• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浅谈大气科学与地质学的学科交叉

    张仲石 李双林 王会军 郭正堂

    张仲石, 李双林, 王会军, 郭正堂, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    引用本文: 张仲石, 李双林, 王会军, 郭正堂, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    Zhang Zhongshi, Li Shuanglin, Wang Huijun, Guo Zhengtang, 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    Citation: Zhang Zhongshi, Li Shuanglin, Wang Huijun, Guo Zhengtang, 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350

    浅谈大气科学与地质学的学科交叉

    doi: 10.3799/dqkx.2022.350
    基金项目: 

    科技部国家重点研发计划第二课题 2018YFA0605602

    国家杰出青年科学基金 42125502

    详细信息
      作者简介:

      张仲石(1978-),男,教授,博士生导师,主要从事气候模式开发、过去两千年气候模拟、新生代气候演变和动力学模拟研究.ORCID:0000-0002-2354-1622. E-mail:zhongshi.zhang@cug.edu.cn

    • 中图分类号: P314

    Introduction of Crossing Disciplines between Geology and Atmospheric Science

    • 摘要: 随着新一轮的科技革命蓬勃兴起,大气科学学科正步入地球系统科学的新时代,学科交叉必然产生新的增长点.大气科学的发展经历了观测-理论-模型的三个阶段,很好地践行了“数据-模式驱使科学”的研究范式.然而,地质学具有更深远的时空复杂性,需要更长时间的数据积累.目前,地质学正面临着研究范式由观测向理论和模型的转变.大气科学与地质学的交叉将为这一转变提供经验和启示.同时,大气科学与地质学的交叉,需要研究气候系统上边界(大气顶的太阳辐射)和下边界(固体地球形态)变化导致的大气和海洋环流的响应.研究这些问题,将成为发展同时统辖“分钟、小时”直至“地史”的时间尺度的大气科学理论的关键,也是未来地球系统模式发展的重要方向之一.中国地质大学(武汉)的大气科学专业,作为推动大气科学与地质学交叉的排头兵,任重而道远.

       

    • 图  1  大气科学与地球系统模式的发展历史

      Fig.  1.  History of atmosphere science and Earth system models

      图  2  中国地质大学(武汉)大气科学的学科交叉体系

      Fig.  2.  Disciplinary cross of atmosphere science in China University of Geosciences (Wuhan)

