Reconstruction of Depositional Environment and Source-Reservoir Configuration Relationship of Ordovician Majiagou Formation in Ordos Basin
-
摘要: 碳酸盐岩-膏盐岩组合蕴含了全球46%的碳酸盐岩油气储量,是重要的油气富集层位. 鄂尔多斯盆地奥陶系马家沟组发育大套厚层碳酸盐岩-膏盐岩混合沉积,目前在盐上已发现了近万亿方探明储量. 盐下和盐间有无勘探潜力?对该沉积体系的古环境恢复是关键. 通过对盆内T112井400 m系统取芯进行描述,结合薄片鉴定、微量元素、稀土元素、碳、氧、锶同位素、岩石组分等分析,对马家沟组碳酸盐岩-膏盐岩沉积体系的沉积环境进行了恢复. 根据海平面升降和水体氧化程度的变化,该体系可以划分为4个亚环境,分别是缺氧段、次氧化段、氧化段和硫化段. 随着氧化程度加剧,U、Mo等微量元素含量降低,碳氧锶同位素逐渐正偏,但由于硫化段导致含氧量急剧降低,U、Mo和碳氧锶同位素急剧升高,并呈现随海平面频繁振荡分布. 基于古环境与TOC和孔隙度的对比分析,硫化段和缺氧段是最有利的烃源岩发育层段,强烈蒸发作用导致水体分层及硫化,使有机质得到有效保存. 氧化段和次氧化段是储层发育的有利层段,台内局部隆起沉积的丘滩体频繁暴露遭遇准同生溶蚀作用,发育大量溶蚀孔隙,经白云石化以后得到有效保存. 硫化段的烃源岩与氧化段的白云岩储层纵向上呈层状频繁交互,平面上呈指状交叉,构成良好的源储配置关系. 乌审旗隆起带上发育的立体型储集层网络是鄂尔多斯盆地奥陶系盐下勘探的有利区带.Abstract: The carbonate gypsum salt rock combination contains 46% of the global carbonate oil and gas reserves and is an important oil and gas enrichment horizon. The Majiagou Formation of Ordovician in Ordos basin develops a large set of thick carbonate gypsum salt rock mixed deposits. At present, nearly trillion cubic meters of proved reserves have been found on salt. Is there exploration potential under salt and between salt? The restoration of the Paleoenvironment of the sedimentary system is the key. Based on the description of 400 m systematic coring of well T112 in the basin, combined with thin section identification, supporting analysis of trace elements, rare earth elements, carbon, oxygen, strontium isotopes and rock components, this paper restores the depositional environment of carbonate gypsum salt rock sedimentary system of Majiagou formation. According to the rise and fall of sea level and the change of water oxidation degree, the system can be divided into four sub environments: anoxic section, secondary oxidation section, oxidation section and sulfide section. With the aggravation of oxidation degree, the contents of trace elements such as U and Mo decrease, and the carbon oxygen strontium isotope is gradually positive. However, the oxygen content decreases sharply due to the sulfide section, and the isotopes of U, Mo and carbon oxygen strontium rise sharply, showing a frequent oscillation distribution with sea level. Based on the comparative analysis of paleoenvironment, TOC and porosity, the sulfide section and anoxic section are the most favorable hydrocarbon source rock development sections. Strong evaporation leads to water stratification and vulcanization, so that organic matter can be effectively preserved. Oxidation section and secondary oxidation section are favorable sections for reservoir development. The mound and beach bodies deposited by local uplift in the platform were frequently exposed, encountered quasi syngenetic dissolution and developed a large number of dissolution pores, which were effectively preserved after dolomitization. The source rock in the sulfide section and the dolomite reservoir in the oxidation section are interbedded in the longitudinal direction, and finger crossing in the plane, forming a good source-reservoir matching relationship. The three-dimensional reservoir network developed on Wushenqi uplift belt is a favorable area for Ordovician subsalt exploration in Ordos Basin.
