• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陆地植物的起源、早期演化及地球环境效应

    薛进庄 王嘉树 李炳鑫 黄璞 刘乐

    薛进庄, 王嘉树, 李炳鑫, 黄璞, 刘乐, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
    引用本文: 薛进庄, 王嘉树, 李炳鑫, 黄璞, 刘乐, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
    Xue Jinzhuang, Wang Jiashu, Li Bingxin, Huang Pu, Liu Le, 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
    Citation: Xue Jinzhuang, Wang Jiashu, Li Bingxin, Huang Pu, Liu Le, 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332

    陆地植物的起源、早期演化及地球环境效应

    doi: 10.3799/dqkx.2022.332
    基金项目: 

    国家自然科学基金 v

    国家自然科学基金 41722201

    详细信息
      作者简介:

      薛进庄(1981—),男,副教授,博士,主要从事陆地植物起源与早期演化的研究.ORCID:0000-0003-4397-4641. E-mail:pkuxue@pku.edu.cn

    • 中图分类号: P52

    Origin and Early Evolution of Land Plants and the Effects on Earth's Environments

    • 摘要: 研究陆地植物在古生代的起源和早期演化(简称“植物登陆”)及它们对地表环境的塑造作用,对于理解地球系统的演化规律具有重要意义.证据表明,泥盆纪是维管植物辐射演化的关键时期,现代支系如石松类、真蕨类、楔叶类、种子植物等在该时期奠基,根系、大型叶、次生木质部、种子等性状快速演化出现并复杂化,森林在中泥盆世以来成为陆地植被的重要组分.近年来,在古生代植被控制河流沉积体系的转变、陆地植物的化学风化增强效应、古生代陆地有机碳埋藏等的研究方面取得了重要进展.未来需要通过从基因到陆地生态系统等多个层次的研究,进一步揭示植物登陆的过程与机制,从微观、生境、区域到全球多个空间尺度,进一步研究植物登陆对地球环境的影响.

       

    • 图  1  古生代陆地植物与地球环境

      a. 4个植被阶段及若干典型植物的形态;b. 陆地植物主要支系的谱系关系、延限及关键演化事件;c. 华南及世界其他地区维管植物多样性;d. 模型估算的大气CO2浓度(据Berner and Kothavala,2001)、中国代表性含煤地层、北美陆地有机沉积物累计量(据Nelsen et al.,2016)、低纬度地区成煤森林面积(仅包括宾夕法尼亚亚纪之后的数据;据Cleal and Thomas,2005)以及古生代冰期延限.除注明外,数据来自各种资料的综合.地质年代缩写:Ll. 兰多维列世;W. 温洛克世;Lu. 罗德洛世;P. 普里道利世;Miss. 密西西比亚纪;Penn. 宾夕法尼亚亚纪;Gu. 瓜德鲁普世;Lo. 乐平世

      Fig.  1.  Paleozoic land plants and Earth's environments

      图  2  地史时期的河流景观演化

      a. 前寒武纪至石炭纪的河流形态演化(据Gibling and Davies,2012);b.辫状河、曲流河及网状河形态的对比(据Davies and Gibling,2013);c.典型的辫状河卫星图(沱沱河与通天河交汇处);d. 典型的曲流河卫星图(辽河,铁岭市北)

      Fig.  2.  Evolution of fluvial landscapes during geological time

      图  3  研究植物登陆的层次和空间尺度示意图

      a. 陆地生态系统、植物群落、物种及其组织结构、发育基因等多个层次;植物登陆促进陆地有机碳积累,改变了陆地向海洋输入的矿物质和有机碳的通量;b. 早泥盆世全球古地理图(据Boucot et al.,2013);全球尺度的研究有利于揭示早期植被的古地理格局;c. 云南曲靖下泥盆统徐家冲组古土壤剖面,示原位的植物根系;d. 美国纽约中泥盆世剖面,虚线标示原位埋藏的Eospermatopteris树干(地球上最古老的原位森林产地;William E. Stein提供图片);生境(剖面)尺度的研究有利于揭示植物的个体特征与群落生态、以及植物如何影响沉积过程和成土作用

