Dynamic Response Laws of Flexible Rockfall Barriers Based on Movement Characteristics of Rockfall
-
摘要:
为获取被动柔性防护网在不同崩塌滚石运动特征下的动态响应规律,以鲁甸803地震震后崩塌滚石造成防护网损坏现场为例,通过无人机倾斜摄影技术实现地质调查,采用Rockyfor3D获取研究区落石的运动特征,并通过被动柔性防护网有限元模型,对不同落石冲击形式下防护网的动态响应规律进行研究.研究显示区内落石弹跳高度普遍在1~2 m,优势路径上的落石会形成稍高速低弹跳的范围冲击.在范围落石冲击下,防护网绳索最大拉力增加可达123.7%;在低弹跳落石冲击下,绳索最大拉力增加可达181.2%.范围落石冲击会导致防护网网面耗能的降低,并导致上拉锚绳拉力的增大.防护网下一级支撑绳对不同落石弹跳高度的响应较为敏感,部分高弹跳落石会对上拉锚绳和上一级支撑绳产生影响.
Abstract:In order to obtain the dynamic response laws of the flexible rockfall barriers under different rockfall movement characteristics, taking the site where the flexible barriers were damaged by rockfall after the Ludian 803 earthquake as an example, the geological survey was carried out through the UAV tilt photogrammetry technology, Rockyfor3D was used to obtain the movement characteristics of the rockfall in the study area. And through the finite element model, the dynamic response laws of the flexible barrier under different rockfall impact forms are studied. The research shows that the bounce heights of rockfall in the area is generally between 1-2 m, and the rockfall on the dominant path will form a scale impact with slightly high speed and low bouncing. Under the scale rockfall impact, the maximum tensile force of the flexible barrier rope can be increased by 123.7%; under the low-bounce rockfall impact, the maximum tensile force of the rope can be increased by 181.2%. The scale rockfall impact will reduce the energy consumption of the flexible barrier net and lead to the increase of the tensile force of the upslope anchor rope. The lower primary support rope of the flexible barrier is more sensitive to the response of different rockfall bounce heights, some high-bounce rockfall will affect the upslope anchor rope and the upper primary support rope.
-
表 1 接触面相关计算参数
Table 1. Calculation parameters related to the contact surface
接触面
类型分区岩土体性质 soiltype rg70 rg20 rg10 (1) 危岩 6 0 0 0.05 (2) 坡面 5 0.1 0.15 0.2 (3) 坡底 4 0.05 0.1 0.2 (4) 公路 7 0 0 0 (5) 河流 0 100 100 100 (6) 锚喷面 6 0 0.05 0.05 表 2 不同分区落石堆积数量百分比
Table 2. The percentage of rockfall deposition in different subregions
接触面
类型分区危岩及
坡面上侧
坡底下侧
坡底公路 河流 堆积数量
(%)23.5 3.5 5.3 30.4 37.3 表 3 不同冲击范围模拟结果
Table 3. Simulation results of different impact ranges
冲击形式 网面最大伸长量(m) 网面界面接触力(kN) 网面内能(kJ) 单个落石 7.97 829.0 kN 324.0 范围落石 5.24 327.0 kN 86.8 表 4 不同弹跳高度模拟结果
Table 4. Simulation results of different bounce heights
冲击区域 低弹跳冲击区 高弹跳冲击区 L1 L2 L3 平均值 H1 H2 H3 平均值 网面最大延伸量(m) 7.0 7.0 6.5 6.8 8.2 8.1 7.8 8.0 立柱轴力(kN) 392.0 280.0 279.0 317.0 231.0 277.0 343.0 283.7 -
[1] Bonneau, D. A., DiFrancesco, P. M., Hutchinson, D. J., 2020. A Method for Vegetation Extraction in Mountainous Terrain for Rockfall Simulation. Remote Sensing of Environment, 251: 112098. https://doi.org/10.1016/j.rse.2020.112098 [2] Bourrier, F., Lambert, S., Baroth, J., 2015. A Reliability⁃Based Approach for the Design of Rockfall Protection Fences. Rock Mechanics and Rock Engineering, 48(1): 247-259. https://doi.org/10.1007/s00603⁃013⁃0540⁃2 [3] Castanon⁃Jano, L., Blanco⁃Fernandez, E., Castro⁃Fresno, D., et al., 2017. Energy Dissipating Devices in Falling Rock Protection Barriers. Rock Mechanics and Rock Engineering, 50(3): 603-619. https://doi.org/10.1007/s00603⁃016⁃1130⁃x [4] Castro⁃Fresno, D., del Coz Diaz, J. J., López, L. A., et