;当SH波入射角增大,各类边坡的最大地震动力响应位置也有所偏移,地震放大系数亦随之变化;以樟木镇边坡为实例揭示了复杂形态边坡岩体中的局部凸起对地震动的放大作用.研究结果表明,边坡微地形特征对地震动力响应影响非常大,凸起山体坡顶的动力放大效应最为显著;同一边坡在不同入射角地震波作用下产生的动力放大系数以及发生的位置不同.本文的研究结果对评价坡体稳定性和边坡工程抗震防设等具有重要的指导意义.
Abstract:The dynamic response of slope under earthquake is significantly related to the incident angle of seismic waves. Based on the indirect boundary element method (BEM), the dynamic response characteristics of slopes with oblique incident SH waves are studied in this paper. First of all, based on indirect boundary element theory, a BEM program for dynamic response analysis of rock slope has been developed and validated by calculating the elastic reflection and scattered wave at an opened flat fracture. Then, the boundary element numerical simulation is used to analyze the response characteristics of different slopes under stress wave loading with various incident angles in detail. If the SH waves incident straightly, the seismic amplitude at the shoulder of the semi-circular depression terrain was the smallest, while the seismic amplitude at the highest point of the semi-circular convex terrain was the largest. The immense vibration appears at the shoulder of the single-slope, and the vibration at the top of the wedge convex terrain was the strongest. With the incidence angle of SH wave increasing, the positions with the maximum seismic dynamic response of all kinds of slopes also shift, and the seismic amplification coefficient changes accordingly. In addition, a slope in Zhangmu Town is taken as an example to reveal the amplification effect of local bulges on ground motion in rock slops with complex shapes. The main conclusions can be summarized. The slope microtopography greatly influences the seismic dynamic response, and the dynamic amplification effect is the most significant at the top of the raised mountain slope. The dynamic amplification coefficient and location of the same slope under the action of seismic waves at different incidence angles are different. The results of this research have important directive significance for evaluating slope stability and seismic design.
-
-
[1] Aki, K., Richards, P., 1980. Quantitative Seismology: Theory and Methods. WH Freeman and Company, New York. [2] Azhari, A., Ozbay, U., 2017. Investigating the Effect of Earthquakes on Open Pit Mine Slopes. International Journal of Rock Mechanics and Mining Sciences, 100: 218-228. https://doi.org/10.1016/j.ijrmms.2017.10.005 [3] Chen, T.R., Fehler, M., Fang, X.D., et al., 2012. SH Wave Scattering from 2-D Fractures Using Boundary Element Method with Linear Slip Boundary Condition. Geophysical Journal International, 188(1): 371-380. https://doi.org/10.1111/j.1365-246X.2011.05269.x [4] Fu, X., Yang, C.W., Han, Y.K., 2016. Shaking Table Model Tests on the Seismic Response of a High and Steep Rock Slope. China Earthquake Engineering Journal, 38(5): 775-782, 807(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2016.05.0775 [5] Graffi, D., 1939. Sui Teoremi Di Reciprocità Nei Fenomeni Dipendenti Dal Tempo. Annali Di Matematica Pura Ed Applicata, 18(1): 173-200. https://doi.org/10.1007/bf02413771 [6] Huang, F.M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract). [7] Huang, R.Q., Li, W.L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028 [8] Huang, Y., Xiong, M., 2017. Dynamic Reliability Analysis of Slopes Based on the Probability Density Evolution Method. Soil Dynamics and Earthquake Engineering, 94: 1-6. https://doi.org/10.1016/j.soildyn.2016.11.011 [9] Iturrarán-Viveros, U., Vai, R., Sánchez-Sesma, F.J., 2005. Scattering of Elastic Waves by a 2-D Crack Using the Indirect Boundary Element Method (IBEM). Geophysical Journal International, 162(3): 927-934. https://doi.org/10.1111/j.1365-246x.2005.02699.x [10] Jaswon, M.A., 1963. Integral Equation Methods in Potential Theory. Ⅰ. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 275: 23-32. https://doi.org/10.1098/rspa.1963.0152 [11] Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795. doi:.