      Fig.  3.  Diagram showing the hierarchies and spatial scales in studying the colonization of land by plants

    • [1] Algeo, T. J., Scheckler, S. E., 1998. Terrestrial-Marine Teleconnections in the Devonian: Links between the Evolution of Land Plants, Weathering Processes, and Marine Anoxic Events. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365): 113-130. https://doi.org/10.1098/rstb.1998.0195
      [2] Bar-On, Y. M., Phillips, R., Milo, R., 2018. The Biomass Distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25): 6506-6511. https://doi.org/10.1073/pnas.1711842115
      [3] Bateman, R. M., Crane, P. R., DiMichele, W. A., et al., 1998. Early Evolution of Land Plants: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annual Review of Ecology and Systematics, 29: 263-292. https://doi.org/10.1146/annurev.ecolsys.29.1.263
      [4] Beerling, D. J., Butterfield, N. J., 2012. Plants and Animals as Geobiological Agents. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O., eds., Fundamentals of Geobiology. Blackwell Publishing Ltd., Oxford, 188-204.
      [5] Belnap, J., Kaltenecker, J. H., Rosentreter, R., et al., 2001, Biological Soil Crusts: Ecology and Management. United States Department of the Interior Bureau of Land Management, Denver, USA.
      [6] Berner, R. A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544-546. https://doi.org/10.1126/science.276.5312.544
      [7] Berner, R. A., Kothavala, Z., 2001. GEOCARB III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2): 182-204. https://doi.org/10.2475/ajs.301.2.182
      [8] Blomenkemper, P., Kerp, H., Abu Hamad, A., et al., 2018. A Hidden Cradle of Plant Evolution in Permian Tropical Lowlands. Science, 362(6421): 1414-1416. https://doi.org/10.1126/science.aau4061
      [9] Boucot, A. J., Chen, X., Scotese, C. R., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology No. 11. SEPM (Society for Sedimentary Geology), Oklahoma, USA.
      [10] Cai, C. Y., Chen, L. Z., 1996. On a Chinese Givetian Lycopod, Longostachys Latisporophyllus Zhu, Hu and Feng, Emend: Its Morphology, Anatomy and Reconstruction. Palaeontographica Abteilung B-Palaophytologie, 283(1-3): 1-43. https://doi.org/10.1127/PALB%2F283%2F2010%2F1
      [11] Capel, E., Cleal, C. J., Gerrienne, P., et al., 2021. A Factor Analysis Approach to Modelling the Early Diversification of Terrestrial Vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 566: 110170. https://doi.org/10.1016/j.palaeo.2020.110170
      [12] Chapin, F. S., III, Pamela, A., Matson, P. A., et al., 2011. Principles of Terrestrial Ecosystem Ecology (Second Edition). Springer, New York.
      [13] Cheng, S. F., Xian, W. F., Fu, Y., et al., 2019. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell, 179(5): 1057-1067.e14. https://doi.org/10.1016/j.cell.2019.10.019
      [14] Cleal, C. J., Cascales-Miñana, B., 2014. Composition and Dynamics of the Great Phanerozoic Evolutionary Floras. Lethaia, 47(4): 469-484. https://doi.org/10.1111/let.12070
      [15] Cleal, C. J., Thomas, B. A., 2005. Palaeozoic Tropical Rainforests and Their Effect on Global Climates: Is the Past the Key to the Present? Geobiology, 3(1): 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x
      [16] Cleal, C. J., Uhl, D., Cascales-Miñana, B., et al., 2012. Plant Biodiversity Changes in Carboniferous Tropical Wetlands. Earth-Science Reviews, 114(1/2): 124-155. https://doi.org/10.1016/j.earscirev.2012.05.004
