• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    强震作用下土石坝易损性快速精准分析的CIHA方法

    张伟丽 邓黎 庞于涛 于淼 田建林

    张伟丽, 邓黎, 庞于涛, 于淼, 田建林, 2022. 强震作用下土石坝易损性快速精准分析的CIHA方法. 地球科学, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362
    引用本文: 张伟丽, 邓黎, 庞于涛, 于淼, 田建林, 2022. 强震作用下土石坝易损性快速精准分析的CIHA方法. 地球科学, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362
    Zhang Weili, Deng Li, Pang Yutao, Yu Miao, Tian Jianlin, 2022. CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes. Earth Science, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362
    Citation: Zhang Weili, Deng Li, Pang Yutao, Yu Miao, Tian Jianlin, 2022. CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes. Earth Science, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362

    强震作用下土石坝易损性快速精准分析的CIHA方法

    doi: 10.3799/dqkx.2022.362
    基金项目: 

    国家自然科学基金项目 51708527

    详细信息
      作者简介:

      张伟丽(1974-), 女, 副教授, 博士, 从事岩土边坡加固研究.ORCID: 0000-0001-8751-9945.E-mail: zwl@cug.edu.cn

      通讯作者:

      庞于涛, 副教授, 博士, 从事结构地震风险分析.E-mail: pangyutao@cug.edu.cn

    • 中图分类号: X43

    CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes

    • 摘要:

      强震作用下土石坝极易出现失稳破坏,从而造成人员伤亡和较大的社会经济损失.由于地震的不确定性,强震作用下土石坝失稳分析通常采用失稳概率表示,目前常用方法是地震易损性分析方法,主要有云图法和增量动力分析(incremental dynamic analysis,IDA)两种方法.IDA方法计算结果准确,但计算效率低,云图法计算效率虽高,但计算精度无法得到有效保证.基于上述问题,提出了一种基于云图法和IDA方法的地震易损性快速精准分析方法(CIHA,cloud-IDA hybrid approach).CIHA方法可兼顾计算效率和计算精度,该方法基于云图法的对数线性回归假设,通过非线性时程分析,并对地震波进行一次放缩来计算相应损伤指标下的地震动强度值,利用地震动强度值得到的均值和方差生成土石坝在各个损伤等级下的易损性曲线.通过对Lower San Fernando土石坝的地震易损性分析,将所提CIHA方法与IDA方法的计算结果进行了对比.结果表明,在计算精度方面,CIHA方法可以获得与IDA方法相近的结果,在计算效率方面,CIHA方法相比IDA方法计算效率有显著提高.

       

    • 图  1  CIHA方法流程图

      Fig.  1.  Flow chart of CIHA method

      图  2  CIHA方法示意

      Fig.  2.  Schematic diagram of CIHA method

      图  3  Lower San Fernando土石坝横截面

      Fig.  3.  Cross section of Lower San Fernando earth rock dam

      图  4  坝顶30 s内相对水平和垂直变形变化曲线

      a.水平位移; b.竖向沉降

      Fig.  4.  Change curves of relative horizontal and vertical deformation of dam crest within 30 s

      图  5  振动期间土体的典型应力应变路径

      a.碾压填料; b.水力填料

      Fig.  5.  Typical stress⁃strain paths of soil during vibration

      图  6  所选地震波集的伪加速度谱

      Fig.  6.  Pseudo acceleration spectrum of the selected seismic wave set

      图  7  云图法所得到的EDPIM之间的关系

      Fig.  7.  Relationship between EDP and IM obtained by cloud diagram method

      图  8  不同地震波下的IDA曲线

      Fig.  8.  IDA curve under different seismic waves

      图  9  不同IM强度分布下基于云图法的地震易损性曲线

      a.云图法; b.易损性曲线

      Fig.  9.  Seismic vulnerability curve based on cloud diagram method under different IM intensity distributions