-
图 3 T112井马家沟组典型岩性段岩心和薄片特征
a.含生屑砂屑微晶灰岩,发育近水平富有机质含泥纹层,3 655.75 m,马四段,普通薄片;b.(含生屑)云质微晶灰岩,常见生屑体腔孔充填方解石,发育不规则富有机质含泥纹层,3 689.76 m,马四段,铸体薄片;c.暗灰色含云泥晶灰岩,局部分布泥线,较强烈斑状云化,3 674.15 m,马四段,岩心;d.粉细晶白云岩,白云石呈半自形-它形镶嵌为主,局部斑状发育少许白云石晶间孔,3 491.82 m,马五9亚段,铸体薄片;e. 细晶-粉晶白云岩,局部隐见残余颗粒结构,发育少量溶孔(缝),白云石半充填,3 823.55 m,马五10亚段,铸体薄片;f.灰褐色细晶粉晶白云岩. 白云石半充填溶孔较发育,见微裂缝,3 509.25 m,马五10亚段,岩心;g. 残余砂屑细晶白云岩:隐见残余颗粒结构,晶间孔(粒间孔)较发育,白云石半充填,3 394.88 m,马五7亚段,铸体薄片;h.微生物凝块云岩. 溶蚀孔缝较发育(可能与藻类相关?),白云石半充填-充填,3 462.00 m,马五8亚段,铸体薄片;i. 褐灰色细粉晶-粉晶白云岩,溶蚀孔洞发育,半充填白云石;3 461.84 m,马五8亚段,岩心;j.含泥微晶白云岩/含膏-膏质微晶白云岩,不等厚纹层状快速交互变化;3 367.75 m,马五6亚段,铸体薄片;k.浅灰-灰白色含云膏岩,可见灰黑色泥质纹层和揉皱变形构造,3362.65 m,马五6亚段,岩心;l.灰褐色细晶粉晶白云岩. 近水平含泥纹层较发育,发育硫磺充填高角度裂缝面,3 506.50 m,马五10亚段,岩心
Fig. 3. Core and thin section characteristics of typical lithologic section of Majiagou Formation in well T112
图 9 U、Mo微量元素及δ13C与TOC相关图
据常华进等(2009)修改
Fig. 9. Trace Elements of U and Mo, δ13C and TOC correlation diagram
表 1 奥陶系马家沟组四段-五6亚段TOC分布
Table 1. Distribution of TOC in the fourth-fifth 6 sub member of Ordovician Majiagou Formation
块号 深度(m) 层位 岩性 TOC(%) T112-2-103 3 322.77 马五6 泥质云岩 0.91 T112-2-97 3 322.08 马五6 云岩 0.67 T112-3-24 3 330.86 马五6 凝块云岩 5.00 T112-4-111 3 357.53 马五6 膏溶角砾岩 2.49 T112-4-137 3 360.56 马五6 泥质层纹云岩 0.21 T112-5-69 3 370.71 马五6 云岩 0.82 T112-5-123 3 377.72 马五6 云岩 2.14 T112-5-129 3 378.47 马五6 云岩 2.75 T112-6-30 3 382.78 马五6 云岩 3.02 T112-10-34 3 416.40 马五7 凝块云岩 0.13 T112-10-112 3 423.94 马五8 凝块云岩 0.11 T112-12-14 3 434.20 马五8 粉晶云岩 0.08 T112-14-18 3 445.21 马五8 凝块云岩 0.12 T112-22-12 3 465.77 马五9 泥质云岩 0.17 T112-22-19 3 466.36 马五9 云岩 0.15 T112-23-11 3 473.16 马五9 云岩 0.13 T112-23-22 3 474.23 马五9 粉晶云岩 0.15 T112-25-20 3 480.36 马五9 云岩 0.24 T112-32-61 3 515.06 马五10 灰质云岩 0.07 T112-36-42 3 547.14 马四 云岩 0.12 T112-40-63 3 603.79 马四 云质灰岩 0.41 T112-40-96 3 608.58 马四 灰质云岩 2.25 T112-40-96 3 608.58 马四 灰质云岩 0.25 T112-41-95 3 625.58 马四 灰岩 1.80 T112-41-96 3 626.14 马四 灰岩 0.29 T112-45-71 3 699.14 马四 灰岩 0.38 T112-45-96 3 702.22 马四 云岩 2.15 T112-46-3 3 717.42 马四 泥质云岩 3.38 T112-46-3 3 717.42 马四 泥质云岩 1.38 T112-46-32 3 721.07 马四 凝块云岩 0.12 T112-46-39 3 722.13 马四 砂屑云岩 3.24 T112-46-39 3 722.13 马四 砂屑云岩 0.29 -
[1] Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009. Redox Sensitive Trace Elements as Paleoenvironments Proxies. Geological Review, 55(1): 91-9 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.01.011 [2] Chen, D. Q., Chen, G., 1990. Practical REE Geochemistry. Metallurgical Industry Press, Beijing, 223 (in Chinese). [3] Chen, W., Li, X., Zeng, L., et al., 2019. Paleoenvironmental and Paleoclimatic Significance of Trace Elements in Ostracod Shells in the Upper? Middle Section, Upper Ganchaigou Formation, Western Qaidam Basin. Acta Sedimentologica Sinica, 37(5): 992-1005 (in Chinese with English abstract). [4] Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0 [5] He, X. Y., Shou, J. F., Shen, A. J., et al., 2014. Geochemical Characteristics and Origin of Dolomite: A Case Study from the Middle Assemblage of Majiagou Formation Member 5 of the West