      [17] Dahl, T. W., Arens, S. K. M., 2020. The Impacts of Land Plant Evolution on Earth's Climate and Oxygenation State: An Interdisciplinary Review. Chemical Geology, 547: 119665. https://doi.org/10.1016/j.chemgeo.2020.119665
      [18] Dai, S. F., Bechtel, A., Eble, C. F., et al., 2020. Recognition of Peat Depositional Environments in Coal: A Review. International Journal of Coal Geology, 219: 103383. https://doi.org/10.1016/j.coal.2019.103383
      [19] Davies, N. S., Berry, C. M., Marshall, J. E. A., et al., 2021. The Devonian Landscape Factory: Plant-Sediment Interactions in the Old Red Sandstone of Svalbard and the Rise of Vegetation as a Biogeomorphic Agent. Journal of the Geological Society, 178(5): jgs2020-225. https://doi.org/10.1144/jgs2020-225
      [20] Davies, N. S., Gibling, M. R., 2010. Cambrian to Devonian Evolution of Alluvial Systems: The Sedimentological Impact of the Earliest Land Plants. Earth-Science Reviews, 98(3/4): 171-200. https://doi.org/10.1016/j.earscirev.2009.11.002
      [21] Davies, N. S., Gibling, M. R., 2013. The Sedimentary Record of Carboniferous Rivers: Continuing Influence of Land Plant Evolution on Alluvial Processes and Palaeozoic Ecosystems. Earth-Science Reviews, 120: 40-79. https://doi.org/10.1016/j.earscirev.2013.02.004
      [22] Davies, N. S., Gibling, M. R., Rygel, M. C., 2011. Alluvial Facies Evolution during the Palaeozoic Greening of the Continents: Case Studies, Conceptual Models and Modern Analogues. Sedimentology, 58(1): 220-258. https://doi.org/10.1111/j.1365-3091.2010.01215.x
      [23] DiMichele, W. A., 2014. Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. International Journal of Plant Sciences, 175(2): 123-164. https://doi.org/10.1086/675235
      [24] Donoghue, P. C. J., Harrison, C. J., Paps, J., et al., 2021. The Evolutionary Emergence of Land Plants. Current Biology, 31(19): R1281-R1298. https://doi.org/10.1016/j.cub.2021.07.038
      [25] Durieux, T., Lopez, M. A., Bronson, A. W., et al., 2021. A New Phylogeny of the Cladoxylopsid Plexus: Contribution of an Early Cladoxylopsid from the Lower Devonian (Emsian) of Quebec. American Journal of Botany, 108(10): 2066-2095. https://doi.org/10.1002/ajb2.1752
      [26] Edwards, D., Cherns, L., Raven, J. A., 2015. Could Land-Based Early Photosynthesizing Ecosystems have Bioengineered the Planet in Mid-Palaeozoic Times? Palaeontology, 58(5): 803-837. https://doi.org/10.1111/pala.12187
      [27] Edwards, D., Davies, K. L., Axe, L., 1992. A Vascular Conducting Strand in the Early Land Plant Cooksonia. Nature, 357(6380): 683-685. https://doi.org/10.1038/357683a0
      [28] Edwards, D., Morris, J. L., Axe, L., et al., 2022. Piecing together the Eophytes: A New Group of Ancient Plants Containing Cryptospores. The New Phytologist, 233(3): 1440-1455. https://doi.org/10.1111/nph.17703
      [29] Feng, Q., Yang, W., Liu, Y. Q., 2008. Types of Permian Paleosols and Their Significance in Sequence Stratigraphy in the Southern Part of Bogeda Range. Acta Sedimentologica Sinica, 26(5): 725-729(in Chinese with English abstract).
      [30] Feng, Z., Wang, J., Rößler, R., et al., 2017. Late Permian Wood-Borings Reveal an Intricate Network of Ecological Relationships. Nature Communications, 8(1): 556. https://doi.org/10.1038/s41467-017-00696-0
      [31] Feng, Z., Wei, H. B., Guo, Y., et al., 2020. From Rainforest to Herbland: New Insights into Land Plant Responses to the End-Permian Mass Extinction. Earth-Science Reviews, 204: 103153. https://doi.org/10.1016/j.earscirev.2020.103153