      图  10  不同损伤等级下IDA方法与CIHA方法所生成的地震易损性曲线

      a.轻微;b.中等;c.严重

      Fig.  10.  Seismic vulnerability curves generated by IDA method and CIHA method under different damage levels

      图  11  不同有效点范围对应的地震易损性曲线

      Fig.  11.  Seismic vulnerability curves corresponding to different effective point ranges

      表  1  土石坝非线性弹塑性模型中的材料参数取值

      Table  1.   Values of material parameters in nonlinear elastoplastic model of earth rock dam

      材料 土体参数
      密度ρ (g/cm3) 黏聚力c (kPa) 内摩擦角φ (°) 泊松比v
      碾压填料 1.8 5.0 34 0.35
      水力填料 1.9 5.0 34 0.38
      冲积层地基 2.0 5.0 36 0.48
      下载: 导出CSV

      表  2  边坡失稳损伤等级以及损伤指标值

      Table  2.   Damage grade and damage index value of slope instability

      损伤等级 安全等级 LS
      轻微 1.25
      中等 1.15
      严重 1.00
      下载: 导出CSV

      表  3  不同方法所需要的计算时间

      Table  3.   Calculation time required by different methods

      计算方法 计算时间(h) 百分比(%)
      IDA方法 80×8=640 100
      云图法 80 12.5
      CIHA方法 80+56=126 19.7
      下载: 导出CSV
    • [1] Argyroudis, S., Kaynia, A., 2015. Analytical Seismic Fragility Functions for Highway and Railway Embankments and Cuts. Earthquake Engineering & Structural Dynamics, 44: 1863-1879. https://doi.org/10.1002/eqe.2563
      [2] Baker, J., Cornell, C., 2005. Vector-Valued Ground Motion Intensity Measures for Probabilistic Seismic Demand Analysis. Stanford University, Stanford.
      [3] Buratti, N., Minghini, F., Ongaretto, E., et al., 2017. Empirical Seismic Fragility for the Precast RC Industrial Buildings Damaged by the 2012 Emilia (Italy) Earthquakes. Earthquake Engineering & Structural Dynamics, 46(14): 2317-2335. https://doi.org/10.1002/eqe.2906
      [4] Chen, D.H., Xie, J.H., Yang, N.X., 2018. A Study of Seismic Performance of Concrete Gravity Dam Based on Incremental Dynamic Analysis. Hydro-Science and Engineering, (5): 48-55(in Chinese with English abstract).
      [5] Chen, G.X., Jin, D.D., Mao, J., et al., 2014. Seismic Damage and Behavior Analysis of Earth Dams during the 2008 Wenchuan Earthquake, China. Engineering Geology, 180: 99-129. doi: 10.1016/j.enggeo.2014.06.001
      [6] Chen, H.Q., Xu, Z.P., Li, M., 2008. Wenchuan Earthquake and Seismic Safety of Large Dams. Journal of Hydraulic Engineering, 39(10): 1158-1167 (in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2008.10.002
      [7] De Risi, R., Di Sarno, L., Paolacci, F., 2017. Probabilistic Seismic Performance Assessment of an Existing RC Bridge with Portal-Frame Piers Designed for Gravity Loads only. Engineering Structures, 145: 348-367. https://doi.org/10.1016/j.engstruct.2017.04.053
      [8] EC7, 2004. Eurocode 7: Geotechnical Design. CEN-ENV, Brussels, Belgium.
      [9] Ghosh, S., Ghosh, S., Chakraborty, S., 2017. Seismic Fragility Analysis in the Probabilistic Performance-Based Earthquake Engineering Framework: An Overview. International Journal of Advances in Engineering Sciences and Applied Mathematics, 13(1): 122-135. https://doi.org/10.1007/s12572-017-0200-y
      [10] Gu, W.H., Morgenstern, N.R., Robertson, P.K., 1993. Progressive Failure of Lower San Fernando Dam. Journal of Geotechnical Engineering, 119(2): 333-349. doi: 10.1061/(ASCE)0733-9410(1993)119:2(333)
