CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes
-
摘要:
强震作用下土石坝极易出现失稳破坏,从而造成人员伤亡和较大的社会经济损失.由于地震的不确定性,强震作用下土石坝失稳分析通常采用失稳概率表示,目前常用方法是地震易损性分析方法,主要有云图法和增量动力分析(incremental dynamic analysis,IDA)两种方法.IDA方法计算结果准确,但计算效率低,云图法计算效率虽高,但计算精度无法得到有效保证.基于上述问题,提出了一种基于云图法和IDA方法的地震易损性快速精准分析方法(CIHA,cloud-IDA hybrid approach).CIHA方法可兼顾计算效率和计算精度,该方法基于云图法的对数线性回归假设,通过非线性时程分析,并对地震波进行一次放缩来计算相应损伤指标下的地震动强度值,利用地震动强度值得到的均值和方差生成土石坝在各个损伤等级下的易损性曲线.通过对Lower San Fernando土石坝的地震易损性分析,将所提CIHA方法与IDA方法的计算结果进行了对比.结果表明,在计算精度方面,CIHA方法可以获得与IDA方法相近的结果,在计算效率方面,CIHA方法相比IDA方法计算效率有显著提高.
Abstract:Earth dams are prone to be instability and failure, resulting in casualties and great social and economic impact under strong earthquakes. Due to the uncertainty of earthquake, the instability analysis of earth dams under strong earthquake is usually expressed by the instability probability. At present, the commonly used method is the seismic vulnerability analysis method, mainly including cloud chart method and incremental dynamic analysis (IDA). The incremental dynamic analysis leads to accurate results but has low computational efficiency, while cloud analysis has high computational efficiency but cannot guarantee the computational accuracy effectively. Therefore, CIHA, a fast and accurate seismic vulnerability analysis method based on cloud analysis and IDA is proposed in this paper. CIHA can give consideration to both calculation efficiency and accuracy. This method is based on the logarithmic linear regression hypothesis of cloud analysis and adopts nonlinear time history analysis. The seismic intensity value under the corresponding damage index is calculated by scaling the seismic wave once, and the fragility curves of earth dam under each damage level is generated based on the mean and variance of these seismic intensity values. The calculation results of the method proposed in this paper are compared with those of IDA through the seismic fragility analysis of Lower San Fernando earth dam. The results show that the practical seismic fragility analysis method can obtain similar results with IDA in terms of accuracy, and the calculation efficiency is significantly improved compared with IDA in terms of calculation efficiency.
-
表 1 土石坝非线性弹塑性模型中的材料参数取值
Table 1. Values of material parameters in nonlinear elastoplastic model of earth rock dam
材料 土体参数 密度ρ (g/cm3) 黏聚力c (kPa) 内摩擦角φ (°) 泊松比v 碾压填料 1.8 5.0 34 0.35 水力填料 1.9 5.0 34 0.38 冲积层地基 2.0 5.0 36 0.48 表 2 边坡失稳损伤等级以及损伤指标值
Table 2. Damage grade and damage index value of slope instability
损伤等级 安全等级 LS值 轻微 高 1.25 中等 中 1.15 严重 低 1.00 表 3 不同方法所需要的计算时间
Table 3. Calculation time required by different methods
计算方法 计算时间(h) 百分比(%) IDA方法 80×8=640 100 云图法 80 12.5 CIHA方法 80+56=126 19.7 -
[1] Argyroudis, S., Kaynia, A., 2015. Analytical Seismic Fragility Functions for Highway and Railway Embankments and Cuts. Earthquake Engineering & Structural Dynamics, 44: 1863-1879. https://doi.org/10.1002/eqe.2563 [2] Baker, J., Cornell, C., 2005. Vector-Valued Ground Motion Intensity Measures for Probabilistic Seismic Demand Analysis. Stanford University, Stanford. [3] Buratti, N., Minghini, F., Ongaretto, E., et al., 2017. Empirical Seismic Fragility for the Precast RC Industrial Buildings Damaged by the 2012 Emilia (Italy) Earthquakes. Earthquake Engineering & Structural Dynamics, 46(14): 2317-2335. https://doi.org/10.1002/eqe.2906 [4] Chen, D.H., Xie, J.H., Yang, N.X., 2018. A Study of Seismic Performance of Concrete Gravity Dam Based