      [32] Fischer, W. W., 2018. Early Plants and the Rise of Mud. Science, 359(6379): 994-995. https://doi.org/10.1126/science.aas9886
      [33] Garwood, R. J., Oliver, H., Spencer, A. R. T., 2020. An Introduction to the Rhynie Chert. Geological Magazine, 157(1): 47-64. https://doi.org/10.1017/s0016756819000670
      [34] Gensel, P. G., 2008. The Earliest Land Plants. Annual Review of Ecology, Evolution, and Systematics, 39: 459-477. https://doi.org/10.1146/annurev.ecolsys.39.110707.173526
      [35] Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., et al., 2004. Runcaria, a Middle Devonian Seed Plant Precursor. Science, 306(5697): 856-858. https://doi.org/10.1126/science.1102491
      [36] Gibling, M. R., Davies, N. S., 2012. Palaeozoic Landscapes Shaped by Plant Evolution. Nature Geoscience, 5(2): 99-105. https://doi.org/10.1038/ngeo1376
      [37] Giesen, P., Berry, C. M., 2013. Reconstruction and Growth of the Early Tree Calamophyton (Pseudosporochnales, Cladoxylopsida) Based on Exceptionally Complete Specimens from Lindlar, Germany (Mid-Devonian): Organic Connection of Calamophyton Branches and Duisbergia Trunks. International Journal of Plant Sciences, 174(4): 665-686. https://doi.org/10.1086/669913
      [38] Greb, S. F., DiMichele, W. A., Gastaldo, R. A., 2006. Evolution and Importance of Wetlands in Earth History. In: Greb, S. F., DiMichele, W. A., eds., Wetlands through Time: Geological Society of America Special Paper 399. Geological Society of America, 1-40.
      [39] Guo, X. L., Liu, Y. X., Liu, X. M., et al., 2016. The Identification of Late Devonian Paleosol and Pedogenetic Character. Journal of Subtropical Resources and Environment, 11(2): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1673-7105.2016.02.001
      [40] Guo, X. L., Retallack, G. J., Lü, B., et al., 2019. Paleosols in Devonian Red-Beds from Northwest China and Their Paleoclimatic Characteristics. Sedimentary Geology, 379: 16-24. https://doi.org/10.1016/j.sedgeo.2018.11.001
      [41] Gyssels, G., Poesen, J., Bochet, E., et al., 2005. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Progress in Physical Geography: Earth and Environment, 29(2): 189-217. https://doi.org/10.1191/0309133305pp443ra
      [42] Han, D. X., Wang, Y. B., Quan, B., et al., 1993. The Evolution of Devonian Coal Accumulation in China. Coal Geology & Exploration, 21(5): 1-6(in Chinese with English abstract).
      [43] Hao, S. G., Xue, J. Z., 2013. The Early Devonian Posongchong Flora of Yunnan: A Contribution to an Understanding of the Evolution and Early Diversification of Vascular Plants. Science Press, Beijing.
      [44] Hao, S. G., Xue, J. Z., Liu, Z. F., et al., 2007. Zosterophyllum Penhallow around the Silurian-Devonian Boundary of Northeastern Yunnan, China. International Journal of Plant Sciences, 168(4): 477-489. https://doi.org/10.1086/511011
      [45] Hetherington, A. J., Berry, C. M., Dolan, L., 2020. Multiple Origins of Dichotomous and Lateral Branching during Root Evolution. Nature Plants, 6(5): 454-459. https://doi.org/10.1038/s41477-020-0646-y
      [46] Kenrick, P., Crane, P. R., 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. Smithsonian Institution Press, London.
      [47] Kenrick, P., Wellman, C. H., Schneider, H., et al., 2012. A Timeline for Terrestrialization: Consequences for the Carbon Cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367(1588): 519-536. https://doi.org/10.1098/rstb.2011.0271