      [11] Hariri-Ardebili, M.A., Saouma, V.E., 2016. Seismic Fragility Analysis of Concrete Dams: A State-of-the-Art Review. Engineering Structures, 128: 374-399. https://doi.org/10.1016/j.engstruct.2016.09.034
      [12] He, L.X., Chen, D.H., Yang, Z.H., et al., 2019. Study on Seismic Performance of Three Dimensional Concrete Gravity Dam System Based on IDA. Journal of Natural Disasters, 28(4): 159-168(in Chinese with English abstract).
      [13] Huang, W.B., Ding, M.T., Wang, D., et al. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2021.243
      [14] Huang, Y., Hu, H.Q., Xiong, M., 2018. Probability Density Evolution Method for Seismic Displacement-Based Assessment of Earth Retaining Structures. Engineering Geology, 234: 167-173. https://doi.org/10.1016/j.enggeo.2018.01.019
      [15] Huang, Y., Xiong, M., 2017a. Probability Density Evolution Method for Seismic Liquefaction Performance Analysis of Earth Dam. Earthquake Engineering & Structural Dynamic, 46(6): 925-943. https://doi.org/10.1002/eqe.2837
      [16] Huang, Y., Xiong, M., 2017b. Dynamic Reliability Analysis of Slopes Based on the Probability Density Evolution Method. Soil Dynamics and Earthquake Engineering, 94: 1-6. https://doi.org/10.1016/j.soildyn.2016.11.011
      [17] Jin, C.C., Chi, S.C., Nie, Z.B., 2019. Seismic Fragility Assessment of High Earth-Rockfill Dams Considering the Seismic Wave Randomness and Water Level. Journal of Vibration and Shock, 38(6): 67-74, 107(in Chinese with English abstract).
      [18] Kim, J.M., Sitar, N., 2013. Probabilistic Evaluation of Seismically Induced Permanent Deformation of Slopes. Soil Dynamics and Earthquake Engineering, 44: 67-77. doi: 10.1016/j.soildyn.2012.09.001
      [19] Kong, X.J., Pang, R., Zou, D.G., et al., 2018. Seismic Performance Evaluation of High CFRDS Based on Incremental Dynamic Analysis. Chinese Journal of Geotechnical Engineering, 40(6): 978-984(in Chinese with English abstract).
      [20] Krinitzsky, E.L., Hynes, M.E., 2002. The Bhuj, India, Earthquake: Lessons Learned for Earthquake Safety of Dams on Alluvium. Engineering Geology, 66(3-4): 163-196. https://doi.org/10.1016/s0013-7952(02)00049-2
      [21] Kwak, D.Y., Stewart, J.P., Brandenberg, S.J., et al., 2016. Characterization of Seismic Levee Fragility Using Field Performance Data. Earthquake Spectra, 32(1): 193-215. doi: 10.1193/030414EQS035M
      [22] Lagaros, N.D., Tsompanakis, Y., Psarropoulos, P.N., et al., 2009. Computationally Efficient Seismic Fragility Analysis of Geostructures. Computers and Structures, 87(19-20): 1195-1203. doi: 10.1016/j.compstruc.2008.12.001
      [23] Li, Y.W., Xu, L.R., Zhang, L.L., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Railway. Earth Science(in press)(in Chinese with English abstract).
      [24] Liu, X.J., Chen, W.L., Song, W.S., et al., 2018. Study on Seismic Vulnerability of Concrete Dams Based on Improved IDA. Scientia Sinica (Technologica), 48(10): 1103-1112(in Chinese with English abstract). doi: 10.1360/N092018-00280
      [25] Lü, D.G., Yu, X.H., Pan, F., et al., 2010. Probabilistic Seismic Demand Analysis of Structures Based on an Improved Cloud Method. World Earthquake Engineering, 26(1): 7-15(in Chinese with English abstract)
