Deterioration Characteristics of Structural Plane and Dynamic Instability Mechanism of High Dangerous Rock Mass under Earthquake
-
摘要:
地震是高位危岩体失稳崩塌主要诱因之一,而结构面强度与变形特性对高位危岩体稳定性起关键控制性作用.为研究地震作用下高位危岩体动力失稳机制,基于数值试验研究结构面震动劣化效应,并利用极限平衡法对高位危岩体动力稳定性进行研究.研究结果表明,结构面的峰值抗剪强度随着循环剪切次数的增加而减小,且减小幅度愈来愈小,最终趋于稳定值;随着起伏角度增大而增大,且增大幅度随着循环剪切次数的增加而减小;并在同一起伏角度下,随着循环剪切幅值的增大而减小.最后,基于回归分析法建立结构面震动劣化数学模型,并提出一种考虑结构面震动劣化的高位危岩体动力稳定性分析方法.其研究成果有助于丰富高位危岩体动力稳定性方面的基础理论研究,具有重要的理论意义和工程参考价值.
Abstract:Earthquake is one of the main causes of instability and collapse of high dangerous rock mass, and the strength and deformation characteristics of structural plane play a key role in controlling the stability of high dangerous rock mass. In order to study the dynamic instability mechanism of high dangerous rock mass under earthquake, in this paper it studies the vibration deterioration effect of structural plane based on numerical tests and studies the dynamic stability of high dangerous rock mass based on the limit equilibrium method. The research results show that the peak shear strength of the structural plane decreases with the increase of cyclic shear times, and the decreasing degree is getting smaller and smaller until it finally tends to be stable. It increases as the undulation angle increases, and the increase amplitude decreases as the cyclic shear times increase; and it decreases as the cyclic shearing amplitude increases at the same undulation angle. Finally, the mathematical model of structural plane vibration degradation is established based on regression analysis method, and a dynamic stability analysis method of high dangerous rock mass considering structural plane vibration degradation is proposed. The research results are helpful to enrich the basic theoretical research on the dynamic stability of high dangerous rock mass, which is of great theoretical significance and engineering reference value.
-
图 10 相对运动速度对结构面剪切强度影响
Fig. 10. Influence of relative motion velocity on shear strength of structural plane
表 1 平行粘结模型细观参数
Table 1. Parallel bond model meso⁃parameters
法向接触刚度(N/m) 切向接触刚度(N/m) 平行粘结法向强度(MPa) 平行粘结切向强度(MPa) 摩擦系数 8.0×109 8.0×109 30 30 0.6 表 2 光滑节理模型细观参数
Table 2. Smooth joint model meso⁃parameters
法向刚度(GPa) 法向与切向刚度比 接触摩擦系数 剪胀角(°) 接触抗拉强度平均值(Pa) 接触黏聚力平均值(Pa) 1 2 0.3 0 0 0 -
[1] Chen, Z.F., Xiang, J., Fan, W.C., 2019. Experimental Study on the Effects of Cyclic Shear Stress on Rock Joint Surface Morphology and Shear Behavior. China Sciencepaper, 14(2): 221-225, 238(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2019.02.018 [2] Crawford, A.M., Curran, J.H., 1981. The Influence of Shear Velocity on the Frictional Resistance of Rock Discontinuities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(6): 505-515. [3] Crawford, A.M., Curran, J.H., 1982. The Influence of Rate-and Displacement-Dependent Shear Resistance on the Response of Rock Slopes to Seismic Loads. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19(1): 1-8. [4] Fathi, A., Moradian, Z., Rivard, P., et al., 2016. Shear Mechanism of Rock Joints under Pre-Peak Cyclic Loading Condition. International Journal of Rock Mechanics and Mining Sciences, 83: 197-210. doi: 10.1016/j.ijrmms.2016.01.009 [5] Fox, D., KaÑa, D., Hsiung, S., 1998. Influence of Interface Roughness on Dynamic Shear Behavior in Jointed Rock. International Journal of Rock Mechanics and Mining Sciences, 35(7): 923-940. https://doi.org/10.1016/s0148-9062(98)00153-3 [6] Fu, X., Sheng, Q., Tang, H., et