on Incremental Dynamic Analysis. Hydro-Science and Engineering, (5): 48-55(in Chinese with English abstract). [5] Chen, G.X., Jin, D.D., Mao, J., et al., 2014. Seismic Damage and Behavior Analysis of Earth Dams during the 2008 Wenchuan Earthquake, China. Engineering Geology, 180: 99-129. doi: 10.1016/j.enggeo.2014.06.001 [6] Chen, H.Q., Xu, Z.P., Li, M., 2008. Wenchuan Earthquake and Seismic Safety of Large Dams. Journal of Hydraulic Engineering, 39(10): 1158-1167 (in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2008.10.002 [7] De Risi, R., Di Sarno, L., Paolacci, F., 2017. Probabilistic Seismic Performance Assessment of an Existing RC Bridge with Portal-Frame Piers Designed for Gravity Loads only. Engineering Structures, 145: 348-367. https://doi.org/10.1016/j.engstruct.2017.04.053 [8] EC7, 2004. Eurocode 7: Geotechnical Design. CEN-ENV, Brussels, Belgium. [9] Ghosh, S., Ghosh, S., Chakraborty, S., 2017. Seismic Fragility Analysis in the Probabilistic Performance-Based Earthquake Engineering Framework: An Overview. International Journal of Advances in Engineering Sciences and Applied Mathematics, 13(1): 122-135. https://doi.org/10.1007/s12572-017-0200-y [10] Gu, W.H., Morgenstern, N.R., Robertson, P.K., 1993. Progressive Failure of Lower San Fernando Dam. Journal of Geotechnical Engineering, 119(2): 333-349. doi: 10.1061/(ASCE)0733-9410(1993)119:2(333) [11] Hariri-Ardebili, M.A., Saouma, V.E., 2016. Seismic Fragility Analysis of Concrete Dams: A State-of-the-Art Review. Engineering Structures, 128: 374-399. https://doi.org/10.1016/j.engstruct.2016.09.034 [12] He, L.X., Chen, D.H., Yang, Z.H., et al., 2019. Study on Seismic Performance of Three Dimensional Concrete Gravity Dam System Based on IDA. Journal of Natural Disasters, 28(4): 159-168(in Chinese with English abstract). [13] Huang, W.B., Ding, M.T., Wang, D., et al. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2021.243 [14] Huang, Y., Hu, H.Q., Xiong, M., 2018. Probability Density Evolution Method for Seismic Displacement-Based Assessment of Earth Retaining Structures. Engineering Geology, 234: 167-173. https://doi.org/10.1016/j.enggeo.2018.01.019 [15] Huang, Y., Xiong, M., 2017a. Probability Density Evolution Method for Seismic Liquefaction Performance Analysis of Earth Dam. Earthquake Engineering & Structural Dynamic, 46(6): 925-943. https://doi.org/10.1002/eqe.2837 [16] Huang, Y., Xiong, M., 2017b. Dynamic Reliability Analysis of Slopes Based on the Probability Density Evolution Method. Soil Dynamics and Earthquake Engineering, 94: 1-6. https://doi.org/10.1016/j.soildyn.2016.11.011 [17] Jin, C.C., Chi, S.C., Nie, Z.B., 2019. Seismic Fragility Assessment of High Earth-Rockfill Dams Considering the Seismic Wave Randomness and Water Level. Journal of Vibration and Shock, 38(6): 67-74, 107(in Chinese with English abstract). [18] Kim, J.M., Sitar, N., 2013. Probabilistic Evaluation of Seismically Induced Permanent Deformation of Slopes. Soil Dynamics and Earthquake Engineering, 44: 67-77. doi: 10.1016/j.soildyn.2012.09.001 [19] Kong, X.J., Pang, R., Zou, D.G., et al., 2018. Seismic Performance Evaluation of High CFRDS Based on Incremental Dynamic Analysis. Chinese Journal of Geotechnical Engineering, 40(6): 978-984(in Chinese with English abstract). [20] Krinitzsky, E.L., Hynes, M.E., 2002. The Bhuj, India, Earthquake: Lessons Learned for Earthquake Safety of Dams on Alluvium. Engineering Geology, 66(3-4): 163-196. https://doi.org/10.1016/s0013-7952(02)00049-2 [21] Kwak, D.Y., Stewart, J.P., Brandenberg, S.J., et al., 2016. Characterization of Seismic Levee Fragility Using Field Performance Data. Earthquake Spectra, 32(1): 193-215. doi: 10.1193/030414EQS035M [22] Lagaros, N.D., Tsompanakis, Y., Psarropoulos, P.N., et al., 2009. Computationally Efficient Seismic Fragility Analysis of Geostructures. Computers and Structures, 87(19-20): 1195-1203. doi: 10.1016/j.compstruc.2008.12.001 [23] Li, Y.W., Xu, L.R., Zhang, L.L., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Railway. Earth Science(in press)(in Chinese with English abstract). [24] Liu, X.J., Chen, W.L., Song, W.S., et al., 2018. Study on Seismic Vulnerability of Concrete Dams Based on Improved IDA. Scientia Sinica (Technologica), 48(10): 1103-1112(in Chinese with English abstract). doi: 10.1360/N092018-00280 [25] Lü, D.G., Yu, X.H., Pan, F., et al., 2010. Probabilistic Seismic Demand Analysis of Structures Based on an Improved Cloud Method. World Earthquake Engineering, 26(1): 7-15(in Chinese with English abstract) [26] Ma, Z.Y., Zhang, W., Zhou, Q., et al., 2017. A Deformation-Based Method for Seismic Fragility Analysis of Gravity Dam. Journal of Vibration and Shock, 36(22): 51-58(in Chinese with English abstract). [27] Maruyama, Y., Yamazaki, F., Mizuno, K., et al., 2010. Fragility Curves for Expressway Embankments Based on Damage Datasets after Recent Earthquakes in Japan. Soil Dynamics and Earthquake Engineering, 30(11): 1158-1167. doi: 10.1016/j.soildyn.2010.04.024 [28] Nielson, B.G., DesRoches, R., 2007. Seismic Fragility Methodology for Highway Bridges Using a Component Level Approach. Earthquake Engineering & Structural Dynamics, 36(6): 823-839. [29] Pang, R., Zhou, Y., Zhang, Y., 2022. Seismic Fragility Analysis of High Faced Rockfill Dam Based on the Method of IDA-SVM. Water Resources and Power, 40(1): 94-97(in Chinese with English abstract) [30] Pang, Y.T., Dang, X.Z., Yuan, W.C., 2014. An Artificial Neural Network Based Method for Seismic Fragility Analysis of Highway Bridges. Advances in Structural Engineering, 17(3): 413-428. https://doi.org/10.1260/1369-4332.17.3.413 [31] Phan, H.N., Paolacci, F., Bursi, O.S., et al., 2017. Seismic Fragility Analysis of Elevated Steel Storage Tanks Supported by Reinforced Concrete Columns. Journal of Loss Prevention in the Process Industries, 47: 57-65. https://doi.org/10.1016/j.jlp.2017.02.017 [32] Sawada, Y., Nakazawa, H., Oda, T., et al., 2018. Seismic Performance of Small Earth Dams with Sloping Core Zones and Geosynthetic Clay Liners Using Full-Scale Shaking Table Tests. Soils and Foundations, 58(3): 519-533. doi: 10.1016/j.sandf.2018.01.003 [33] Schultz, M.T., Gouldby, B.P., Simm, J.D., et al., 2010. Beyond the Factor of Safety: Developing Fragility Curves to Characterize System Reliability. ERDC-SR-10-1, USACE. [34] Singh, R., Roy, D., Jain, S.K., 2005. Analysis of Earth Dams Affected by the 2001 Bhuj Earthquake. Engineering Geology, 80(3-4): 282-291. https://doi.org/10.1016/j.enggeo.2005.06.002 [35] Tani, S., 2000. Behavior of Large Fill Dams during Earthquake and Earthquake Damage. Soil Dynamics and Earthquake Engineering, 20(1-4): 223-229. https://doi.org/10.1016/s0267-7261(00)00055-5 [36] Tian, S., Fan, S.L., Chen, J.Y., 2020. Seismic Fragility Analysis for Arch Dam Based on Multiple Responses. Journal of Vibration and Shock, 39(1): 253-259, 288(in Chinese with English abstract). [37] Tsompanakis, Y., Lagaros, N.D., Psarropoulos, P.N., et