      [26] Ma, Z.Y., Zhang, W., Zhou, Q., et al., 2017. A Deformation-Based Method for Seismic Fragility Analysis of Gravity Dam. Journal of Vibration and Shock, 36(22): 51-58(in Chinese with English abstract).
      [27] Maruyama, Y., Yamazaki, F., Mizuno, K., et al., 2010. Fragility Curves for Expressway Embankments Based on Damage Datasets after Recent Earthquakes in Japan. Soil Dynamics and Earthquake Engineering, 30(11): 1158-1167. doi: 10.1016/j.soildyn.2010.04.024
      [28] Nielson, B.G., DesRoches, R., 2007. Seismic Fragility Methodology for Highway Bridges Using a Component Level Approach. Earthquake Engineering & Structural Dynamics, 36(6): 823-839.
      [29] Pang, R., Zhou, Y., Zhang, Y., 2022. Seismic Fragility Analysis of High Faced Rockfill Dam Based on the Method of IDA-SVM. Water Resources and Power, 40(1): 94-97(in Chinese with English abstract)
      [30] Pang, Y.T., Dang, X.Z., Yuan, W.C., 2014. An Artificial Neural Network Based Method for Seismic Fragility Analysis of Highway Bridges. Advances in Structural Engineering, 17(3): 413-428. https://doi.org/10.1260/1369-4332.17.3.413
      [31] Phan, H.N., Paolacci, F., Bursi, O.S., et al., 2017. Seismic Fragility Analysis of Elevated Steel Storage Tanks Supported by Reinforced Concrete Columns. Journal of Loss Prevention in the Process Industries, 47: 57-65. https://doi.org/10.1016/j.jlp.2017.02.017
      [32] Sawada, Y., Nakazawa, H., Oda, T., et al., 2018. Seismic Performance of Small Earth Dams with Sloping Core Zones and Geosynthetic Clay Liners Using Full-Scale Shaking Table Tests. Soils and Foundations, 58(3): 519-533. doi: 10.1016/j.sandf.2018.01.003
      [33] Schultz, M.T., Gouldby, B.P., Simm, J.D., et al., 2010. Beyond the Factor of Safety: Developing Fragility Curves to Characterize System Reliability. ERDC-SR-10-1, USACE.
      [34] Singh, R., Roy, D., Jain, S.K., 2005. Analysis of Earth Dams Affected by the 2001 Bhuj Earthquake. Engineering Geology, 80(3-4): 282-291. https://doi.org/10.1016/j.enggeo.2005.06.002
      [35] Tani, S., 2000. Behavior of Large Fill Dams during Earthquake and Earthquake Damage. Soil Dynamics and Earthquake Engineering, 20(1-4): 223-229. https://doi.org/10.1016/s0267-7261(00)00055-5
      [36] Tian, S., Fan, S.L., Chen, J.Y., 2020. Seismic Fragility Analysis for Arch Dam Based on Multiple Responses. Journal of Vibration and Shock, 39(1): 253-259, 288(in Chinese with English abstract).
      [37] Tsompanakis, Y., Lagaros, N.D., Psarropoulos, P.N., et al., 2010. Probabilistic Seismic Slope Stability Assessment of Geostructures. Structure and Infrastructure Engineering, 6(1-2): 179-191. https://doi.org/10.1080/15732470802664001
      [38] Wang, D.B., Liu, H.L., Yu, T., 2012. Seismic Risk Analysis of Earth-Rock Dam Based on Deformation. Rock and Soil Mechanics, 33(5): 1479-1484(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2012.05.032
      [39] Wang, D.B., Liu, H.L., Yu, T., et al., 2013. Seismic Fragility Analysis for Earth-Rock Fill Dams Based on Deformation. Chinese Journal of Geotechnical Engineering, 35(5): 814-819(in Chinese with English abstract).
