Origin and Early Evolution of Land Plants and the Effects on Earth's Environments
-
摘要: 研究陆地植物在古生代的起源和早期演化(简称“植物登陆”)及它们对地表环境的塑造作用,对于理解地球系统的演化规律具有重要意义.证据表明,泥盆纪是维管植物辐射演化的关键时期,现代支系如石松类、真蕨类、楔叶类、种子植物等在该时期奠基,根系、大型叶、次生木质部、种子等性状快速演化出现并复杂化,森林在中泥盆世以来成为陆地植被的重要组分.近年来,在古生代植被控制河流沉积体系的转变、陆地植物的化学风化增强效应、古生代陆地有机碳埋藏等的研究方面取得了重要进展.未来需要通过从基因到陆地生态系统等多个层次的研究,进一步揭示植物登陆的过程与机制,从微观、生境、区域到全球多个空间尺度,进一步研究植物登陆对地球环境的影响.Abstract: The knowledge how land plants originated and diversified during the Paleozoic (the plant terrestrialization for short) and how they induced impacts on Earth's surface environments is of great significance for a better understanding of the evolution of Earth System. Devonian is a key interval of vascular plant radiation, when extant clades such as lycopsids, ferns, sphenopsids, and seed plants originated, innovative organ systems such as roots, leaves, wood, and seeds evolved, and forests became an important component of terrestrial landscape. Recent advances concerning interactions between early plants and Earth's environments include: how Paleozoic vegetation forced the evolution of fluvial landscapes; how early land plants enhanced chemical weathering; and how terrestrial organic carbon buried during the Paleozoic; etc. Future studies aim to, on one side, reveal more details about the process and mechanisms of plant terrestrialization, based on evidence varying from genes to terrestrial ecosystems, and on the other side, learn more about the effects of Earth's environments by such a transformative event at multiple spatial scales, such as microscopic-, habitat-, regional-, and global scales.
-
Key words:
- Paleozoic /
- land plant /
- continental weathering /
- carbon cycle /
- forest /
- wetlands
-
图 1 古生代陆地植物与地球环境
a. 4个植被阶段及若干典型植物的形态;b. 陆地植物主要支系的谱系关系、延限及关键演化事件;c. 华南及世界其他地区维管植物多样性;d. 模型估算的大气CO2浓度(据Berner and Kothavala,2001)、中国代表性含煤地层、北美陆地有机沉积物累计量(据Nelsen et al.,2016)、低纬度地区成煤森林面积(仅包括宾夕法尼亚亚纪之后的数据;据Cleal and Thomas,2005)以及古生代冰期延限.除注明外,数据来自各种资料的综合.地质年代缩写:Ll. 兰多维列世;W. 温洛克世;Lu. 罗德洛世;P. 普里道利世;Miss. 密西西比亚纪;Penn. 宾夕法尼亚亚纪;Gu. 瓜德鲁普世;Lo. 乐平世
Fig. 1. Paleozoic land plants and Earth's environments
图 2 地史时期的河流景观演化
a. 前寒武纪至石炭纪的河流形态演化(据Gibling and Davies,2012);b.辫状河、曲流河及网状河形态的对比(据Davies and Gibling,2013);c.典型的辫状河卫星图(沱沱河与通天河交汇处);d. 典型的曲流河卫星图(辽河,铁岭市北)
Fig. 2. Evolution of fluvial landscapes during geological time
图 3 研究植物登陆的层次和空间尺度示意图
a. 陆地生态系统、植物群落、物种及其组织结构、发育基因等多个层次;植物登陆促进陆地有机碳积累,改变了陆地向海洋输入的矿物质和有机碳的通量;b. 早泥盆世全球古地理图(据Boucot et al.,2013);全球尺度的研究有利于揭示早期植被的古地理格局;c. 云南曲靖下泥盆统徐家冲组古土壤剖面,示原位的植物根系;d. 美国纽约中泥盆世剖面,虚线标示原位埋藏的Eospermatopteris树干(地球上最古老的原位森林产地;William E. Stein提供图片);生境(剖面)尺度的研究有利于揭示植物的个体特征与群落生态、以及植物如何影响沉积过程和成土作用
Fig. 3. Diagram showing the hierarchies and spatial scales in studying the colonization of land by plants
-
[1] Algeo, T. J., Scheckler, S. E., 1998. Terrestrial-Marine Teleconnections in the Devonian: Links between the Evolution of Land Plants, Weathering Processes, and Marine Anoxic Events. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365): 113-130. https://doi.org/10.1098/rstb.1998.0195 [2] Bar-On, Y. M., Phillips, R., Milo, R., 2018. The Biomass Distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25): 6506-6511. https://doi.org/10.1073/pnas.1711842115 [3] Bateman, R. M., Crane, P. R., DiMichele, W. A., et al., 1998. Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annual Review of Ecology and Systematics, 29: 263-292. https://doi.org/10.1146/annurev.ecolsys.29.1.263 [4] Beerling, D. J., Butterfield, N. J., 2012. Plants and Animals as Geobiological Agents. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Blackwell Publishing Ltd., Oxford, 188-204. [5] Belnap, J., Kaltenecker, J. H., Rosentreter, R., et al., 2001, Biological Soil Crusts: Ecology and Management. United States Department of the Interior Bureau of Land Management, Denver, USA. [6] Berner, R. A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544-546. https://doi.org/10.1126/science.276.5312.544 [7] Berner, R. A., Kothavala, Z., 2001. GEOCARB III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182-204. https://doi.org/10.2475/ajs.301.2.182 [8] Blomenkemper, P., Kerp, H., Abu Hamad, A., et al., 2018. A Hidden Cradle of Plant Evolution in Permian Tropical Lowlands. Science, 362(6421): 1414-1416. https://doi.org/10.1126/science.aau4061 [9] Boucot, A. J., Chen, X., Scotese, C. R., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology No. 11. SEPM (Society for Sedimentary Geology), Oklahoma, USA. [10] Cai, C. Y., Chen, L. Z., 1996. On a Chinese Givetian Lycopod, Longostachys Latisporophyllus Zhu, Hu and Feng, Emend: Its Morphology, Anatomy and Reconstruction. Palaeontographica Abteilung B-Palaophytologie, 283(1-3): 1-43. https://doi.org/10.1127/PALB%2F283%2F2010%2F1 [11] Capel, E., Cleal, C. J., Gerrienne, P., et al., 2021. A Factor Analysis Approach to Modelling the Early Diversification of Terrestrial Vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 566: 110170. https://doi.org/10.1016/j.palaeo.2020.110170 [12] Chapin, F. S., III, Pamela, A., Matson, P. A., et al., 2011. Principles of Terrestrial Ecosystem Ecology (Second Edition). Springer, New York. [13] Cheng, S. F., Xian, W. F., Fu, Y., et al., 2019. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell, 179(5): 1057-1067.e14. https://doi.org/10.1016/j.cell.2019.10.019 [14] Cleal, C. J., Cascales-Miñana, B., 2014. Composition and Dynamics of the Great Phanerozoic Evolutionary Floras. Lethaia, 47(4): 469-484. https://doi.org/10.1111/let.12070 [15] Cleal, C. J., Thomas, B. A., 2005. Palaeozoic Tropical Rainforests and Their Effect on Global Climates: Is the Past the Key to the Present? Geobiology, 3(1): 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x [16] Cleal, C. J., Uhl, D., Cascales-Miñana, B., et al., 2012. Plant Biodiversity Changes in Carboniferous Tropical Wetlands. Earth-Science Reviews, 114(1/2): 124-155. https://doi.org/10.1016/j.earscirev.2012.05.004 [17] Dahl, T. W., Arens, S. K. M., 2020. The Impacts of Land Plant Evolution on Earth's Climate and Oxygenation State: An Interdisciplinary Review. Chemical Geology, 547: 119665. https://doi.org/10.1016/j.chemgeo.2020.119665 [18] Dai, S. F., Bechtel, A., Eble, C. F., et al., 2020. Recognition of Peat Depositional Environments in Coal: A Review. International Journal of Coal Geology, 219: 103383. https://doi.org/10.1016/j.coal.2019.103383 [19] Davies, N. S., Berry, C. M., Marshall, J. E. A., et al., 2021. The Devonian Landscape Factory: Plant-Sediment Interactions in the Old Red Sandstone of