al., 2010. Probabilistic Seismic Slope Stability Assessment of Geostructures. Structure and Infrastructure Engineering, 6(1-2): 179-191. https://doi.org/10.1080/15732470802664001 [38] Wang, D.B., Liu, H.L., Yu, T., 2012. Seismic Risk Analysis of Earth-Rock Dam Based on Deformation. Rock and Soil Mechanics, 33(5): 1479-1484(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2012.05.032 [39] Wang, D.B., Liu, H.L., Yu, T., et al., 2013. Seismic Fragility Analysis for Earth-Rock Fill Dams Based on Deformation. Chinese Journal of Geotechnical Engineering, 35(5): 814-819(in Chinese with English abstract). [40] Wu, X.Z., 2015. Development of Fragility Functions for Slope Instability Analysis. Landslides, 12(1): 165-175. https://doi.org/10.1007/s10346-014-0536-3 [41] Yang, Z.H., Chen, D.H., He, L.X., et al., 2019. Study on Potential Failure Modes of Jin'anqiao Concrete Gravity Dam Based on Incremental Dynamic Analysis. World Earthquake Engineering, 35(2): 78-89(in Chinese with English abstract). [42] Yu, J.C., Jin, A.Y., Pan, J.W., et al., 2022. GA-BP Artificial Neural Networks for Predicting the Seismic Response of Arch Dams. Journal of Tsinghua University (Science and Technology), 62(8): 1321-1329(in Chinese with English abstract). [43] Zhang, W.J., Zheng, H., Jiang, F., et al., 2019. Stability Analysis of Soil Slope Based on a Water-Soil-Coupled and Parallelized Smoothed Particle Hydrodynamics Model. Computers and Geotechnics, 108: 212-225 [44] 陈灯红, 谢京辉, 杨乃鑫, 2018. 基于增量动力分析的混凝土重力坝抗震性能分析. 水利水运工程学报, (5): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805007.htm [45] 陈厚群, 徐泽平, 李敏, 2008. 汶川大地震和大坝抗震安全. 水利学报, 39(10): 1158-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200810001.htm [46] 贺路翔, 陈灯红, 杨紫辉, 等, 2019. 基于IDA的重力坝三维系统抗震性能研究. 自然灾害学报, 28(4): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201904017.htm [47] 黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030. doi: 10.3799/dqkx.2021.243 [48] 靳聪聪, 迟世春, 聂章博, 2019. 考虑地震波随机性及水位影响的高土石坝易损性研究. 振动与冲击, 38(6): 67-74, 107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906010.htm [49] 孔宪京, 庞锐, 邹德高, 等, 2018. 基于IDA的高面板堆石坝抗震性能评价. 岩土工程学报, 40(6): 978-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806003.htm [50] 李永威, 徐林荣, 张亮亮, 等, 2022. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学(待刊). [51] 刘肖军, 陈文龙, 宋文帅, 等, 2018. 基于改进IDA的混凝土坝地震易损性研究. 中国科学: 技术科学, 48(10): 1103-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810009.htm [52] 吕大刚, 于晓辉, 潘峰, 等, 2010. 基于改进云图法的结构概率地震需求分析. 世界地震工程, 26(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201001003.htm [53] 马智勇, 张伟, 周强, 等, 2017. 基于位移的重力坝地震易损性分析方法. 振动与冲击, 36(22): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201722009.htm [54] 庞锐, 周扬, 张艺, 2022. 基于IDA-SVM的高面板堆石坝地震易损性分析. 水电能源科学, 40(1): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202201023.htm [55] 田硕, 范书立, 陈健云, 2020. 基于多个响应量的拱坝地震易损性分析. 振动与冲击, 39(1): 253-259, 288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001035.htm [56] 王笃波, 刘汉龙, 于陶, 2012. 基于变形的土石坝地震风险分析. 岩土力学, 33(5): 1479-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205031.htm [57] 王笃波, 刘汉龙, 于陶, 等, 2013. 基于变形的土石坝地震易损性分析. 岩土工程学报, 35(5): 814-819. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305002.htm [58] 杨紫辉, 陈灯红, 贺路翔, 等, 2019. 基于IDA的金安桥混凝土重力坝潜在失效模式研究. 世界地震工程, 35(2): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201902010.htm [59] 于京池, 金爱云, 潘坚文, 等, 2022. 基于GA-BP神经网络的拱坝地震易损性分析. 清华大学学报(自然科学版), 62(8): 1321-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208008.htm