al., 2008. Evaluation of the Resistant Capacity of Cable Nets Using the Finite Element Method and Experimental Validation. Engineering Geology, 100(1-2): 1-10. https://doi.org/10.1016/j.enggeo.2008.02.007 [5] Chen, Z. X., Ye, X., Zhang, W. B., et al., 2019. Formation Mechanism Analysis and Stability Evaluation of Dangerous Rock Collapses Based on the Oblique Photography by Unmanned Aerial Vehicles. China Earthquake Engineering Journal, 41(1): 257-267, 270(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2019.01.257 [6] Corona, C., Lopez⁃Saez, J., Favillier, A., et al., 2017. Modeling Rockfall Frequency and Bounce Height from Three⁃Dimensional Simulation Process Models and Growth Disturbances in Submontane Broadleaved Trees. Geomorphology, 281: 66-77. https://doi.org/10.1016/j.geomorph.2016.12.019 [7] Crosta, G. B., Agliardi, F., 2004. Parametric Evaluation of 3D Dispersion of Rockfall Trajectories. Natural Hazards and Earth System Sciences, 4(4): 583-598. https://doi.org/10.5194/nhess⁃4⁃583⁃2004 [8] Dorren, L. K. A., 2016. Rockyfor3D (v5.2) Revealed⁃Transparent Description of the Complete 3D Rockfall Model. http://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf [9] Drews, T., Miernik, G., Anders, K., et al., 2018. Validation of Fracture Data Recognition in Rock Masses by Automated Plane Detection in 3D Point Clouds. International Journal of Rock Mechanics and Mining Sciences, 109: 19-31. https://doi.org/10.1016/j.ijrmms.2018.06.023 [10] Escallón, J. P., Wendeler, C., Chatzi, E., et al., 2014. Parameter Identification of Rockfall Protection Barrier Components through an Inverse Formulation. Engineering Structures, 77: 1-16. https://doi.org/10.1016/j.engstruct.2014.07.019 [11] Gentilini, C., Govoni, L., de Miranda, S., et al., 2012. Three⁃Dimensional Numerical Modelling of Falling Rock Protection Barriers. Computers and Geotechnics, 44: 58-72. https://doi.org/10.1016/j.compgeo.2012.03.011 [12] Guo, Y. Y., Ge, Y. G., Chen, X. C., et al., 2016. Basic Characteristics and Failure Mechanism of the Ganjiazhai Landslide Triggered by the Ludian Earthquake, Yunnan. Mountain Research, 34(5): 530-536(in Chinese with English abstract). [13] He, S. M., Wang, D. P., Wu, Y., et al., 2014. Formation Mechanism and Key Prevention Technology of Rockfalls. Chinese Journal of Nature, 36(5): 336-345(in Chinese with English abstract). [14] He, S. M., Wu, Y., Li, X. P., 2010. Collapse Mechanism of Danger Rock Triggered by Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 3359-3363(in Chinese with English abstract). [15] Jordá Bordehore, L., Riquelme, A., Cano, M., et al., 2017. Comparing Manual and Remote Sensing Field Discontinuity Collection Used in Kinematic Stability Assessment of Failed Rock Slopes. International Journal of Rock Mechanics and Mining Sciences, 97: 24-32. https://doi.org/10.1016/j.ijrmms.2017.06.004 [16] Li, H. B., Li, X. W., Li, W. Z., et al., 2019. Quantitative Assessment for the Rockfall Hazard in a Post⁃Earthquake High Rock Slope Using Terrestrial Laser Scanning. Engineering Geology, 248: 1-13. https://doi.org/10.1016/j.enggeo.2018.11.003 [17] Li, X., Zhang, J. G., Xie, Y. Q., et al, 2014. Ludian Ms 6.5 Earthquake Surface Damage and Its Relationship with Structure. Seismology and Geology, 36(4): 1280-1291(in Chinese with English