Svalbard and the Rise of Vegetation as a Biogeomorphic Agent. Journal of the Geological Society, 178(5): jgs2020-225. https://doi.org/10.1144/jgs2020-225 [20] Davies, N. S., Gibling, M. R., 2010. Cambrian to Devonian Evolution of Alluvial Systems: The Sedimentological Impact of the Earliest Land Plants. Earth-Science Reviews, 98(3/4): 171-200. https://doi.org/10.1016/j.earscirev.2009.11.002 [21] Davies, N. S., Gibling, M. R., 2013. The Sedimentary Record of Carboniferous Rivers: Continuing Influence of Land Plant Evolution on Alluvial Processes and Palaeozoic Ecosystems. Earth-Science Reviews, 120: 40-79. https://doi.org/10.1016/j.earscirev.2013.02.004 [22] Davies, N. S., Gibling, M. R., Rygel, M. C., 2011. Alluvial Facies Evolution during the Palaeozoic Greening of the Continents: Case Studies, Conceptual Models and Modern Analogues. Sedimentology, 58(1): 220-258. https://doi.org/10.1111/j.1365-3091.2010.01215.x [23] DiMichele, W. A., 2014. Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. International Journal of Plant Sciences, 175(2): 123-164. https://doi.org/10.1086/675235 [24] Donoghue, P. C. J., Harrison, C. J., Paps, J., et al., 2021. The Evolutionary Emergence of Land Plants. Current Biology, 31(19): R1281-R1298. https://doi.org/10.1016/j.cub.2021.07.038 [25] Durieux, T., Lopez, M. A., Bronson, A. W., et al., 2021. A New Phylogeny of the Cladoxylopsid Plexus: Contribution of an Early Cladoxylopsid from the Lower Devonian (Emsian) of Quebec. American Journal of Botany, 108(10): 2066-2095. https://doi.org/10.1002/ajb2.1752 [26] Edwards, D., Cherns, L., Raven, J. A., 2015. Could Land-Based Early Photosynthesizing Ecosystems have Bioengineered the Planet in Mid-Palaeozoic Times? Palaeontology, 58(5): 803-837. https://doi.org/10.1111/pala.12187 [27] Edwards, D., Davies, K. L., Axe, L., 1992. A Vascular Conducting Strand in the Early Land Plant Cooksonia. Nature, 357(6380): 683-685. https://doi.org/10.1038/357683a0 [28] Edwards, D., Morris, J. L., Axe, L., et al., 2022. Piecing together the Eophytes: A New Group of Ancient Plants Containing Cryptospores. The New Phytologist, 233(3): 1440-1455. https://doi.org/10.1111/nph.17703 [29] Feng, Q., Yang, W., Liu, Y. Q., 2008. Types of Permian Paleosols and Their Significance in Sequence Stratigraphy in the Southern Part of Bogeda Range. Acta Sedimentologica Sinica, 26(5): 725-729(in Chinese with English abstract). [30] Feng, Z., Wang, J., Rößler, R., et al., 2017. Late Permian Wood-Borings Reveal an Intricate Network of Ecological Relationships. Nature Communications, 8(1): 556. https://doi.org/10.1038/s41467-017-00696-0 [31] Feng, Z., Wei, H. B., Guo, Y., et al., 2020. From Rainforest to Herbland: New Insights into Land Plant Responses to the End-Permian Mass Extinction. Earth-Science Reviews, 204: 103153. https://doi.org/10.1016/j.earscirev.2020.103153 [32] Fischer, W. W., 2018. Early Plants and the Rise of Mud. Science, 359(6379): 994-995. https://doi.org/10.1126/science.aas9886 [33] Garwood, R. J., Oliver, H., Spencer, A. R. T., 2020. An Introduction to the Rhynie Chert. Geological Magazine, 157(1): 47-64. https://doi.org/10.1017/s0016756819000670 [34] Gensel, P. G., 2008. The Earliest Land Plants. Annual Review of Ecology, Evolution, and