      [40] Wu, X.Z., 2015. Development of Fragility Functions for Slope Instability Analysis. Landslides, 12(1): 165-175. https://doi.org/10.1007/s10346-014-0536-3
      [41] Yang, Z.H., Chen, D.H., He, L.X., et al., 2019. Study on Potential Failure Modes of Jin'anqiao Concrete Gravity Dam Based on Incremental Dynamic Analysis. World Earthquake Engineering, 35(2): 78-89(in Chinese with English abstract).
      [42] Yu, J.C., Jin, A.Y., Pan, J.W., et al., 2022. GA-BP Artificial Neural Networks for Predicting the Seismic Response of Arch Dams. Journal of Tsinghua University (Science and Technology), 62(8): 1321-1329(in Chinese with English abstract).
      [43] Zhang, W.J., Zheng, H., Jiang, F., et al., 2019. Stability Analysis of Soil Slope Based on a Water-Soil-Coupled and Parallelized Smoothed Particle Hydrodynamics Model. Computers and Geotechnics, 108: 212-225
      [44] 陈灯红, 谢京辉, 杨乃鑫, 2018. 基于增量动力分析的混凝土重力坝抗震性能分析. 水利水运工程学报, (5): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201805007.htm
      [45] 陈厚群, 徐泽平, 李敏, 2008. 汶川大地震和大坝抗震安全. 水利学报, 39(10): 1158-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200810001.htm
      [46] 贺路翔, 陈灯红, 杨紫辉, 等, 2019. 基于IDA的重力坝三维系统抗震性能研究. 自然灾害学报, 28(4): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201904017.htm
      [47] 黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030. doi: 10.3799/dqkx.2021.243
      [48] 靳聪聪, 迟世春, 聂章博, 2019. 考虑地震波随机性及水位影响的高土石坝易损性研究. 振动与冲击, 38(6): 67-74, 107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906010.htm
      [49] 孔宪京, 庞锐, 邹德高, 等, 2018. 基于IDA的高面板堆石坝抗震性能评价. 岩土工程学报, 40(6): 978-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806003.htm
      [50] 李永威, 徐林荣, 张亮亮, 等, 2022. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学(待刊).
      [51] 刘肖军, 陈文龙, 宋文帅, 等, 2018. 基于改进IDA的混凝土坝地震易损性研究. 中国科学: 技术科学, 48(10): 1103-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201810009.htm
      [52] 吕大刚, 于晓辉, 潘峰, 等, 2010. 基于改进云图法的结构概率地震需求分析. 世界地震工程, 26(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201001003.htm
      [53] 马智勇, 张伟, 周强, 等, 2017. 基于位移的重力坝地震易损性分析方法. 振动与冲击, 36(22): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201722009.htm
      [54] 庞锐, 周扬, 张艺, 2022. 基于IDA-SVM的高面板堆石坝地震易损性分析. 水电能源科学, 40(1): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202201023.htm
      [55] 田硕, 范书立, 陈健云, 2020. 基于多个响应量的拱坝地震易损性分析. 振动与冲击, 39(1): 253-259, 288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001035.htm
      [56] 王笃波, 刘汉龙, 于陶, 2012. 基于变形的土石坝地震风险分析. 岩土力学, 33(5): 1479-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205031.htm
      [57] 王笃波, 刘汉龙, 于陶, 等, 2013. 基于变形的土石坝地震易损性分析. 岩土工程学报, 35(5): 814-819. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305002.htm
      [58] 杨紫辉, 陈灯红, 贺路翔, 等, 2019. 基于IDA的金安桥混凝土重力坝潜在失效模式研究. 世界地震工程, 35(2): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201902010.htm
      [59] 于京池, 金爱云, 潘坚文, 等, 2022. 基于GA-BP神经网络的拱坝地震易损性分析. 清华大学学报(自然科学版), 62(8): 1321-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202208008.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  147
    • HTML全文浏览量:  53
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-20
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回