of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 41(3): 375-384 (in Chinese with English abstract). [6] Hou, F. H., Fang, S. X., Dong, Z. X., et al., 2003. The Developmental Characters of Sedimentary Environments and Lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin. Acta Sedimentologica Sinica, 21(1): 106-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2003.01.016 [7] Hu, A. P., Shen, A. J., Yang, H. X., et al., 2019. Dolomite Genesis and Reservoir-Cap Rock Assemblage in Carbonate Evaporite Paragenesis System. Petroleum Exploration and Development, 46(5): 916-928 (in Chinese with English abstract). [8] Jiang, S. Y., Zhang, Y. S., Huang, W. H., et al., 2019. Geochemical Characteristics of Ordovician Strontium Isotope in the Ordos Basin. Acta Geologica Sinica, 93(11): 2889-2903 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.11.013 [9] Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10/11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5 [10] Li W., Tu J. Q., Zhang J., et al., 2017. Accumulation and Potential Analysis of Self-Sourced Natural Gas in the Ordovician Majiagou Formation of Ordos Basin, NW China. Petroleum Exploration and Development, 44(4): 521-530 (in Chinese with English abstract). [11] Liu G., Zhou D. S., 2007. Application of Microelements Analysis in Identifying Sedimentary Environment-Taking Qianjiang Formation in the Jianghan Basin as an Example. Petroleum Geology & Experiment. 29(3): 307-310 (in Chinese with English abstract). [12] Mclennan S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. https://doi.org/10.1515/9781501509032-010 [13] Meng, H., Ren, Y., Zhong, D. K., et al., 2016. Geochemical Characteristic and Its Paleoenvironmental Implication of Cambrian Longwangmiao Formaiton in Eastern Sichuan Basin, China. Natural Gas Geoscience, 27(7): 1299-1311 (in Chinese with English abstract). [14] Qiao, Y. B., Zhang, L., Wang, Y., et al., 2020. Thrombolite Types and Seawater Palaeosalinity of the 5th Member of Middle Ordovician Majiagou Formation in Sulige Gas Field, Ordos Basin. Journal of Palaeogeography, 22(1): 97-110 (in Chinese with English abstract). [15] Shi, J. A., Shao, Y., Zhang, S. C., et al., 2009. Lithofacies Paleogeography and Sedimentary Environment in Ordovician Majiagou Formation, Eastern Ordos Basin. Natural Gas Geoscience, 20(3): 316-324 (in Chinese with English abstract). [16] Shi, Q., Guo, W. D., Hu, M. H., et al., 2004. The Content of Rare Earth Elements in Benthic Organisms from the Xiamen Bay and Their Distribution and Environmental Implications. Acta Oceanologica Sinica, 26(2): 87-94 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-4193.2004.02.010 [17] Tengger, Liu W. H., Xu Y. C., et al., 2004. Organic Carbon Isotope Record in Marine Sediment and Its Environmental Significance: An Example from Ordos Basin, NW China. Petroleum Exploration and Development, 31(5): 11-16 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2004.05.003 [18] Tribovillard, N. P., Desprairies, A., Lallier-Vergès, E., et al., 1994. Geochemical Study of Organic-Matter Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (UK): Productivity Versus Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(1/2): 165-181. https://doi.org/10.1016/0031-0182(94)90028-0 [19] Tu, J. Q., Dong, Y. G., Zhang, B., et al., 2016. Discovery of Effective Scale Source Rocks of the Ordovician Majiagou Fm in the Ordos Basin and Its Geological Significance. Natural Gas Industry, 36(5): 15-24 (in Chinese with English abstract). [20] Wang, W. C., Zheng, J. J., Wang, X. F., et al., 2015. Comparisons of Geochemical Characteristics of Ordovician Majiagou Carbonate Rocks between West and South and Central and East Regions of Ordos Basin. Natural Gas Geoscience, 26(3): 513-523 (in Chinese with English abstract). [21] Wang, X. R., Sun, H., Xu, Z. A., et al., 1996. The Effects and Bioconcentration of REE La and its EDTA Complex on the Growth of Algae. Journal of Nanjing University(Natural Sciences), 32(3): 460-465 (in Chinese with English abstract). [22] Wang, Z. X., Lü, X. X., Qian, W. W., 2017. Geochemical Characteristics of the Cambrian Marine Carbonate Elements and Its Petroleumgeological Significance: Case Study of Xiaoerbulake Formation in Keping Area of Tairm Basin. Natural Gas Geoscience, 28(7): 1085-1095 (in Chinese with English abstract). [23] Wei, K., Li, X. B., Liu, A., et al., 2015. Trace Element Characteristics of Carbonate Rocks from the Ediacaran Doushantuo Formation of Xikou Section, Cili County, Hunan Province and Its Palaeoenvironmental Significance. Journal of Palaeogeography, 17(3): 297-308 (in Chinese with English abstract). [24] Wei, L. B., Zhao, J. X., Su, Z. T., et al., 2021. Distribution and Depositional Model of Microbial Carbonates in the Ordovician Middle assemblage, Ordos Basin, NW China. Petroleum Exploration and Development, 48(6): 1162-1174 (in Chinese with English abstract). [25] Wen, H. G., Huo, F., Guo, P., et al., 2021. Advances and Prospects of Dolostone-Evaporite Paragenesis System. Acta Sedimentologica Sinica, 39(6): 1319-1343 (in Chinese with English abstract). [26] Wu, D. X., Yu, J., Zhou, J. G., et al., 2021. Sedimentary Characteristics and Reservoir Controlling Effect of the 4th Member of Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography, 23(6): 1140-1157 (in Chinese with English abstract). [27] Xia, X. Y., Hong, F., Zhao, L., et al., 1999. Organic Facies Type and Hydrocarbon Potential of Carbonates in Majiagou Fm. Lower Ordovician in Ordos Basin. Acta Sedimentologica Sinica, 17(4): 141-146 (in Chinese with English abstract). [28] Yao, J. L., Wang, C. C., Chen, J. P., et al., 2016. Distribution Characteristics of Subsalt Carbonate Source Rocks in Majiagou Formation, Ordos Basin. Natural Gas Geoscience, 27(12): 2115-2126 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2016.12.2115 [29] Yu, Z., Ding, Z. C., Wang, L. H., et al., 2018. Main Factors Controlling Formation of Dolomite Reservoir