Systematics, 39: 459-477. https://doi.org/10.1146/annurev.ecolsys.39.110707.173526 [35] Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., et al., 2004. Runcaria, a Middle Devonian Seed Plant Precursor. Science, 306(5697): 856-858. https://doi.org/10.1126/science.1102491 [36] Gibling, M. R., Davies, N. S., 2012. Palaeozoic Landscapes Shaped by Plant Evolution. Nature Geoscience, 5(2): 99-105. https://doi.org/10.1038/ngeo1376 [37] Giesen, P., Berry, C. M., 2013. Reconstruction and Growth of the Early Tree Calamophyton (Pseudosporochnales, Cladoxylopsida) Based on Exceptionally Complete Specimens from Lindlar, Germany (Mid-Devonian): Organic Connection of Calamophyton Branches and Duisbergia Trunks. International Journal of Plant Sciences, 174(4): 665-686. https://doi.org/10.1086/669913 [38] Greb, S. F., DiMichele, W. A., Gastaldo, R. A., 2006. Evolution and Importance of Wetlands in Earth History. In: Greb, S. F., DiMichele, W. A., eds., Wetlands through Time: Geological Society of America Special Paper 399. Geological Society of America, 1-40. [39] Guo, X. L., Liu, Y. X., Liu, X. M., et al., 2016. The Identification of Late Devonian Paleosol and Pedogenetic Character. Journal of Subtropical Resources and Environment, 11(2): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1673-7105.2016.02.001 [40] Guo, X. L., Retallack, G. J., Lü, B., et al., 2019. Paleosols in Devonian Red-Beds from Northwest China and Their Paleoclimatic Characteristics. Sedimentary Geology, 379: 16-24. https://doi.org/10.1016/j.sedgeo.2018.11.001 [41] Gyssels, G., Poesen, J., Bochet, E., et al., 2005. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Progress in Physical Geography: Earth and Environment, 29(2): 189-217. https://doi.org/10.1191/0309133305pp443ra [42] Han, D. X., Wang, Y. B., Quan, B., et al., 1993. The Evolution of Devonian Coal Accumulation in China. Coal Geology & Exploration, 21(5): 1-6(in Chinese with English abstract). [43] Hao, S. G., Xue, J. Z., 2013. The Early Devonian Posongchong Flora of Yunnan: A Contribution to an Understanding of the Evolution and Early Diversification of Vascular Plants. Science Press, Beijing. [44] Hao, S. G., Xue, J. Z., Liu, Z. F., et al., 2007. Zosterophyllum Penhallow around the Silurian-Devonian Boundary of Northeastern Yunnan, China. International Journal of Plant Sciences, 168(4): 477-489. https://doi.org/10.1086/511011 [45] Hetherington, A. J., Berry, C. M., Dolan, L., 2020. Multiple Origins of Dichotomous and Lateral Branching during Root Evolution. Nature Plants, 6(5): 454-459. https://doi.org/10.1038/s41477-020-0646-y [46] Kenrick, P., Crane, P. R., 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. Smithsonian Institution Press, London. [47] Kenrick, P., Wellman, C. H., Schneider, H., et al., 2012. A Timeline for Terrestrialization: Consequences for the Carbon Cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367(1588): 519-536. https://doi.org/10.1098/rstb.2011.0271 [48] Knauth, L. P., Kennedy, M. J., 2009. The Late Precambrian Greening of the Earth. Nature, 460(7256): 728-732. https://doi.org/10.1038/nature08213 [49] Kraft, P., Pšenička, J., Sakala, J., et al., 2019. Initial Plant Diversification and Dispersal Event in Upper Silurian of the