(in Chinese with English abstract).https://doi.org/ 10.3799/dqkx.2021.042 [12] Liang, Q.G., Han, W.F., Ma, R.Y., et al., 2005. Physical Simulation Study on Dynamic Failures of Layerad Rock Masses under Strong Ground Motion. Rock and Soil Mechanics, 26(8): 1307-1311(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.08.024 [13] Liu, E.R., Zhang, Z.J., 2001. Numerical Study of Elastic Wave Scattering by Cracks or Inclusions Using the Boundary Integral Equation Method. Journal of Computational Acoustics, 9(3): 1039-1054. https://doi.org/10.1142/s0218396x01001315 [14] Rodríguez-Castellanos, A., Flores, E., Sánchez-Sesma, F.J., et al., 2011. Indirect Boundary Element Method Applied to Fluid-Solid Interfaces. Soil Dynamics and Earthquake Engineering, 31(3): 470-477. doi: 10.1016/j.soildyn.2010.10.007 [15] Sánchez-Sesma, F.J., Arellano-Guzmán, M., Pérez-Gavilán, J.J., et al., 2010. Seismic Response of Three-Dimensional Rockfill Dams Using the Indirect Boundary Element Method. IOP Conference Series: Materials Science and Engineering, 10: 012167. https://doi.org/10.1088/1757-899x/10/1/012167 [16] Sánchez-Sesma, F.J., Campillo, M., 1991. Diffraction of P, SV and Rayleigh Waves by Topographic Features: A Boundary Integral Formulation. Bulletin of the Seismological Society of America, 81(6): 2234-2253. [17] Sánchez Sesma, F.J., Iturrarán Viveros, U., 2001. Scattering and Diffraction of SH Waves by a Finite Crack: An Analytical Solution. Geophysical Journal International, 145(3): 749-758. https://doi.org/10.1046/j.1365-246x.2001.01426.x [18] Tang, Z.H., Yu, X.L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.960 [19] Xu, C., Xu, X.W., Wu, X.Y., et al., 2013. Detailed Catalog of Landslides Triggered by the 2008 Wenchuan Earthquake and Statistical Analyses of Their Spatial Distribution. Journal of Engineering Geology, 21(1): 25-44(in Chinese with English abstract). [20] Yan, K.M., Liu, F.C., Zhu, C.H., et al., 2017. Dynamic Responses of Slopes with Intercalated Soft Layers under Seismic Excitations. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2686-2698(in Chinese with English abstract). [21] Yin, Y.P., 2008. Researches on the Geo-Hazards Triggered by Wenchuan Earthquake, Sichuan. Journal of Engineering Geology, 16(4): 433-444(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2008.04.001 [22] Yin, Y.P., Pan, G.T., Liu, Y.P., et al., 2009. Great Wenchuan Earthquake: Seismogeology and Landslide Hazards. Geological Publishing House, Beijing(in Chinese). [23] Zhang, P., Chen, X.M., Wang, X.D., 2009. Analysis of Near-Fault Ground Motion and Seismic Landslide Failure Mode in Wenchuan Earthquake. Journal of Nanjing University of Technology (Natural Science Edition), 31(1): 55-59(in Chinese with English abstract). [24] Zhang, Z.L., Wu, S.R., Wang, T., et al., 2016. Centrifugal Shaking Table Test on Dynamic Response and Failure Characteristics of Loess-Mudstone Slopes under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1844-1853(in Chinese with English abstract). [25] Zhou, F., Xu, Q., Liu, H.X., et al., 2016. An Experimental Study of Dynamic Response Characteristics of Slope with Horizontal Weak Interlayer under Earthquake. Rock and Soil Mechanics, 37(1): 133-139(in Chinese with English abstract). [26] 付晓, 杨长卫, 韩宜康, 2016. 岩质高陡边坡地震动响应规律的振动台试验研究. 地震工程学报, 38(5): 775-782, 807. doi: 10.3969/j.issn.1000-0844.2016.05.0775 [27] 黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247 [28] 黄润秋, 李为乐, 2008. "5.12"汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm [29] 李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042 [30] 梁庆国, 韩文峰, 马润勇, 等, 2005. 强地震动作用下层状岩体破坏的物理模拟研究. 岩土力学, 26(8): 1307-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200508025.htm [31] 唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960 [32] 许冲, 徐锡伟, 吴熙彦, 等, 2013.2008年汶川地震滑坡详细编目及其空间分布规律分析. 工程地质学报, 21(1): 25-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201301005.htm [33] 闫孔明, 刘飞成, 朱崇浩, 等, 2017. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究. 岩石力学与工程学报, 36(11): 2686-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711008.htm [34] 殷跃平, 2008. 汶川八级地震地质灾害研究. 工程地质学报, 16(4): 433-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200804000.htm [35] 殷跃平, 潘桂棠, 刘宇平, 等, 2009. 汶川地震地质与滑坡灾害概论. 北京: 地质出版社. [36] 张鹏, 陈新民, 王旭东, 2009. 近断层地震动与汶川地震灾区滑坡破坏特征分析. 南京工业大学学报(自然科学版), 31(1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200901011.htm [37] 张泽林, 吴树仁, 王涛, 等, 2016. 地震作用下黄土-泥岩边坡动力响应及破坏特征离心机振动台试验研究. 岩石力学与工程学报, 35(9): 1844-1853. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609014.htm [38] 周飞, 许强, 刘汉香, 等, 2016. 地震作用下含水平软弱夹层斜坡动力响应特性研究. 岩土力学, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htm