    • [1] Berger, A., Loutre, M. F., 1991. Insolation Values for the Climate of the Last 10 Million Years. Quaternary Science Reviews, 10(4): 297-317. https://doi.org/10.1016/0277-3791(91)90033-q
      [2] Bierman, P., 2021. A Department Terminated. Science, 371(6527): 434. https://doi.org/10.1126/science.371.6527.434
      [3] Bjerknes, J., 1919. On the Structure of Moving Cyclones. Geofysiske Publikasjoner, 1(2): 1-8. https://doi.org/10.1175/1520-0493(1919)47%3C95:otsomc%3E2.0.co;2
      [4] Bryan, K., Manabe, S., Pacanowski, R. C., 1975. A Global Ocean-Atmosphere Climate Model. Part II. The Oceanic Circulation. Journal of Physical Oceanography, 5(1): 30-46. https://doi.org/10.1175/1520-0485(1975)005%3C0003:agoacm%3E2.0.co;2
      [5] Callendar, G. S., 1938. The Artificial Production of Carbon Dioxide and Its Influence on Temperature. Quarterly Journal of the Royal Meteorological Society, 64(275): 223-240. https://doi.org/10.1002/qj.49706427503
      [6] Cess, R. D., Potter, G. L., Blanchet, J. P., et al., 1989. Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models. Science, 245(4917): 513-516. https://doi.org/10.1126/science.245.4917.513
      [7] Charney, J., Eliassen, A., 1964. On the Growth of the Hurricane Depression. Journal of the Atmospheric Sciences, 21(1): 68-75. https://doi.org/10.1175/1520-0469(1964)021<0068: OTGOTH>2.0.CO;2 doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
      [8] Charney, J. G., 1947. The Dynamics of Long Waves in a Baroclinic Westerly Current. Journal of Meteorology, 4(5): 136-162. https://doi.org/10.1175/1520-0469(1947)004%3C0136:tdolwi%3E2.0.co;2
      [9] Cox, P. M., Betts, R. A., Jones, C. D., et al., 2000. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature, 408(6809): 184-187. https://doi.org/10.1038/35041539
      [10] Eady, E. T., 1949. Long Waves and Cyclone Waves. Tellus, 1(3): 33-52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x
      [11] Eyring, V., Bony, S., Meehl, G. A., et al., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geoscientific Model Development, 9(5): 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
      [12] Frisinger, H., 1971. Meteorology before Aristotle. Bulletin of the American Meteorological Society, 52(11): 1078-1080. https://doi.org/10.1175/1520-0477(1971)052%3C1078:mba%3E2.0.co;2
      [13] Guo, Z. F., Wilson, M., Dingwell, D. B., et al., 2021. India-Asia Collision as a Driver of Atmospheric CO2 in the Cenozoic. Nature Communications, 12: 3891. https://doi.org/10.1038/s41467-021-23772-y
      [14] Guo, Z. T., Berger, A., Yin, Q. Z., et al., 2009. Strong Asymmetry of Hemispheric Climates during MIS-13 Inferred from Correlating China Loess and Antarctica Ice Records. Climate of the Past, 5(1): 21-31. https://doi.org/10.5194/cp-5-21-2009
      [15] Guo, Z. T., 2019. Earth System and Evolution: A Future Frame of Earth Sciences. Chinese Science Bulletin, 64(9): 883-884(in Chinese). doi: 10.1360/N972019-00088
      [16] Hasselmann, K., 1979. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Shaw, B. D., ed., Meteorology over the Tropical Oceans. Royal Meteorological Society Publication, Bracknell, 251-259.
      [17] Hoskins, B. J., Karoly, D. J., 1981. The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. Journal of the Atmospheric Sciences, 38(6): 1179-1196. https://doi.org/10.1175/1520-0469(1981)038<1179: TSLROA>2.0.CO;2 doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
      [18] Kuo, H. L., 1949. Dynamic Instability of Two-Dimensional Non-Divergent Flow in a Barotropic Atmosphere. Journal of the Atmospheric Sciences, 6(2): 105-122. https://doi.org/10.1175/1520-0469(1949)006<0105: DIOTDN>2.0.CO;2 doi: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
      [19] Kuo, H. L., 1965. On Formation and Intensification of Tropical Cyclones through Latent Heat Release by Cumulus Convection. Journal of the Atmospheric Sciences, 22(1): 40-63. doi: 10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
      [20] Liu, Z., Ding, A. J., Zhang, R. H., 2020. Adjusting Application Codes and Optimizing Funding Layout for the Discipline of Atmospheric Sciences in the National Natural Science Foundation of China. Chinese Science Bulletin, 65(12): 1068-1075(in Chinese). doi: 10.1360/TB-2020-0146
      [21] Liu, Z., He, J. J., Guo, Y. C., 2021. Category-Specific Evaluation Reform by the National Natural Science Foundation of China Benefits the Basic Research of Atmospheric Sciences: A Policy Interpretation. Chinese Science Bulletin, 66(2): 187-192(in Chinese). doi: 10.1360/TB-2020-1444
      [22] Longuet-Higgins, H. C., 1964. Planetary Waves on a Rotating Sphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 279(1379): 446-473. https://doi.org/10.1098/rspa.1964.0116
      [23] Lorenz, E. N., 1963. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences, 20(2): 130-141. https://doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
