Seismic Dynamic Response and Failure Mode of Anti-Dip Rock Slope with Weak Rock Stratum
-
摘要:
以鲁甸地震诱发的红石岩崩塌滑坡为研究对象,通过大型振动台模型试验和3DEC数值模拟,研究了含软弱岩层的反倾岩质边坡的动力响应和破坏失稳模式.研究结果表明:水平加载下,随频率增大PGA放大系数先减小后增大,在接近坡体自振频率8Hz的波形加载下,坡体动力响应最为剧烈,软弱岩层对不同频率的横波具有放大和吸收作用,对5~10Hz的横波放大效应明显,对15~20Hz的横波则明显吸收;竖向加载下,随加载正弦波频率的增加,PGA放大系数先增大,25Hz时PGA放大系数减小,随后又继续增大,在频率为30Hz时PGA放大系数达到最大,在5~30Hz范围内软弱岩层对纵波均具有一定的放大效果;双向加载下,坡体水平和竖向PGA放大系数分布与单向加载一致,但双向加载下坡体部分位置动力响应加剧,部分位置动力响应则受到抑制.含软弱岩层的反倾岩质边坡破坏过程可以分为6个阶段:坡体内部轻微损伤-软岩挤出、软硬岩交界上方硬岩拉裂-硬岩裂纹向上延展-软弱岩层挤压滑动-层面和纵向节理贯通形成滑面-边坡破坏.在软弱岩层的反倾岩质边坡中,软弱岩层具有对地震波的放大吸收、折射反射作用,影响着边坡的动力响应特征,软弱岩层的挤出破坏导致上部岩体岩结构面松动开裂,是该类岩质边坡破坏发展的主要原因,对该类边坡需应注意对软弱岩层进行加固防护,减小边坡的动力破坏.
Abstract:Taking the Hongshiyan collapse and landslide induced by Ludian earthquake as the research object, the dynamic response and failure instability mode of anti-dip rock slope with weak rock stratum are studied through large-scale shaking table model test and 3DEC numerical simulation. The results show that under horizontal loading, the PGA amplification coefficient first decreases and then increases with the increase of frequency, and the dynamic response of the slope is the most intense under the waveform loading close to the natural frequency of 8 Hz. The weak rock stratum can amplify and absorb transverse wave of different frequencies. It has obvious amplification effect on 5—10 Hz waves, obvious absorption on 15—20 Hz waves, and absorption on 25—30 Hz waves, but not obvious in 15—20 Hz frequency. Under vertical loading, with the increase of loading sine wave frequency, the PGA amplification factor first increases, decreases at 25 Hz, and then continues to increase. When the frequency is 30 Hz, the PGA amplification factor reaches the maximum. In the range of 5—30 Hz, the weak rock stratum has a certain amplification effect on the longitudinal wave. Under two direction loadings, the horizontal and vertical PGA amplification factor distributions of the slope are consistent with that under single direction loading. However, two direction loadings, the dynamic response at some positions of the slope is intensified, while the dynamic response at some positions is restrained. The failure process of anti-dip rock slope with weak rock stratum can be divided into six stages: slight damage inside the slope body-weak rock stratum extrusion and hard rock cracking above the boundary of soft and hard rock-hard rock crack extends upward-squeezing sliding of weak rock stratum-sliding surface formed by bedding plane and vertical joints-slope failure. In the anti-dip rock slope with weak rock stratum, the weak rock stratum has the amplification and absorption of seismic waves and the refraction and reflection effect, which affects the dynamic response characteristics of the slope. The extrusion failure of weak rock stratum leads to the disintegration and rupture of the structural plane of the upper rock mass, which is the main reason for the failure and development of the rock slope. For this kind of slope, attention should be paid to strengthening the weak rock stratum to reduce the dynamic damage of the slope.