al., 2019. Seismic Stability Analysis of a Rock Block Using the Block Theory and Newmark Method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(7): 1392-1409. https://doi.org/10.1002/nag.2903 [7] Homand, F., Belem, T., Souley, M., 2001. Friction and Degradation of Rock Joint Surfaces under Shear Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10): 973-999. doi: 10.1002/nag.163 [8] Hong, H.C., Xu, W.Y., 2005. Review on the Stability of Rock Slopes under Seismic Loading. Chinese Journal of Rock Mechanics and Engineering, 27(Suppl. 1): 4827-4836(in Chinese with English abstract). [9] Jafari, M.K., Hosseini, K.A., Pellet, F., et al., 2003. Evaluation of Shear Strength of Rock Joints Subjected to Cyclic Loading. Soil Dynamics and Earthquake Engineering, 23(7): 619-630. https://doi.org/10.1016/s0267-7261(03)00063-0 [10] Liu, B., Li, H.B., Liu, Y.Q., 2013a. Experimental Study of Deformation Behavior of Rock Joints under Cyclic Shear Loading. Rock and Soil Mechanics, 34(9): 2475-2481, 2488(in Chinese with English abstract). [11] Liu, B., Li, H.B., Liu, Y.Q., et al., 2013b. Generalized Damage Model for Asperity and Shear Strength Calculation of Joints under Cyclic Shear Loading. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3000-3008(in Chinese with English abstract). [12] Liu, B., Li, H.B., Zhu, X.M., 2011. Experiment Simulation Study of Strength Degradation of Rock Joints under Cyclic Shear Loading. Chinese Journal of Rock Mechanics and Engineering, 30(10): 2033-2039(in Chinese with English abstract). [13] Liu, X.F., Zhao, Y.Q., Wang, X.R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract). [14] Liu, X.R., Deng, Z.Y., Liu, Y.Q., et al., 2019. Macroscopic and Microscopic Analysis of Particle Flow in Pre-Peak Cyclic Direct Shear Test of Rock Joint. Journal of China Coal Society, 44(7): 2103-2115(in Chinese with English abstract). [15] Liu, X.R., Liu, Y.Q., Lu, Y.M., et al., 2020. Experimental and Numerical Study on Pre-Peak Cyclic Shear Mechanism of Artificial Rock Joints. Structural Engineering and Mechanics, 74: 407-423. https://doi.org/10.12989/sem.2020.74.3.407 [16] Liu, X.R., Xu, B., Zhou, X.H., et al., 2021. Investigation on Macro-Meso Cumulative Damage Mechanism of Weak Layer under Pre-Peak Cyclic Shear Loading. Rock and Soil Mechanics, 42(5): 1291-1303(in Chinese with English abstract). [17] Luo, G., Cheng, Q.G., Shen, W.G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract). [18] Ni, W.D., Tang, H.M., Liu, X., et al., 2013. Dynamic Stability Analysis of Rock Slope Considering Vibration Deterioration of Structural Planes under Seismic Loading. Chinese Journal of Rock Mechanics and Engineering, 32(3): 492-500(in Chinese with English abstract). [19] Patton, F.D., 1966. Multiple Modes of Shear Failure in Rock. 1st ISRM Congress. Lisbon, Portugal. [20] Qi, S.W., 2007. Evaluation of the Permanent Displacement of Rock Mass Slope Considering Deterioration of Slide Surface during Earthquake. Chinese Journal of Geotechnical Engineering, 29(3): 452-457(in Chinese with English abstract). [21] Ren, L., Zhu, Y., Cui, T.L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286. [22] Tian, Y., Wang, L., Jin, H., et al., 2020. Dynamic Response of Seismic Dangerous Rock Based on PFC and Dynamics. Advances in Civil Engineering, (2): 1-19. https://doi.org/10.1155/2020/8846130 [23] Tsubota, Y., Kunishi, T., Iwakoke, Y., et al., 2013. Fundamental Studies on Dynamic Properties of Rock Joint under