Underlying Gypsum-Salt Layer in the 5th Member of Ordovician Majiagou Formation, Ordos Basin. Oil & Gas Geology, 39(6): 1213-1224 (in Chinese with English abstract). [30] Zhang, S. C., Wang, R. L., Jin, Z. J., et al., 2006. The Relationship Between the Cambrian-Ordovician High-TOC Source Rock Development and Paleoenvironment Variations in the Tariam Basin, Western China: Carbon and Oxygen Isotope Evidence. Acta Geologica Sinica, 80(3): 459-466 (in Chinese with English abstract) (in Chinese with English abstract). [31] Zhang, Z. J., Yuan, X. J., Wang, M. S., et al., 2018. Alkaline-Lacustrine Deposition and Paleoenvironmental Evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China. Petroleum Exploration and Development, 45(6): 972-984 (in Chinese with English abstract). [32] Zhang, C. Y., Guan, S. W., Wu, L., et al., 2021. Geochemical Characteristics and Its Paleo-Environmental Significance of the Lower Cambrian Carbonate in the Northwestern Tarim Basin: A Case Study of Well Shutan-1. Bulletin of Geological Science and Technology, 40(5): 99-111 (in Chinese with English abstract). [33] Zhou, J. G., Xi, S. L., Ren, J. F., et al., 2021. New Understanding of the Sedimentation of the 4th Member of Ordovician Majiagou Formation in the Mizhi area of the Ordos Basin and Its Favorable Reservoir Facies Belts. Natural Gas Industry, 41 (12): 28-37 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.12.004 [34] Zuo, M. T., Hu, Z. G., Yang, W., et al., 2021. Characteristics of Structural-Sedimentary Response of the Subsalt Reservoir of Majiagou Formation in Central-Eastern Ordos Basin. Marine Origin Petroleum Geology, 26(2): 141-149 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2021.02.006 [35] 常华进, 储雪蕾, 冯连君, 等, 2009. 氧化还原敏感微量元素对古海洋沉积环境的指示意义. 地质论评, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011 [36] 陈德潜, 陈刚, 1990. 实用稀土元素地球化学. 北京: 冶金工业出版社, 223. [37] 陈伟, 李璇, 曾亮, 等, 2019. 柴西上干柴沟组中上段介壳微量元素古环境古气候意义. 沉积学报, 37(5): 992-1005. doi: 10.14027/j.issn.1000-0550.2018.192 [38] 贺训云, 寿建峰, 沈安江, 等, 2014. 白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41(3): 375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403018.htm [39] 侯方浩, 方少仙, 董兆雄, 等, 2003. 鄂尔多斯盆地中奥陶统马家沟组沉积环境与岩相发育特征. 沉积学报, 21(1): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200301015.htm [40] 胡安平, 沈安江, 杨翰轩, 等, 2019. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905011.htm [41] 蒋苏扬, 张永生, 黄文辉, 等, 2019. 鄂尔多斯盆地奥陶系锶同位素地球化学特征. 地质学报, 93(11): 2889-2903. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911013.htm [42] 李伟, 涂建琪, 张静, 等, 2017. 鄂尔多斯盆地奥陶系马家沟组自源型天然气聚集与潜力分析. 石油勘探与开发, 44(4): 521-530. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704007.htm [43] 刘刚, 周东升, 2007. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例. 石油实验地质, 29(3): 307-310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200703016.htm [44] 孟昊, 任影, 钟大康, 等, 2016. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义. 天然气地球科学, 27(7): 1299-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201607014.htm [45] 乔亚斌, 张林, 王予, 等, 2020. 