• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中亚造山带南缘蛇绿岩研究现状与展望

    敖松坚 肖文交 韩春明 毛启贵 万博 张继恩 张志勇 宋东方 谭肖博

    敖松坚, 肖文交, 韩春明, 毛启贵, 万博, 张继恩, 张志勇, 宋东方, 谭肖博, 2022. 中亚造山带南缘蛇绿岩研究现状与展望. 地球科学, 47(9): 3107-3126. doi: 10.3799/dqkx.2022.321
    引用本文: 敖松坚, 肖文交, 韩春明, 毛启贵, 万博, 张继恩, 张志勇, 宋东方, 谭肖博, 2022. 中亚造山带南缘蛇绿岩研究现状与展望. 地球科学, 47(9): 3107-3126. doi: 10.3799/dqkx.2022.321
    Ao Songjian, Xiao Wenjiao, Han Chunming, Mao Qigui, Wan Bo, Zhang Ji’en, Zhang Zhiyong, Song Dongfang, Tan Xiaobo, 2022. Status and Prospect of Research on Ophiolites in the Southern Margin of the Central Asian Orogenic Belt. Earth Science, 47(9): 3107-3126. doi: 10.3799/dqkx.2022.321
    Citation: Ao Songjian, Xiao Wenjiao, Han Chunming, Mao Qigui, Wan Bo, Zhang Ji’en, Zhang Zhiyong, Song Dongfang, Tan Xiaobo, 2022. Status and Prospect of Research on Ophiolites in the Southern Margin of the Central Asian Orogenic Belt. Earth Science, 47(9): 3107-3126. doi: 10.3799/dqkx.2022.321

    中亚造山带南缘蛇绿岩研究现状与展望

    doi: 10.3799/dqkx.2022.321
    基金项目: 

    国家重点研发计划项目 2020YFA0714800

    国家自然科学基金委科学中心项目 41888101

    国家优秀青年科学基金项目 41822204

    详细信息
      作者简介:

      敖松坚(1983-),男,研究员,主要从事构造地质与大地构造学研究,ORCID:0000-0003-0118-6997. E-mail:asj@mail.iggcas.ac.cn

    • 中图分类号: P581

    Status and Prospect of Research on Ophiolites in the Southern Margin of the Central Asian Orogenic Belt

    • 摘要: 蛇绿岩与产于增生楔中的蛇绿岩碎片记录了大洋岩石圈形成、俯冲、消亡等造山作用的全过程信息;是解剖造山带与探讨造山作用的重要研究对象.本文重点阐述蛇绿岩的继承性构造(形成于大洋岩石圈形成阶段:洋‒陆过渡带型(ocean-continental transition,简称OCT)、洋中脊型(快速扩张脊的Penrose型与慢速扩张的洋底核杂岩型)、supra-subduction-zone(SSZ)型三个基本端元)与造山就位构造(构造就位于造山带阶段:仰冲就位与俯冲刮铲)的特征、区别及其地质意义.强调蛇绿岩形成的“生而不同”与构造就位的“死也有别”;讨论了蛇绿岩两阶段的特征、时代的大地构造配置,呼吁关注蛇绿岩构造就位阶段俯冲流体的叠加作用,其可能导致最终就位在造山带中的蛇绿岩大部分都具有SSZ型特征.最后,结合中亚造山带南部主要蛇绿岩的特征,对未来中亚造山带蛇绿岩研究提出一些思考与展望;指出未来研究应注重对有限洋盆或小洋盆的厘定,关注OCT成因蛇绿岩的识别与研究,重视山弯构造与走滑断裂对蛇绿岩带现今产出的控制与改造作用.