Cyclic Loading Using Mortar and Ryoke Gneiss. Rock Dynamics and Applications. CRC Press, Switzerland. https://doi.org/10.1201/b14916-24 [24] Wang, S.H., Wang, F.L., Xiu, Z.G., 2019. Dynamic Shear Strength of Rock Joints and Its Influence on Key Blocks. Geofluids. https://doi.org/10.1155/2019/6803512 [25] Wang, S.J., Xue, S.Y., 1992. Dynamic Analysis of Wedge Sliding on Rock Slopes. Chinese Journal of Geology, 27(2): 177-182(in Chinese with English abstract). [26] Wang, S.J., Zhang, J.M., 1982. On the Dynamic Stability of Block Sliding on Rock Slopes. Chinese Journal of Geology, 17(2): 162-170(in Chinese with English abstract). [27] Wu, A.Q., 2019. Series Methods of Analyzing Rock Mass Stability Based on Key Block Theory and Their Applications to Three Gorges Project. Journal of Yangtze River Scientific Research Institute, 36(2): 1-7(in Chinese with English abstract). [28] Yang, X.G., Li, Y.L., 2019. Comparative Study of Slope Stability Quasi-Static Analysis Methods Based on Chinese and American Codes. Industrial Construction, 49(2): 98-102(in Chinese with English abstract). [29] Yang, Z.Y., Di, C., Yen, K., 2001. The Effect of Asperity Order on the Roughness of Rock Joints. International Journal of Rock Mechanics and Mining Sciences, 38: 745-752. [30] Zhao, T., Crosta, G., Dattola, G., et al., 2018. Dynamic Fragmentation of Jointed Rock Blocks during Rockslide-Avalanches: Insights from Discrete Element Analyses. Journal of Geophysical Research: Solid Earth, 123: 3250-3269. https://doi.org/10.1002/2017jb015210 [31] 陈占锋, 向娟, 范文臣, 2019. 循环剪切对岩石节理形貌与力学行为影响实验研究. 中国科技论文, 14(2): 221-225, 238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902018.htm [32] 洪海春, 徐卫亚, 2005. 地震作用下岩质边坡稳定性分析综述. 岩石力学与工程学报, 27(增刊1): 4827-4836. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001039.htm [33] 刘博, 李海波, 刘亚群, 2013a. 循环剪切荷载作用下岩石节理变形特性试验研究. 岩土力学, 34(9): 2475-2481, 2488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309007.htm [34] 刘博, 李海波, 刘亚群, 等, 2013b. 循环荷载作用下节理凸起体概化破坏模型及剪切强度计算分析. 岩石力学与工程学报, 32(增刊2): 3000-3008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2003.htm [35] 刘博, 李海波, 朱小明, 2011. 循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究. 岩石力学与工程学报, 30(10): 2033-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110011.htm [36] 刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186 [37] 刘新荣, 邓志云, 刘永权, 等, 2019. 岩石节理峰前循环直剪试验颗粒流宏细观分析. 煤炭学报, 44(7): 2103-2115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907017.htm [38] 刘新荣, 许彬, 周小涵, 等, 2021. 软弱层峰前循环剪切宏细观累积损伤机制研究. 岩土力学, 42(5): 1291-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105010.htm [39] 罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133 [40] 倪卫达, 唐辉明, 刘晓, 等, 2013. 考虑结构面震动劣化的岩质边坡动力稳定分析. 岩石力学与工程学报, 32(3): 492-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303008.htm [41] 祁生文, 2007. 考虑结构面退化的岩质边坡地震永久位移研究. 岩土工程学报, 29(3): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703024.htm [42] 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041 [43] 王思敬, 薛守义, 1992. 岩体边坡楔形体动力学分析. 地质科学, 27(2): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199202008.htm [44] 王思敬, 张菊明, 1982. 边坡岩体滑动稳定的动力学分析. 地质科学, 17(2): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198202005.htm [45] 邬爱清, 2019. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用. 长江科学院院报, 36(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902004.htm [46] 杨昕光, 李永录, 2019. 中美边坡拟静力稳定分析方法的对比研究. 工业建筑, 49(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201902020.htm