Prague Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 144-155. https://doi.org/10.1016/j.palaeo.2018.09.034 [50] Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304(5677): 1623-1627. https://doi.org/10.1126/science.1097396 [51] Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., et al., 2019. Model for the Formation of Single-Thread Rivers in Barren Landscapes and Implications for Pre-Silurian and Martian Fluvial Deposits. Journal of Geophysical Research: Earth Surface, 124(12): 2757-2777. https://doi.org/10.1029/2019jf005156 [52] Lenton, T. M., Crouch, M., Johnson, M., et al., 2012. First Plants Cooled the Ordovician. Nature Geoscience, 5(2): 86-89. https://doi.org/10.1038/ngeo1390 [53] Lenton, T. M., Daines, S. J., Mills, B. J. W., 2018. COPSE Reloaded: An Improved Model of Biogeochemical Cycling over Phanerozoic Time. Earth-Science Reviews, 178: 1-28. https://doi.org/10.1016/j.earscirev.2017.12.004 [54] Li, X. B., Zhong, W. X., Wang, Y. N., et al., 2020. Late Permian Paleoenvironmental Changes in the Xingcheng Area, Liaoning Province, China: Sedimentary Succession and Root Systems. Palaios, 35(3): 122-134. https://doi.org/10.2110/palo.2019.068 [55] Li, X. X., Dou, Y. W., Sun, Z. H., 1986. The Genus Leptophloeum Dawson Based on a Recent Study of New Material from the Junggar Basin, Xinjiang. Acta Palaeontologica Sinica, 25(4): 349-379, 492(in Chinese with English abstract). [56] Libertín, M., Kvaček, J., Bek, J., et al., 2018. Sporophytes of Polysporangiate Land Plants from the Early Silurian Period may have been Photosynthetically Autonomous. Nature Plants, 4(5): 269-271. https://doi.org/10.1038/s41477-018-0140-y [57] Liu, G. H., 1990. Permo-Carboniferous Paleogeography and Coal Accumulation and Their Tectonic Control in the North and South China Continental Plates. International Journal of Coal Geology, 16(1-3): 73-117. https://doi.org/10.1016/0166-5162(90)90014-p [58] Liu, J., Luo, L. Q., 2019. Advances in Research on the Mechanisms of Plant-Driven Mineral Weathering. Chinese Journal of Applied and Environmental Biology, 25(6): 1503-1511(in Chinese with English abstract). [59] Liu, R., Ma, T., Qiu, W. K., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(4): 834-844. https://doi.org/10.1007/s12583-020-1349-z [60] Lucas, Y., 2001. The Role of Plants in Controlling Rates and Products of Weathering: Importance of Biological Pumping. Annual Review of Earth and Planetary Sciences, 29(1): 135-163. https://doi.org/10.1146/annurev.earth.29.1.135 [61] McMahon, W. J., Davies, N. S., 2018. Evolution of Alluvial Mudrock Forced by Early Land Plants. Science, 359(6379): 1022-1024. https://doi.org/10.1126/science.aan4660 [62] Mitchell, R. L., Strullu-Derrien, C., Kenrick, P., 2019. Biologically Mediated Weathering in Modern Cryptogamic Ground Covers and the Early Paleozoic Fossil Record. Journal of the Geological Society, 176(3): 430-439. https://doi.org/10.1144/jgs2018-191 [63] Mitchell, R. L., Strullu-Derrien, C., Sykes, D., et al., 2021. Cryptogamic Ground Covers as Analogues for Early Terrestrial Biospheres: Initiation and Evolution of Biologically Mediated Proto-Soils. Geobiology, 19(3): 292-306. https://doi.org/10.1111/gbi.12431 [64] Morris, J. L., Leake, J. R., Stein, W. E., et al., 2015. Investigating