abstract). [18] Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High⁃Altitude Extremely⁃Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract). [19] Luo, J., Pei, X. J., Evans, S. G., et al., 2019. Mechanics of the Earthquake⁃Induced Hongshiyan Landslide in the 2014 Mw 6.2 Ludian Earthquake, Yunnan, China. Engineering Geology, 251: 197-213. https://doi.org/10.1016/j.enggeo.2018.11.011 [20] Moon, T., Oh, J., Mun, B., 2014. Practical Design of Rockfall Catchfence at Urban Area from a Numerical Analysis Approach. Engineering Geology, 172: 41-56. https://doi.org/10.1016/j.enggeo.2014.01.004 [21] Qi, X., Yu, Z. X., Zhao, L., et al., 2018. A New Numerical Modelling Approach for Flexible Rockfall Protection Barriers Based on Failure Modes. Advanced Steel Construction, 14(3): 479-495. [22] Qi, X., Zhao, S. C., Wei, T., et al., 2014. Test Study and Numerical Analysis of Flexible Protective Structure for Falling Rocks. China Civil Engineering Journal, 47(Suppl. 2): 62-68(in Chinese with English abstract). [23] Riquelme, A., Tomás, R., Cano, M., et al., 2018. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mechanics and Rock Engineering, 51(10): 3005-3028. https://doi.org/10.1007/s00603⁃018⁃1519⁃9 [24] Spadari, M., Giacomini, A., Buzzi, O., et al., 2012. Prediction of the Bullet Effect for Rockfall Barriers: A Scaling Approach. Rock Mechanics and Rock Engineering, 45(2): 131-144. https://doi.org/10.1007/s00603⁃011⁃0203⁃0 [25] Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall⁃Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2): 317-323(in Chinese with English abstract). [26] van Veen, M., Hutchinson, D. J., Bonneau, D. A., et al., 2018. Combining Temporal 3⁃D Remote Sensing Data with Spatial Rockfall Simulations for Improved Understanding of Hazardous Slopes within Rail Corridors. Natural Hazards and Earth System Sciences, 18(8): 2295-2308. https://doi.org/10.5194/nhess⁃18⁃2295⁃2018 [27] Wang, S., Zhang, L. Q., Zhou, J., et al., 2020. Characteristic Analysis and Kinematic Simulation of Rockfall along Shexing Village Section of Qinghai⁃Tibet Railway. Journal of Engineering Geology, 28(4): 784-792(in Chinese with English abstract). [28] Wang, X. L., Zhang, L. Q., Zhang, Z. J., et al., 2012. Rockfall Hazard Analysis of Slope at Sutra Caves of Shijing Mountain. Rock and Soil Mechanics, 33(1): 191-196(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2012.01.030 [29] Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Forming Process and Mechanisms of Geo⁃Hazards in Luding Section of the Sichuan⁃Tibet Railway. Earth Science, 47(3): 950-958 (in Chinese with English abstract). [30] Xu, H., Gentilini, C., Yu, Z. X., et al., 2018. An Energy Allocation Based Design Approach for Flexible Rockfall Protection Barriers. Engineering Structures, 173: 831-852. https://doi.org/10.1016/j.engstruct.2018.07.018 [31] Yu, Z. X., Luo, L. R., Liu, C., et al., 2021. Dynamic Response of Flexible Rockfall Barriers with Different Block Shapes. Landslides, 18(7): 2621-2637. https://doi.org/10.1007/s10346⁃021⁃01658⁃w [32] Yu, Z. X., Zhao, L., Liu, Y. P., et al., 2019. Studies on Flexible Rockfall Barriers for Failure Modes, Mechanisms and Design Strategies: A Case Study of Western China. Landslides, 16(2): 347-362. https://doi.org/10.1007/s10346⁃018⁃1093⁃y [33] Zhang, L. Q., Yang, Z. F., Xu, B., 