-
Key words:
- weak rock stratum /
- anti-dip rock slope /
- structural plane /
- dynamic response /
- failure mode /
- geotechnical engineering
-
表 1 模型试验主要相似常数
Table 1. Main similarity constants of model test
物理量 相似关系 相似常数 备注 长度 CL 350 控制量 加速度a Ca 1 控制量 密度 Cρ 1 控制量 弹性模量 CE=CρCL 350 黏聚力 CC =CE 350 内摩擦角 Cψ 1 泊松比 Cμ 1 时间 Ct= Cρ1/2CE-1/2CL 18 速度 Cv=CE1/2Cρ-1/2 18 表 2 材料物理力学参数
Table 2. Physical and mechanical parameters of materials
岩性类型 参数(g/cm3) 密度 抗拉强度(MPa) 弹性模量(MPa) 泊松比 黏聚力(kPa) 内摩擦角(°) 硬岩 原型 2.65 4.20 34 700 0.22 8 200 37.7 模型 2.00 0.35 240 0.21 711 49.0 软岩 原型 2.35 1.60 18 600 0.17 3 600 25.3 模型 1.89 0.08 74 0.19 158 28.0 结构面(砌缝) 原型 - - - - - - 模型 - - - - 100 25.0 表 3 振动台技术参数
Table 3. Technical parameters of shaking table
技术参数 参数值 技术参数 参数值 激振器重量 10 ton 水平台面尺寸 3 000 mm×3 000 mm 振动方向 三向 工作频率 0.1~50.0 Hz 水平最大加速度 1.0 g 额定正弦激振力 试验最大加速度(满载) 1.0 g 最大位移 ±150 mm 振动台波形 正弦波、地震波、自定义波形 表 4 加载方案
Table 4. Loading scheme
工况 序号 波形 振幅(g) 频率(Hz) 加载方向 加载时间 1 1 正弦波 0.06 5~30 垂直 10 s 2 正弦波 0.10 水平 3 正弦波 水平0.10/垂直0.06 垂直+水平 2 1 鲁甸UD 0.06 压缩15~3倍 垂直 4~20 s 2 鲁甸NS 0.10 水平 3 鲁甸UD+NS 水平0.10/垂直0.06 垂直+水平 3 1 鲁甸UD 0.13 压缩15~3倍 垂直 4~20 s 2 鲁甸NS 0.20 水平 3 鲁甸UD+NS 水平0.20/垂直0.13 垂直+水平 4 1 正弦波 0.10 5~30 垂直 10 s 2 正弦波 0.15 水平 3 正弦波 水平0.15/垂直0.10 垂直+水平 5 1 鲁甸UD 0.20 压缩15~3倍 垂直 4~20 s 2 鲁甸NS 0.30 水平 3 鲁甸UD+NS 水平0.30/垂直0.20 垂直+水平 6 1 正弦波 0.13 5~30 垂直 10 s 2 正弦波 0.20 水平 3 正弦波 水平0.20/垂直0.13 垂直+水平 7 1 鲁甸UD 0.27 压缩6倍 垂直 10 s 2 鲁甸NS 0.40 水平 3 鲁甸UD+NS 水平0.40/垂直0.27 垂直+水平 8 1 正弦波 0.17 5 垂直 10 s 2 正弦波 0.25 水平 10 s 3 正弦波 水平0.25/垂直0.17 垂直+水平 10 s 9 1 鲁甸UD 原始波 压缩6倍 垂直 10 s 2 鲁甸NS 原始波 水平 3 鲁甸UD+NS 原始波 垂直+水平 10 1 正弦波 0.20 5 垂直 10 s 2 正弦波 0.30 水平 10 s 3 正弦波 水平0.30/垂直0.20 垂直+水平 10 s 表 5 数值计算模型节理参数
Table 5. Numerical calculation model joint parameters
参数 节理法向刚度(Pa) 节理剪切刚度(Pa) 节理黏聚力(Pa) 节理摩擦(°) 节理抗拉强度(Pa) 软岩节理 5.00E+07 1.00E+07 3.00E+05 20 6.00E+04 硬岩节理 1.00E+08 2.00E+07 5.00E+05 25 1.00E+05 -
[1] Chen, C., Hu, K.H., 2017. Comparison of Distribution of Landslides Triggered by Wenchuan, Lushan, and Ludian Earthquakes. Journal of Engineering Geology, 25(3): 806-814(in Chinese with English abstract). [2] Dong, J.Y., Wang, D., Yang, J.H., et al., 2013. Analysis of Formation Mechanism and Three-Dimensional Stability of Large Scale Terrace of Earthquake Landslide. Rock and Soil Mechanics, 34(Suppl. 1): 252-258(in Chinese with English abstract). [3] Dong, J.Y., Yang, G.X., Yang, J.H., et al., 2011a. Analysis of Causes and Typical Examples of the Landslide in Wenchuan Earthquake Disaster Area. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 32(5): 10-13(in Chinese with English abstract). [4] Dong, J.Y., Yang, G.X., Wu, F.Q., et al., 2011b. The Large-Scale Shaking Table Test Study of Dynamic Response and Failure Mode of Bedding Rock Slope under Earthquake. Rock and Soil Mechanics, 32(10): 2977-2982, 2988(in Chinese with English abstract). [5] Guo, J., Wei, X.J., Wang, G., 2015. Study on the Basic Characteristics and Formation Mechanism of Lushan Liushuigou Landslide. Highway Engineering, 40(2): 15-19, 33(in Chinese with English abstract). [6] He, J.X., Qi, S.W., Zhan, Z.F., et al., 2021. Seismic Response Characteristics and Deformation Evolution of the Bedding Rock Slope Using a Large-Scale Shaking Table. Landslides, 18: 2835-2853. https://doi.org/10.1007/s10346-021-01682-w [7] Huang, R.Q., Li, G., Ju, N.P., 2013. Shaking Table Test on Strong Earthquake Response of Stratified Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 32(5): 865-875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.003 [8] Huang, R.Q., Li, W.L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028 [9] Huang, R.Q., Zhao, J.J., Ju, N.P., et al., 2013. Analysis of an Anti-Dip Landslide Triggered by the 2008 Wenchuan Earthquake in China. Natural Hazards, 68(2): 1021-1039. https://doi.org/10.1007/s11069-013-0671-5 [10] Keefer, D.K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406. https://doi.org/10.1130/0016-7606(1984)95406:lcbe>2.0.co;2 doi: 10.1130/0016-7606(1984)95406:lcbe>2.0.co;2 [11] Keefer, D.K., 1994. The Importance of Earthquake-Induced Landslides to Long-Term Slope Erosion and Slope-Failure Hazards in Seismically Active Regions. Geomorphology and Natural Hazards. Elsevier, Amsterdam, 265-284. https://doi.org/10.1016/b978-0-444-82012-9.50022-0 [12] Khazai, B., Sitar, N., 2004. Evaluation of Factors Controlling Earthquake-Induced Landslides Caused by Chi-Chi Earthquake and Comparison with the Northridge and Loma Prieta Events. Engineering Geology, 71(1-2): 79-95. https://doi.org/10.1016/s0013-7952(03)00127-3 [13] Li, G., Huang, R.Q., Ju, N.P., et al., 2011. Cause Mechanism of Giant Anti-Incline Ganhekou Landslide Induced by Wenchuan Earthquake. Water Resources and Power, 29(4): 118-121(in Chinese with English abstract). [14] Li, H.B., Li, X.W., Ning, Y., et al., 2019. Dynamical Process of the Hongshiyan Landslide Induced by the 2014 Ludian Earthquake and Stability Evaluation of the Back Scarp of the Remnant Slope. Bulletin of Engineering Geology and the Environment, 78(3): 2081-2092. https://doi.org/10.1007/s10064-018-1233-6 [15] Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795(in Chinese with English abstract). [16] Liu, H.D., Niu, L.F., Wang, Z.F., et al., 2018. Influence of Vibration Intensity on Dynamic Response of Rock Slope. Journal of Disaster Prevention and Mitigation Engineering, 38(4): 677-683(in Chinese with English abstract). [17] Liu, H.D., Zhao, Y.W., Dong, J.Y., et al., 2021. Experimental Study of the Dynamic Response and Failure Mode of Anti-Dip Rock Slopes. Bulletin of Engineering Geology and the Environment, 80(8): 6583-6596. https://doi.org/10.1007/s10064-021-02313-3 [18] Luo, J., 2020. Slope Dynamic Response and Formation Mechanism of Large-Scale Rockslide Dam in the "8·3" Ludian Earthquake (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [19] Luo, L.G., Pei, X.J., Huang, R.Q., 2020. Earthquake-Triggered Landslide Occurrence Probability in Strong Seismically Mountainous Areas: A Case Study of Jiuzhaigou National Geopark. Chinese Journal of Rock Mechanics and Engineering, 39(10): 2079-2093(in Chinese with English abstract). [20] Meunier, P., Hovius, N., Haines, J.A., 2008. Topographic Site Effects and the Location of Earthquake Induced Landslides. Earth and Planetary Science Letters, 275(3-4): 221-232. https://doi.org/10.1016/j.epsl.2008.07.020 [21] Qi, S.W., 2006. Two Patterns of Dynamic Responses of Single-Free-Surface Slopes and Their Threshold Height. Chinese Journal of Geophysics, 49(2): 518-523(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2006.02.026 [22] Qi, S.W., Wu, F.Q., Liu, C.L., et al., 2004. Engineering Geology Analysis on Stability of Slope under Earthauake. Chinese Journal of Rock Mechanics and Engineering, 23(16): 2792-2797(in Chinese with English abstract). [23] Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract). [24] Xu, C., Dai, F.C., Xu, X.W., 2010. Wenchuan Earthquake-Induced Landslides: An Overview. Geological Review, 56(6): 860-874(in Chinese with English abstract). [25] Xu, W.J., Chen, Z.Y., He, B.S., et al., 2010. Research on River-Blocking Mechanism of Xiaojiaqiao Landslide and Disasters of Chain Effects. Chinese Journal of Rock Mechanics and Engineering, 29(5): 933-942(in Chinese with English abstract). [26] Yang, G.X., Wu, F.Q., Dong, J.Y., et al., 2012. Study of Dynamic Response Characters and Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702(in Chinese with English abstract). [27] Yao, X., Xu, C., Dai, F.C., et al., 2009. Contribution of Strata Lithology and Slope Gradient to Landslides Triggered by Wenchuan Ms8 Earthquake, Sichuan, China. Geological Bulletin of China, 28(8): 1156-1162(in Chinese with English abstract). [28] Yin, Y.P., Wang, W.P., Li, B., et al., 2016. Study of Stratigraphic Site Effect on the Failure Mechanism of Donghekou Rockslide Triggered by Wenchuan Earthquake. China Civil Engineering Journal, 49(Suppl. 