      [48] Knauth, L. P., Kennedy, M. J., 2009. The Late Precambrian Greening of the Earth. Nature, 460(7256): 728-732. https://doi.org/10.1038/nature08213
      [49] Kraft, P., Pšenička, J., Sakala, J., et al., 2019. Initial Plant Diversification and Dispersal Event in Upper Silurian of the Prague Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 144-155. https://doi.org/10.1016/j.palaeo.2018.09.034
      [50] Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304(5677): 1623-1627. https://doi.org/10.1126/science.1097396
      [51] Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., et al., 2019. Model for the Formation of Single-Thread Rivers in Barren Landscapes and Implications for Pre-Silurian and Martian Fluvial Deposits. Journal of Geophysical Research: Earth Surface, 124(12): 2757-2777. https://doi.org/10.1029/2019jf005156
      [52] Lenton, T. M., Crouch, M., Johnson, M., et al., 2012. First Plants Cooled the Ordovician. Nature Geoscience, 5(2): 86-89. https://doi.org/10.1038/ngeo1390
      [53] Lenton, T. M., Daines, S. J., Mills, B. J. W., 2018. COPSE Reloaded: An Improved Model of Biogeochemical Cycling over Phanerozoic Time. Earth-Science Reviews, 178: 1-28. https://doi.org/10.1016/j.earscirev.2017.12.004
      [54] Li, X. B., Zhong, W. X., Wang, Y. N., et al., 2020. Late Permian Paleoenvironmental Changes in the Xingcheng Area, Liaoning Province, China: Sedimentary Succession and Root Systems. Palaios, 35(3): 122-134. https://doi.org/10.2110/palo.2019.068
      [55] Li, X. X., Dou, Y. W., Sun, Z. H., 1986. The Genus Leptophloeum Dawson Based on a Recent Study of New Material from the Junggar Basin, Xinjiang. Acta Palaeontologica Sinica, 25(4): 349-379, 492(in Chinese with English abstract).
      [56] Libertín, M., Kvaček, J., Bek, J., et al., 2018. Sporophytes of Polysporangiate Land Plants from the Early Silurian Period may have been Photosynthetically Autonomous. Nature Plants, 4(5): 269-271. https://doi.org/10.1038/s41477-018-0140-y
      [57] Liu, G. H., 1990. Permo-Carboniferous Paleogeography and Coal Accumulation and Their Tectonic Control in the North and South China Continental Plates. International Journal of Coal Geology, 16(1-3): 73-117. https://doi.org/10.1016/0166-5162(90)90014-p
      [58] Liu, J., Luo, L. Q., 2019. Advances in Research on the Mechanisms of Plant-Driven Mineral Weathering. Chinese Journal of Applied and Environmental Biology, 25(6): 1503-1511(in Chinese with English abstract).
      [59] Liu, R., Ma, T., Qiu, W. K., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(4): 834-844. https://doi.org/10.1007/s12583-020-1349-z
      [60] Lucas, Y., 2001. The Role of Plants in Controlling Rates and Products of Weathering: Importance of Biological Pumping. Annual Review of Earth and Planetary Sciences, 29(1): 135-163. https://doi.org/10.1146/annurev.earth.29.1.135
      [61] McMahon, W. J., Davies, N. S., 2018. Evolution of Alluvial Mudrock Forced by Early Land Plants. Science, 359(6379): 1022-1024. https://doi.org/10.1126/science.aan4660
      [62] Mitchell, R. L., Strullu-Derrien, C., Kenrick, P., 2019. Biologically Mediated Weathering in Modern Cryptogamic Ground Covers and the Early Paleozoic Fossil Record. Journal of the Geological Society, 176(3): 430-439. https://doi.org/10.1144/jgs2018-191
      [63] Mitchell, R. L., Strullu-Derrien, C., Sykes, D., et al., 2021. Cryptogamic Ground Covers as Analogues for Early Terrestrial Biospheres: Initiation and Evolution of Biologically Mediated Proto-Soils. Geobiology, 19(3): 292-306. https://doi.org/10.1111/gbi.12431