2004. Rock Falls and Rock Fall Hazards. Journal of Engineering Geology, 12(3): 225-231(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2004.03.001 [34] Zhang, L. Q., Yang, Z. F., Zhang, Y. J., 2005. Risk Analysis of Encountering Rockfalls on Highway and Method Study. Chinese Journal of Rock Mechanics and Engineering, 24(S2): 5543-5548(in Chinese with English abstract). [35] Zhao, L., Yu, Z. X., Liu, Y. P., et al., 2020. Numerical Simulation of Responses of Flexible Rockfall Barriers under Impact Loading at Different Positions. Journal of Constructional Steel Research, 167: 105953. https://doi.org/10.1016/j.jcsr.2020.105953 [36] Zhao, S. C., Yu, Z. X., Wei, T., et al., 2013. Test Study of Force Mechanism and Numerical Calculation of Safety Netting System. China Civil Engineering Journal, 46(5): 122-128(in Chinese with English abstract). [37] Zhao, S. C., Yu, Z. X., Zhao, L., et al., 2016. Damage Mechanism of Rockfall Barriers under Strong Impact Loading. Engineering Mechanics, 33(10): 24-34(in Chinese with English abstract). doi: 10.6052/j.issn.1000-4750.2016.06.ST08 [38] Zhou, J., Zhang, L. Q., Hu, R. L., et al., 2011. Study of Rules of Stress Waves Propagation under Various Attitudes of Large⁃Scale Fractures. Chinese Journal of Rock Mechanics and Engineering, 30(4): 769-780(in Chinese with English abstract). [39] 陈宙翔, 叶咸, 张文波, 等, 2019. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价. 地震工程学报, 41(1): 257-267, 270. doi: 10.3969/j.issn.1000-0844.2019.01.257 [40] 郭亚永, 葛永刚, 陈兴长, 等, 2016. 云南鲁甸地震甘家寨滑坡基本特征及失稳机制. 山地学报, 34(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201605004.htm [41] 何思明, 王东坡, 吴永, 等, 2014. 崩塌滚石灾害的力学机理与防治技术. 自然杂志, 36(5): 336-345. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201405007.htm [42] 何思明, 吴永, 李新坡, 2010. 地震诱发岩体崩塌的力学机制. 岩石力学与工程学报, 29(增刊1): 3359-3363. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1112.htm [43] 李西, 张建国, 谢英情, 等, 2014. 鲁甸Ms 6.5地震地表破坏及其与构造的关系. 地震地质, 36(4): 1280-1291 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201702006.htm [44] 罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133 [45] 齐欣, 赵世春, 韦韬, 等, 2014. 防落石冲击柔性被动拦截网试验与数值分析. 土木工程学报, 47(增刊2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S2010.htm [46] 唐川, 齐信, 丁军, 等, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学, 35(2): 317-323. doi: 10.3799/dqkx.2010.033 [47] 王颂, 张路青, 周剑, 等, 2020. 青藏铁路设兴村段崩塌特征分析与运动学模拟. 工程地质学报, 28(4): 784-792. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm [48] 王学良, 张路青, 张中俭, 等, 2012. 石经山藏经洞坡体滚石灾害危险性分析. 岩土力学, 33(1): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201201030.htm [49] 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179 [50] 张路青, 杨志法, 许兵, 2004. 滚石与滚石灾害. 工程地质学报, 12(3): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403000.htm [51] 张路青, 杨志法, 张英俊, 2005. 公路沿线遭遇滚石的风险分析: 方法研究. 岩石力学与工程学报, 24(增刊2): 5543-5548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2049.htm [52] 赵世春, 余志祥, 韦韬, 等, 2013. 被动柔性防护网受力机理试验研究与数值计算. 土木工程学报, 46(5): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201305018.htm [53] 赵世春, 余志祥, 赵雷, 等, 2016. 被动防护网系统强冲击作用下的传力破坏机制. 工程力学, 33(10): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201610002.htm [54] 周剑, 张路青, 胡瑞林, 等, 2011. 大型结构面产状影响下应力波传播规律研究. 岩石力学与工程学报, 30(4): 769-780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201104017.htm