2): 126-131(in Chinese with English abstract). [29] Yin, Z.Q., Xu, Y.Q., Chen, H.Q., et al., 2016. The Development and Distribution Characteristics of Geohazards Induced by August 3, 2014 Ludian Earthquake and Comparison with Jinggu and Yingjiang Earthquakes. Acta Geologica Sinica, 90(6): 1086-1097(in Chinese with English abstract). [30] Zhan, Z.F., Qi, S.W., He, N.W., et al., 2019. Shaking Table Test Study of Homogeneous Rock Slope Model under Strong Earthquake. Journal of Engineering Geology, 27(5): 946-954(in Chinese with English abstract). [31] Zhang, Q.K., Ling, S.X., Li, X.N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610(in Chinese with English abstract). [32] 陈成, 胡凯衡, 2017. 汶川、芦山和鲁甸地震滑坡分布规律对比研究. 工程地质学报, 25(3): 806-814. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703028.htm [33] 董金玉, 王东, 杨继红, 等, 2013. 大型阶地型地震滑坡的成因机制和三维稳定性分析. 岩土力学, 34(增刊1): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1039.htm [34] 董金玉, 杨国香, 杨继红, 等, 2011a. 汶川地震灾区滑坡的成因及典型实例分析. 华北水利水电学院学报, 32(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201105002.htm [35] 董金玉, 杨国香, 伍法权, 等, 2011b. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究. 岩土力学, 32(10): 2977-2982, 2988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110015.htm [36] 郭剑, 魏小佳, 王刚, 2015. 芦山灾区流水沟滑坡基本特征及成因机制研究. 公路工程, 40(2): 15-19, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502004.htm [37] 黄润秋, 李果, 巨能攀, 2013. 层状岩体斜坡强震动力响应的振动台试验. 岩石力学与工程学报, 32(5): 865-875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305003.htm [38] 黄润秋, 李为乐, 2008. "5·12"汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm [39] 李果, 黄润秋, 巨能攀, 等, 2011. 汶川地震诱发干河口巨型反倾滑坡成因机制研究. 水电能源科学, 29(4): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201104038.htm [40] 李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042 [41] 刘汉东, 牛林峰, 王忠福, 等, 2018. 震动强度对反倾层状岩质边坡动力响应规律的影响. 防灾减灾工程学报, 38(4): 677-683. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201804012.htm [42] 罗璟, 2020. "8·3"鲁甸地震斜坡动力响应及巨型岩质滑坡堵江机制研究(博士论文). 成都: 成都理工大学. [43] 罗路广, 裴向军, 黄润秋, 2020. 强震山区地震滑坡发生概率研究: 以九寨沟国家地质公园为例. 岩石力学与工程学报, 39(10): 2079-2093. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010012.htm [44] 祁生文, 2006. 单面边坡的两种动力反应形式及其临界高度. 地球物理学报, 49(2): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200602025.htm [45] 祁生文, 伍法权, 刘春玲, 等, 2004. 地震边坡稳定性的工程地质分析. 岩石力学与工程学报, 23(16): 2792-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200416024.htm [46] 吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032 [47] 许冲, 戴福初, 徐锡伟, 2010. 汶川地震滑坡灾害研究综述. 地质论评, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm [48] 徐文杰, 陈祖煜, 何秉顺, 等, 2010. 肖家桥滑坡堵江机制及灾害链效应研究. 岩石力学与工程学报, 29(5): 933-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005012.htm [49] 杨国香, 伍法权, 董金玉, 等, 2012. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204008.htm [50] 姚鑫, 许冲, 戴福初, 等, 2009. 四川汶川Ms8级地震引发的滑坡与地层岩性、坡度的相关性. 地质通报, 28(8): 1156-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908020.htm [51] 殷跃平, 王文沛, 李滨, 等, 2016. 地层场地效应对东河口地震滑坡发生影响研究. 土木工程学报, 49(增刊2): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2022.htm [52] 殷志强, 徐永强, 陈红旗, 等, 2016.2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究. 地质学报, 90(6): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201606004.htm [53] 詹志发, 祁生文, 何乃武, 等, 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究. 工程地质学报, 27(5): 946-954. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905002.htm [54] 张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008009.htm