鄂尔多斯盆地苏里格气田中奥陶统马家沟组五段凝块石类型与古盐度初步分析. 古地理学报, 22(1): 97-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001006.htm [46] 史基安, 邵毅, 张顺存, 等, 2009. 鄂尔多斯盆地东部地区奥陶系马家沟组沉积环境与岩相古地理研究. 天然气地球科学, 20(3): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200903005.htm [47] 石谦, 郭卫东, 胡明辉, 等, 2004. 厦门湾底栖生物稀土元素的含量及其分布与环境意义. 海洋学报, 26(2): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200402010.htm [48] 腾格尔, 刘文汇, 徐永昌, 等, 2004. 海相沉积有机质的碳同位素记录及其环境意义——以鄂尔多斯盆地为例. 石油勘探与开发, 31(5): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405003.htm [49] 涂建琪, 董义国, 张斌, 等, 2016. 鄂尔多斯盆地奥陶系马家沟组规模性有效烃源岩的发现及其地质意义. 天然气工业, 36(5): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201605004.htm [50] 王万春, 郑建京, 王晓锋, 等, 2015. 鄂尔多斯盆地西南部与中东部奥陶系马家沟组碳酸盐岩地球化学特征对比. 天然气地球科学, 26(3): 513-523. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503014.htm [51] 王晓蓉, 孙昊, 徐兆安, 等, 1996. La及其EDTA配合物在藻体中的富集和对其生长的影响. 南京大学学报(自然科学版), 32(3): 460-465. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ603.014.htm [52] 汪宗欣, 吕修祥, 钱文文, 2017. 寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义——以塔里木盆地柯坪地区肖尔布拉克组为例. 天然气地球科学, 28(7): 1085-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201707012.htm [53] 危凯, 李旭兵, 刘安, 等, 2015. 湖南慈利溪口剖面埃迪卡拉系陡山沱组碳酸盐岩微量元素特征及其古环境意义. 古地理学报, 17(3): 297-308. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201503002.htm [54] 魏柳斌, 赵俊兴, 苏中堂, 等, 2021. 鄂尔多斯盆地奥陶系中组合微生物碳酸盐岩分布规律及沉积模式. 石油勘探与开发, 48(6): 1162-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106009.htm [55] 文华国, 霍飞, 郭佩, 等, 2021. 白云岩-蒸发岩共生体系研究进展及展望. 沉积学报, 39(6): 1321-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106002.htm [56] 吴东旭, 喻建, 周进高, 等, 2021. 鄂尔多斯盆地奥陶系马家沟组四段沉积特征及其控储效应. 古地理学报, 23(6): 1140-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202106007.htm [57] 夏新宇, 洪峰, 赵林, 等, 1999. 鄂尔多斯盆地下奥陶统碳酸盐岩有机相类型及生烃潜力. 沉积学报, 17(4): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904021.htm [58] 姚泾利, 王程程, 陈娟萍, 等, 2016. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征. 天然气地球科学, 27(12): 2115-2126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201612003.htm [59] 于洲, 丁振纯, 王利花, 等, 2018. 鄂尔多斯盆地奥陶系马家沟组五段膏盐下白云岩储层形成的主控因素. 石油与天然气地质, 39(6): 1213-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806012.htm [60] 张水昌, WANG R. L., 金之钧, 等, 2006. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80(3): 459-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603020.htm [61] 张志杰, 袁选俊, 汪梦诗, 等, 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化. 石油勘探与开发, 45(6): 972-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806006.htm [62] 张春宇, 管树巍, 吴林, 等, 2021. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例. 地质科技通报, 40(5): 99-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105013.htm [63] 周进高, 席胜利, 任军峰, 等, 2021. 鄂尔多斯盆地米脂地区奥陶系马四段沉积新认识与有利储集相带. 天然气工业, 41(12): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202112004.htm [64] 左洺滔, 胡忠贵, 杨威, 等, 2021. 鄂尔多斯盆地中东部马家沟组盐下构造-沉积响应特征. 海相油气地质, 26(2): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202102006.htm