Devonian Trees as Geo-Engineers of Past Climates: Linking Palaeosols to Palaeobotany and Experimental Geobiology. Palaeontology, 58(5): 787-801. https://doi.org/10.1111/pala.12185 [65] Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115 [66] Moulton, K. L., Berner, R. A., 1998. Quantification of the Effect of Plants on Weathering: Studies in Iceland. Geology, 26(10): 895-898. https://doi.org/10.1130/0091-7613(1998)0260895 [67] Nelsen, M. P., DiMichele, W. A., Peters, S. E., et al., 2016. Delayed Fungal Evolution did not Cause the Paleozoic Peak in Coal Production. Proceedings of the National Academy of Sciences of the United States of America, 113(9): 2442-2447. https://doi.org/10.1073/pnas.1517943113 [68] Niedźwiedzki, G., Szrek, P., Narkiewicz, K., et al., 2010. Tetrapod Trackways from the Early Middle Devonian Period of Poland. Nature, 463(7277): 43-48. https://doi.org/10.1038/nature08623 [69] Pawlik, Ł., Buma, B., Šamonil, P., et al., 2020. Impact of Trees and Forests on the Devonian Landscape and Weathering Processes with Implications to the Global Earth's System Properties: A Critical Review. Earth-Science Reviews, 205: 103200. https://doi.org/10.1016/j.earscirev.2020.103200 [70] Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011. https://doi.org/10.1098/rsbl.2012.0503 [71] Quirk, J., Leake, J. R., Johnson, D. A., et al., 2015. Constraining the Role of Early Land Plants in Palaeozoic Weathering and Global Cooling. Proceedings of the Royal Society B: Biological Sciences, 282(1813): 20151115. https://doi.org/10.1098/rspb.2015.1115 [72] Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., et al., 2010. Early Middle Ordovician Evidence for Land Plants in Argentina (Eastern Gondwana). The New Phytologist, 188(2): 365-369. https://doi.org/10.1111/j.1469-8137.2010.03433.x [73] Santos, M. G. M., Mountney, N. P., Peakall, J., 2017. Tectonic and Environmental Controls on Palaeozoic Fluvial Environments: Reassessing the Impacts of Early Land Plants on Sedimentation. Journal of the Geological Society, 174(3): 393-404. https://doi.org/10.1144/jgs2016-063 [74] Schumm, S. A., 1968. Speculations Concerning Paleohydrologic Controls of Terrestrial Sedimentation. Geological Society of America Bulletin, 79(11): 1573-1588. https://doi.org/10.1130/0016-7606(1968)79 [75] Shao, L. Y., He, Z. P., Luo, W. L., et al., 2005. Characteristics of the Palaeosoils in the Coal Measures of Carboniferous and Permian in Southern Hebei, China. Journal of Xi'an Shiyou University (Natural Science Edition), 20(3): 6-10, 87(in Chinese with English abstract). [76] Shao, L. Y., Xu, X. T., Wang, S., et al., 2021. Research Progress of Palaeogeography and Palaeoenvironmental Evolution of Coal-Bearing Series in China. Journal of Palaeogeography, 23(1): 19-38(in Chinese with English abstract). [77] Stein, W. E., Berry, C. M., Hernick, L. V., et al., 2012. Surprisingly Complex Community Discovered in the Mid-Devonian Fossil Forest at Gilboa. Nature, 483(7387): 78-81. https://doi.org/10.1038/nature10819 [78] Stein, W. E., Berry, C. M., Morris, J. L., et al., 2020. Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology: CB, 30(3): 421-431. https://doi.org/10.1016/j.cub.2019.11.067 [79] Stein, W. E., Mannolini, F., Hernick, L. V., et al., 2007. Giant Cladoxylopsid Trees Resolve the Enigma of the Earth's Earliest Forest Stumps at Gilboa. Nature, 446(7138): 904-907. https://doi.org/10.1038/nature05705 [80] Strother, P. K., Foster, C., 2021. A Fossil Record of Land Plant Origins from Charophyte Algae. Science, 373(6556): 792-796. https://doi.org/10.1126/science.abj2927 [81] Su, D. Y., Yang, L. X., Shi, X., et al., 2021. Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Molecular Biology and Evolution, 38(8): 3332-3344. https://doi.org/10.1093/molbev/msab106 [82] Tang, Z., Zhang, Y., Naugolnykh, S. V., et al., 2020. Ufadendron Elongatum Sp. Nov, an Angaran Lycopsid from the Upper Permian of Inner Mongolia, China. Journal of Earth Science, 31(1): 1-8. https://doi.org/10.1007/s12583-019-1230-0 [83] Tabor, N. J., Myers, T. S., 2015. Paleosols as Indicators of Paleoenvironment and Paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333-361. https://doi.org/10.1146/annurev-earth-060614-105355 [84] Taylor, T. N., Taylor, E. L., Krings, M., 2009. Paleobotany: The Biology and Evolution of Fossil Plants (2nd ed). Elsevier Academic Press, Burlington, MA. [85] Toledo, S., Bippus, A. C., Atkinson, B. A., et al., 2021. Taxon Sampling and Alternative Hypotheses of Relationships in the Euphyllophyte Plexus that Gave Rise to Seed Plants: Insights from an Early Devonian Radiatopsid. New Phytologist, 232(2): 914-927. https://doi.org/10.1111/nph.17511 [86] Vannoppen, W., Vanmaercke, M., de Baets, S., et al., 2015. A Review of the Mechanical Effects of Plant Roots on Concentrated Flow Erosion Rates. Earth-Science Reviews, 150: 666-678. https://doi.org/10.1016/j.earscirev.2015.08.011 [87] Wang, D. M., Liu, L., Meng, M. C., et al., 2014. Cosmosperma Polyloba Gen. et sp. Nov., a Seed Plant from the Upper Devonian of South China. Naturwissenschaften, 101(8): 615-622. https://doi.org/10.1007/s00114-014-1187-x [88] Wang, D. M., Liu, L., Zhou, Y., et al., 2021. Guazia, the Earliest Ovule without Cupule but with Unique Integumentary Lobes. National Science Review, nwab196. https://doi.org/10.1093/nsr/nwab196 [89] Wang, D. M., Qin, M., Liu, L., et al., 2019. The Most Extensive Devonian Fossil Forest with Small Lycopsid Trees Bearing the Earliest Stigmarian Roots. Current Biology: CB, 29(16): 2604-2615.e2. https://doi.org/10.1016/j.cub.2019.06.053 [90] Wang, J., Pfefferkorn, H. W., Zhang, Y., et al., 2012. Permian Vegetational Pompeii from Inner Mongolia and Its Implications for Landscape Paleoecology and Paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences of the United States of America, 109(13): 4927-4932. https://doi.org/10.1073/pnas.1115076109 [91] Wang, Y., 2010. Diversity of Late Pridoli Flora from Northern Xinjiang, China. Journal of Earth Science, 21(1): 58-60. https://doi.org/10.1007/s12583-010-0169-y [92] Wellman, C. H., Habgood, K., Jenkins, G., et al., 2000. A New Plant Assemblage (Microfossil and Megafossil) from the Lower Old Red Sandstone of the Anglo-Welsh Basin: Its Implications for the Palaeoecology of Early Terrestrial Ecosystems. Review of Palaeobotany and Palynology, 109(3/4): 161-196. https://doi.org/10.1016/s0034-6667(99)00052-4 [93] Wellman, C. H., Osterloff, P. L., Mohiuddin, U., 2003. Fragments of the Earliest