      [64] Morris, J. L., Leake, J. R., Stein, W. E., et al., 2015. Investigating Devonian Trees as Geo-Engineers of Past Climates: Linking Palaeosols to Palaeobotany and Experimental Geobiology. Palaeontology, 58(5): 787-801. https://doi.org/10.1111/pala.12185
      [65] Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115
      [66] Moulton, K. L., Berner, R. A., 1998. Quantification of the Effect of Plants on Weathering: Studies in Iceland. Geology, 26(10): 895-898. https://doi.org/10.1130/0091-7613(1998)0260895
      [67] Nelsen, M. P., DiMichele, W. A., Peters, S. E., et al., 2016. Delayed Fungal Evolution did not Cause the Paleozoic Peak in Coal Production. Proceedings of the National Academy of Sciences of the United States of America, 113(9): 2442-2447. https://doi.org/10.1073/pnas.1517943113
      [68] Niedźwiedzki, G., Szrek, P., Narkiewicz, K., et al., 2010. Tetrapod Trackways from the Early Middle Devonian Period of Poland. Nature, 463(7277): 43-48. https://doi.org/10.1038/nature08623
      [69] Pawlik, Ł., Buma, B., Šamonil, P., et al., 2020. Impact of Trees and Forests on the Devonian Landscape and Weathering Processes with Implications to the Global Earth's System Properties: A Critical Review. Earth-Science Reviews, 205: 103200. https://doi.org/10.1016/j.earscirev.2020.103200
      [70] Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011. https://doi.org/10.1098/rsbl.2012.0503
      [71] Quirk, J., Leake, J. R., Johnson, D. A., et al., 2015. Constraining the Role of Early Land Plants in Palaeozoic Weathering and Global Cooling. Proceedings of the Royal Society B: Biological Sciences, 282(1813): 20151115. https://doi.org/10.1098/rspb.2015.1115
      [72] Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., et al., 2010. Early Middle Ordovician Evidence for Land Plants in Argentina (Eastern Gondwana). The New Phytologist, 188(2): 365-369. https://doi.org/10.1111/j.1469-8137.2010.03433.x
      [73] Santos, M. G. M., Mountney, N. P., Peakall, J., 2017. Tectonic and Environmental Controls on Palaeozoic Fluvial Environments: Reassessing the Impacts of Early Land Plants on Sedimentation. Journal of the Geological Society, 174(3): 393-404. https://doi.org/10.1144/jgs2016-063
      [74] Schumm, S. A., 1968. Speculations Concerning Paleohydrologic Controls of Terrestrial Sedimentation. Geological Society of America Bulletin, 79(11): 1573-1588. https://doi.org/10.1130/0016-7606(1968)79
      [75] Shao, L. Y., He, Z. P., Luo, W. L., et al., 2005. Characteristics of the Palaeosoils in the Coal Measures of Carboniferous and Permian in Southern Hebei, China. Journal of Xi'an Shiyou University (Natural Science Edition), 20(3): 6-10, 87(in Chinese with English abstract).
      [76] Shao, L. Y., Xu, X. T., Wang, S., et al., 2021. Research Progress of Palaeogeography and Palaeoenvironmental Evolution of Coal-Bearing Series in China. Journal of Palaeogeography, 23(1): 19-38(in Chinese with English abstract).
      [77] Stein, W. E., Berry, C. M., Hernick, L. V., et al., 2012. Surprisingly Complex Community Discovered in the Mid-Devonian Fossil Forest at Gilboa. Nature, 483(7387): 78-81. https://doi.org/10.1038/nature10819
      [78] Stein, W. E., Berry, C. M., Morris, J. L., et al., 2020. Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology: CB, 30(3): 421-431. https://doi.org/10.1016/j.cub.2019.11.067