       

    • 图  1  蛇绿岩形成的三种端元环境及柱状剖面

      A1. 现今典型贫岩浆型洋陆过渡带(OCT), 伊比利亚实例修改自Peron-Pinvidic et al.(2013).典型特征发育拆离断层, 拆离断层的下盘由大陆岩下石圈地幔(subcontinent mantle)的蛇纹石化二辉橄榄岩构成; 上盘主要包括裂解的异地岩体(allochthon)、构造-沉积角砾岩、后裂解阶段的沉积物、靠大洋一侧出露玄武岩.A2剖面上具有厚的大陆地壳与大陆下岩石圈地幔.B1. 快速扩张洋中脊Penrose定义蛇绿岩, 修改自Dilek(2003).B2剖面上具有层状Sandwich结构, 自下而上分别包括: 超镁铁质岩、辉长岩、镁铁质席状岩墙、枕状玄武岩以及上覆的硅泥质沉积岩Anonymous(1972).C1. 慢速扩张洋中脊(OCC型), 修改自Maffione et al.(2013), 典型特征是发育拆了断层与洋底核杂岩.C2剖面上不具备Penrose型层状结构, 玄武岩较少、甚至缺失导致蛇纹石化橄榄岩直接出露洋底; 地幔岩中多见辉长岩侵入体.D1. 现今SSZ型伊豆-小笠原-马里亚纳弧,修改自Hawkins(2003), 以岛弧岩浆岩及俯冲流体为特征; D2剖面顶部发育火山碎屑岩, 地幔岩中多有辉长岩-辉绿岩侵入体

      Fig.  1.  Three endmember environments and columnar sections for ophiolites origins

      图  2  蛇绿岩就位模式

      A. 起源于俯冲上盘的大洋岩石圈仰冲就位,修改自Wakabayashi and Dilek(2003),就位在被动陆缘称为特提斯型A1;就位在增生型上称为科迪勒拉型A2.B. 起源于俯冲下盘的大洋岩石圈刮铲增生就位,修改自Bousquet et al.(2008),依据折返角流的夹角分为紧闭型B1与开放型B2

      Fig.  2.  The emplacement pattern of ophiolites

      图  3  蛇绿岩三种端元形成环境(A1, B1, C1, D1)对应的仰冲就位(A2, B2, C2, D2)、俯冲刮铲与叠加就位方式(A3, B3, C3, D3)

      无论哪种就位方式均可叠加俯冲流体的影响,因而可能具备SS2特征.同时应注意到,造山带中很多蛇绿岩可能是来自下盘俯冲刮铲与上盘叠加就位(A3, B3, C3, D3), 是不同起源大洋岩石圈的构造混杂; 尤其是0CT起源的蛇绿岩, 可能含有大量大陆下岩石圈地幔岩.红色虚线指示蛇绿岩就位时理想的上、下盘界面; 图例同图 1

      Fig.  3.  The three endmember formation environments (A1, B1, C1, D1)of the ophiolites and related the obduction emplacments (A2, B2, C2, D2), the off scraped emplacements superimposed with obduction emplacements (A3, B3, C3, D3)

      图  4  中亚造山带新疆北部‒甘肃地区蛇绿岩分布

      Fig.  4.  Distribution map of ophiolites in the northern Xinjiang-Gansu region of the Central Asian Orogenic Belt

      图  5  中亚造山带内蒙‒兴安地区蛇绿岩分布

      Fig.  5.  Distribution map of ophiolites in the Inner Mongolia-Xing'an area of the Central Asian Orogenic Belt