      [24] Lorenz, E. N., 1969. Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of Atmospheric Sciences, 26(4): 636-646. https://doi.org/10.1175/1520-0469(1969)26%3C636:aparbn%3E2.0.co;2
      [25] Lü, Y. F., Sun, Z. Y., Shao, J., 2019. The Archaeoastronomical Study of the East Gate of the Outer Wall of Shimao Site. Archaeology and Cultural Relics, (1): 46-55(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7830.2019.01.007
      [26] Manabe, S., Wetherald, R. T., 1967. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. Journal of the Atmospheric Sciences, 24(3): 241-259. https://doi.org/10.1175/1520-0469(1967)024%3C0241:teotaw%3E2.0.co;2
      [27] Manabe, S., Wetherald, R. T., 1975. The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. Journal of the Atmospheric Sciences, 32: 3-15. https://doi.org/10.2151/jmsj1965.67.6_1057
      [28] Matsuno, T., 1966. Quasi-Geostrophic Motions in the Equatorial Area. Journal of the Meteorological Society of Japan (Ser II), 44(1): 25-43. https://doi.org/10.2151/jmsj1965.44.1_25
      [29] Meehl, G. A., Covey, C., Delworth, T., et al., 2007. The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 88(9): 1383-1394. https://doi.org/10.1175/bams-88-9-1383
      [30] Millikan, F., 1997. Joseph Henry's Grand Meteorological Crusade. Weatherwise, 50(5): 14-18. https://doi.org/10.1080/00431672.1997.9926074
      [31] Mitchell, J. F. B., Johns, T. C., Gregory, J. M., et al., 1995. Climate Response to Increasing Levels of Greenhouse Gases and Sulphate Aerosols. Nature, 376(6540): 501-504. https://doi.org/10.1038/376501a0
      [32] Philander, S. G. H., 1983. El Niño Southern Oscillation Phenomena. Nature, 302(5906): 295-301. https://doi.org/10.1038/302295a0
      [33] Rossby, C. G., 1939. Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semi-Permanent Centers of Action. Journal of Marine Research, 2(1): 38-55. https://doi.org/10.1357/002224039806649023
      [34] Ruddiman, W. F., 2001. Earth's Climate, Past and Future. W. H. Freeman and Company, New York.
      [35] Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583-018-1002-2
      [36] Sutcliffe, R. C., 1947. A Contribution to the Problem of Development. Quarterly Journal of the Royal Meteorological Society, 73(317‐318): 370-383. https://doi.org/10.1002/qj.49707432007
      [37] Toggweiler, J. R., Bjornsson, H., 2000. Drake Passage and Paleoclimate. Journal of Quaternary Science: Published for the Quaternary Research Association, 15(4): 319-328. https://doi.org/10.1002/1099-1417(200005)15:4%3C319::aid-jqs545%3E3.0.co;2-c
      [38] Ye, X. X., Jiao, Y., Fu, G., 2014. On the Researches and Life Experiences of Bergen School Scientists: Jacob Bjerknes, Halvor Solberg and Tor Bergeron. Advances in Meteorological Science and Technology, 4(6): 35-45(in Chinese with English abstract).
      [39] Zhang, D. E., Demaree, G., 2004. Extreme High Temperature in Summer in North China in 1743: A Study of Historical Hot Summer Events in the Background of Relatively Warm Climate. Chinese Science Bulletin, 49(21): 2204-2210(in Chinese). doi: 10.1360/csb2004-49-21-2204
      [40] Zhou, T. J., Chen, Z. M., Zou, L. W., et al., 2020. Development of Climate and Earth System Models in China: Past Achievements and New CMIP6 Fesults. Acta Meteorologica Sinica, 78(3): 332-350(in Chinese with English abstract).
      [41] Zhou, T. J., Zou, L. W., Chen, X. L., 2019. Commentary on the Coupled Model Intercomparison Project Phase 6(CMIP6). Climate Change Research, 15(5): 445-456(in Chinese with English abstract).
      [42] 郭正堂, 2019. 《地球系统与演变》: 未来地球科学的脉络. 科学通报, 64(9): 883-884. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909003.htm
      [43] 刘哲, 丁爱军, 张人禾, 2020. 调整国家自然科学基金申请代码, 优化大气学科资助布局. 科学通报, 65(12): 1068-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202012003.htm
      [44] 刘哲, 何建军, 郭郁葱, 2021. 基于大气科学学科发展特点, 解读项目分类评审改革新举措. 科学通报, 66(2): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202102010.htm
      [45] 吕宇斐, 孙周勇, 邵晶, 2019. 石峁城址外城东门的天文考古学研究. 考古与文物, (1): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KGYW201901006.htm
      [46] 叶鑫欣, 焦艳, 傅刚, 2014. 挪威学派气象学家的研究工作和生平: J. 皮叶克尼斯、H. 索尔伯格和T. 贝吉龙. 气象科技进展, 4(6): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201406012.htm
      [47] 张德二, Demaree, G., 2004.1743年华北夏季极端高温: 相对温暖气候背景下的历史炎夏事件研究. 科学通报, 49(21): 2204-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200421012.htm
      [48] 周天军, 陈梓明, 邹立维, 等, 2020. 中国地球气候系统模式的发展及其模拟和预估. 气象学报, 78(3): 332-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003002.htm
      [49] 周天军, 邹立维, 陈晓龙, 2019. 第六次国际耦合模式比较计划(CMIP6)评述. 气候变化研究进展, 15(5): 445-456. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201905001.htm
    • 加载中
    图(2)
    计量
    • 文章访问数:  606
    • HTML全文浏览量:  291
    • PDF下载量:  241
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-05
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回