      [79] Stein, W. E., Mannolini, F., Hernick, L. V., et al., 2007. Giant Cladoxylopsid Trees Resolve the Enigma of the Earth's Earliest Forest Stumps at Gilboa. Nature, 446(7138): 904-907. https://doi.org/10.1038/nature05705
      [80] Strother, P. K., Foster, C., 2021. A Fossil Record of Land Plant Origins from Charophyte Algae. Science, 373(6556): 792-796. https://doi.org/10.1126/science.abj2927
      [81] Su, D. Y., Yang, L. X., Shi, X., et al., 2021. Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Molecular Biology and Evolution, 38(8): 3332-3344. https://doi.org/10.1093/molbev/msab106
      [82] Tang, Z., Zhang, Y., Naugolnykh, S. V., et al., 2020. Ufadendron Elongatum Sp. Nov, an Angaran Lycopsid from the Upper Permian of Inner Mongolia, China. Journal of Earth Science, 31(1): 1-8. https://doi.org/10.1007/s12583-019-1230-0
      [83] Tabor, N. J., Myers, T. S., 2015. Paleosols as Indicators of Paleoenvironment and Paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333-361. https://doi.org/10.1146/annurev-earth-060614-105355
      [84] Taylor, T. N., Taylor, E. L., Krings, M., 2009. Paleobotany: The Biology and Evolution of Fossil Plants (2nd ed). Elsevier Academic Press, Burlington, MA.
      [85] Toledo, S., Bippus, A. C., Atkinson, B. A., et al., 2021. Taxon Sampling and Alternative Hypotheses of Relationships in the Euphyllophyte Plexus that Gave Rise to Seed Plants: Insights from an Early Devonian Radiatopsid. New Phytologist, 232(2): 914-927. https://doi.org/10.1111/nph.17511
      [86] Vannoppen, W., Vanmaercke, M., de Baets, S., et al., 2015. A Review of the Mechanical Effects of Plant Roots on Concentrated Flow Erosion Rates. Earth-Science Reviews, 150: 666-678. https://doi.org/10.1016/j.earscirev.2015.08.011
      [87] Wang, D. M., Liu, L., Meng, M. C., et al., 2014. Cosmosperma Polyloba Gen. et sp. Nov., a Seed Plant from the Upper Devonian of South China. Naturwissenschaften, 101(8): 615-622. https://doi.org/10.1007/s00114-014-1187-x
      [88] Wang, D. M., Liu, L., Zhou, Y., et al., 2021. Guazia, the Earliest Ovule without Cupule but with Unique Integumentary Lobes. National Science Review, nwab196. https://doi.org/10.1093/nsr/nwab196
      [89] Wang, D. M., Qin, M., Liu, L., et al., 2019. The Most Extensive Devonian Fossil Forest with Small Lycopsid Trees Bearing the Earliest Stigmarian Roots. Current Biology: CB, 29(16): 2604-2615.e2. https://doi.org/10.1016/j.cub.2019.06.053
      [90] Wang, J., Pfefferkorn, H. W., Zhang, Y., et al., 2012. Permian Vegetational Pompeii from Inner Mongolia and Its Implications for Landscape Paleoecology and Paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences of the United States of America, 109(13): 4927-4932. https://doi.org/10.1073/pnas.1115076109
      [91] Wang, Y., 2010. Diversity of Late Pridoli Flora from Northern Xinjiang, China. Journal of Earth Science, 21(1): 58-60. https://doi.org/10.1007/s12583-010-0169-y
      [92] Wellman, C. H., Habgood, K., Jenkins, G., et al., 2000. A New Plant Assemblage (Microfossil and Megafossil) from the Lower Old Red Sandstone of the Anglo-Welsh Basin: Its Implications for the Palaeoecology of Early Terrestrial Ecosystems. Review of Palaeobotany and Palynology, 109(3/4): 161-196. https://doi.org/10.1016/s0034-6667(99)00052-4
      [93] Wellman, C. H., Osterloff, P. L., Mohiuddin, U., 2003. Fragments of the Earliest Land Plants. Nature, 425(6955): 282-285. https://doi.org/10.1038/nature01884