Land Plants. Nature, 425(6955): 282-285. https://doi.org/10.1038/nature01884 [94] Wellman, C. H., Steemans, P., Vecoli, M., 2013. Chapter 29 Palaeophytogeography of Ordovician-Silurian Land Plants. Geological Society, London, Memoirs, 38(1): 461-476. https://doi.org/10.1144/m38.29 [95] Wellman, C. H., Strother, P. K., 2015. The Terrestrial Biota Prior to the Origin of Land Plants (Embryophytes): A Review of the Evidence. Palaeontology, 58(4): 601-627. https://doi.org/10.1111/pala.12172 [96] Weng, J. K., Chapple, C., 2010. The Origin and Evolution of Lignin Biosynthesis. The New Phytologist, 187(2): 273-285. https://doi.org/10.1111/j.1469-8137.2010.03327.x [97] Willis, K. J., McElwain, J. C., 2002. The Evolution of Plants. Oxford University Press, Oxford. [98] Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth-Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846 [99] Xue, J. Z., Deng, Z. Z., Huang, P., et al., 2016. Belowground Rhizomes in Paleosols: The Hidden Half of an Early Devonian Vascular Plant. Proceedings of the National Academy of Sciences of the United States of America, 113(34): 9451-9456. https://doi.org/10.1073/pnas.1605051113 [100] Xue, J. Z., Hao, S. G., 2014. Phylogeny, Episodic Evolution and Geographic Distribution of the Silurian-Early Devonian Vascular Plants: Evidences from Plant Megafossils. Journal of Palaeogeography, 16(6): 861-877(in Chinese with English abstract). [101] Yuan, X. L., Xiao, S. H., Taylor, T. N., 2005. Lichen-Like Symbiosis 600 Million Years Ago. Science, 308(5724): 1017-1020. https://doi.org/10.1126/science.1111347 [102] Zeichner, S. S., Nghiem, J., Lamb, M. P., et al., 2021. Early Plant Organics Increased Global Terrestrial Mud Deposition through Enhanced Flocculation. Science, 371(6528): 526-529. https://doi.org/10.1126/science.abd0379 [103] Zhao, X. Y., Yu, Y. L., Clapham, M. E., et al., 2021. Early Evolution of Beetles Regulated by the End-Permian Deforestation. eLife, 10: e72692. https://doi.org/10.7554/eLife.72692 [104] Zhu, Y. G., Duan, G. L., Chen, B. D., et al., 2014. Mineral Weathering and Element Cycling in Soil-Microorganism-Plant System. Science China Earth Sciences, 57(5): 888-896. https://doi.org/10.1007/s11430-014-4861-0 [105] 冯乔, 杨晚, 柳益群, 2008. 博格达南缘二叠系古土壤类型及其在层序地层研究中的应用. 沉积学报, 26(5): 725-729. doi: 10.14027/j.cnki.cjxb.2008.05.001 [106] 郭雪莲, 刘懿馨, 刘秀铭, 等, 2016. 晚泥盆世古土壤的辨识及其发生学特征. 亚热带资源与环境学报, 11(2): 1-5. doi: 10.3969/j.issn.1673-7105.2016.02.001 [107] 韩德馨, 王延斌, 权彪, 等, 1993. 中国泥盆纪聚煤作用的演化. 煤田地质与勘探, 21(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT199305000.htm [108] 李星学, 窦亚伟, 孙喆华, 1986. 论薄皮木属: 据发现于新疆准噶尔地区的新材料. 古生物学报, 25(4): 349-379, 492. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198604000.htm [109] 柳检, 罗立强, 2019. 植物对矿物的风化作用机制研究进展. 应用与环境生物学报, 25(6): 1503-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201906033.htm [110] 邵龙义, 何志平, 罗文林, 等, 2005. 河北省南部石炭、二叠纪煤系土壤特征. 西安石油大学学报(自然科学版), 20(3): 6-10, 87. doi: 10.3969/j.issn.1673-064X.2005.03.002 [111] 邵龙义, 徐小涛, 王帅, 等, 2021. 中国含煤岩系古地理及古环境演化研究进展. 古地理学报, 23(1): 19-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202101003.htm [112] 薛进庄, 郝守刚, 2014. 志留纪-早泥盆世维管植物的系统发育、幕式演化和地理分布: 植物大化石证据. 古地理学报, 16(6): 861-877. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202003004.htm