      [94] Wellman, C. H., Steemans, P., Vecoli, M., 2013. Chapter 29 Palaeophytogeography of Ordovician-Silurian Land Plants. Geological Society, London, Memoirs, 38(1): 461-476. https://doi.org/10.1144/m38.29
      [95] Wellman, C. H., Strother, P. K., 2015. The Terrestrial Biota Prior to the Origin of Land Plants (Embryophytes): A Review of the Evidence. Palaeontology, 58(4): 601-627. https://doi.org/10.1111/pala.12172
      [96] Weng, J. K., Chapple, C., 2010. The Origin and Evolution of Lignin Biosynthesis. The New Phytologist, 187(2): 273-285. https://doi.org/10.1111/j.1469-8137.2010.03327.x
      [97] Willis, K. J., McElwain, J. C., 2002. The Evolution of Plants. Oxford University Press, Oxford.
      [98] Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth-Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846
      [99] Xue, J. Z., Deng, Z. Z., Huang, P., et al., 2016. Belowground Rhizomes in Paleosols: The Hidden Half of an Early Devonian Vascular Plant. Proceedings of the National Academy of Sciences of the United States of America, 113(34): 9451-9456. https://doi.org/10.1073/pnas.1605051113
      [100] Xue, J. Z., Hao, S. G., 2014. Phylogeny, Episodic Evolution and Geographic Distribution of the Silurian-Early Devonian Vascular Plants: Evidences from Plant Megafossils. Journal of Palaeogeography, 16(6): 861-877(in Chinese with English abstract).
      [101] Yuan, X. L., Xiao, S. H., Taylor, T. N., 2005. Lichen-Like Symbiosis 600 Million Years Ago. Science, 308(5724): 1017-1020. https://doi.org/10.1126/science.1111347
      [102] Zeichner, S. S., Nghiem, J., Lamb, M. P., et al., 2021. Early Plant Organics Increased Global Terrestrial Mud Deposition through Enhanced Flocculation. Science, 371(6528): 526-529. https://doi.org/10.1126/science.abd0379
      [103] Zhao, X. Y., Yu, Y. L., Clapham, M. E., et al., 2021. Early Evolution of Beetles Regulated by the End-Permian Deforestation. eLife, 10: e72692. https://doi.org/10.7554/eLife.72692
      [104] Zhu, Y. G., Duan, G. L., Chen, B. D., et al., 2014. Mineral Weathering and Element Cycling in Soil-Microorganism-Plant System. Science China Earth Sciences, 57(5): 888-896. https://doi.org/10.1007/s11430-014-4861-0
      [105] 冯乔, 杨晚, 柳益群, 2008. 博格达南缘二叠系古土壤类型及其在层序地层研究中的应用. 沉积学报, 26(5): 725-729. doi: 10.14027/j.cnki.cjxb.2008.05.001
      [106] 郭雪莲, 刘懿馨, 刘秀铭, 等, 2016. 晚泥盆世古土壤的辨识及其发生学特征. 亚热带资源与环境学报, 11(2): 1-5. doi: 10.3969/j.issn.1673-7105.2016.02.001
      [107] 韩德馨, 王延斌, 权彪, 等, 1993. 中国泥盆纪聚煤作用的演化. 煤田地质与勘探, 21(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT199305000.htm
      [108] 李星学, 窦亚伟, 孙喆华, 1986. 论薄皮木属: 据发现于新疆准噶尔地区的新材料. 古生物学报, 25(4): 349-379, 492. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198604000.htm
      [109] 柳检, 罗立强, 2019. 植物对矿物的风化作用机制研究进展. 应用与环境生物学报, 25(6): 1503-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201906033.htm
      [110] 邵龙义, 何志平, 罗文林, 等, 2005. 河北省南部石炭、二叠纪煤系土壤特征. 西安石油大学学报(自然科学版), 20(3): 6-10, 87. doi: 10.3969/j.issn.1673-064X.2005.03.002
      [111] 邵龙义, 徐小涛, 王帅, 等, 2021. 中国含煤岩系古地理及古环境演化研究进展. 古地理学报, 23(1): 19-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202101003.htm
      [112] 薛进庄, 郝守刚, 2014. 志留纪-早泥盆世维管植物的系统发育、幕式演化和地理分布: 植物大化石证据. 古地理学报, 16(6): 861-877. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202003004.htm
    • 加载中
    图(3)
    计量
    • 文章访问数:  417
    • HTML全文浏览量:  248
    • PDF下载量:  236
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-10
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回