    • [1] Abdelmalak, M. M., Andersen, T. B., Planke, S., et al., 2015. The Ocean-Continent Transition in the Mid-Norwegian Margin: Insight from Seismic Data and an Onshore Caledonian Field Analogue. Geology, 43(11): 1011-1014. https://doi.org/10.1130/g37086.1
      [2] Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 92(1-2): 53-79. https://doi.org/10.1016/j.earscirev.2008.11.002
      [3] Agard, P., Yamato, P., Soret, M., et al., 2016. Plate Interface Rheological Switches during Subduction Infancy: Control on Slab Penetration and Metamorphic Sole Formation. Earth and Planetary Science Letters, 451: 208-220. https://doi.org/10.1016/j.epsl.2016.06.054
      [4] Anonymous, 1972. Penrose Field Conference on Ophiolites. Geotimes, 17(12): 24-25.
      [5] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606-625. https://doi.org/10.1017/s0016756811000884
      [6] Ao, S. J., Xiao, W. J., Khalatbari Jafari, M., et al., 2016a. U-Pb Zircon Ages, Field Geology and Geochemistry of the Kermanshah Ophiolite (Iran): From Continental Rifting at 79 Ma to Oceanic Core Complex at Ca. 36 Ma in the Southern Neo-Tethys. Gondwana Research, 31: 305-318. https://doi.org/10.1016/j.gr.2015.01.014
      [7] Ao, S. J., Xiao, W. J., Windley, B. F., et al., 2016b. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen: Constraints from Zircon U-Pb and 40Ar/39Ar Geochronology. Gondwana Research, 30: 224-235. https://doi.org/10.1016/j.gr.2015.03.004
      [8] Ao, S. J., Xiao, W. J., Windley, B. F., et al., 2020. Ordovician to Early Permian Accretionary Tectonics of Eastern Tianshan: Insights from Kawabulak Ophiolitic Mélange, Granitoid, and Granitic Gneiss. Geological Journal, 55(1): 280-298. https://doi.org/10.1002/gj.3371
      [9] Ao, S. J., Xiao, W. J., Yang, L., et al., 2017. The Typical Characteristics and Tectonic Implications of Fossil Oceanic Core Complex (OCC) Inorogenic Belt. Science in China (Series D), 47(1): 1-22 (in Chinese with English abstract).
      [10] Auzemery, A., Yamato, P., Duretz, T., et al., 2022. Influence of Magma-Poor Versus Magma-Rich Passive Margins on Subduction Initiation. Gondwana Research, 103: 172-186. https://doi.org/10.1016/j.gr.2021.11.012
      [11] Blackman, D. K., Cann, J. R., Janssen, B., et al., 1998. Origin of Extensional Core Complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. Journal of Geophysical Research: Solid Earth, 103(B9): 21315-21333. https://doi.org/10.1029/98JB01756
      [12] Blackman, D. K., Karson, J. A., Kelley, D. S., et al., 2002. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30° N): Implications for the Evolution of an Ultramafic Oceanic Core Complex. Marine Geophysical Researches, 23(5-6): 443-469. https://doi.org/10.1023/b:mari.0000018232.14085.75
      [13] Boillot, G., Winterer, E. L., Meyer, A. W., et al., 1987. Proceedings of the Ocean Drilling Program, Volume 103 Initial Reports. Ocean Drilling Program, College Station, TX. https://doi.org/10.2973/odp.proc.ir.103.1987
      [14] Boudier, F., Nicolas, A., 1985. Harzburgite and Lherzolite Subtypes in Ophiolitic and Oceanic Environments. Earth and Planetary Science Letters, 76(1-2): 84-92. https://doi.org/10.1016/0012-821X(85)90150-5
      [15] Bousquet, R., El Mamoun, R., Saddiqi, O., et al., 2008. Mélanges and Ophiolites during the Pan-African Orogeny: The Case of the Bou-Azzer Ophiolite Suite (Morocco). Geological Society, London, Special Publications, 297(1): 233-247. https://doi.org/10.1144/sp297.11
      [16] Canales, J. P., 2010. Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30'N, from Waveform Tomography of Multichannel Seismic Data. Geophysical Research Letters, 37(21): L21305. https://doi.org/10.1029/2010GL044412
      [17] Cann, J. R., Blackman, D. K., Smith, D. K., et al., 1997. Corrugated Slip Surfaces Formed at Ridge-Transform Intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329-332. https://doi.org/10.1038/385329a0
      [18] Cannat, M., Sauter, D., Mendel, V., et al., 2006. Modes of Seafloor Generation at a Melt-Poor Ultraslow-Spreading Ridge. Geology, 34(7): 605-608. https://doi.org/10.1130/g22486.1
      [19] Cao, C. Z., 1987. The Plate Framework of Northeastern China. Shenyang Bulletin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (16): 60-67 (in Chinese with English abstract).
      [20] Chu, H., Zhang, J. R., Wei, C. J., et al., 2013. A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia. Chinese Science Bulletin, 58(28-29): 3580-3587. https://doi.org/10.1007/s11434-013-5862-7
      [21] Cluzel, D., Jourdan, F., Meffre, S., et al., 2012. The Metamorphic Sole of New Caledonia Ophiolite: 40Ar/39Ar, U-Pb, and Geochemical Evidence for Subduction Inception at a Spreading Ridge. Tectonics, 31(3): TC3016. https://doi.org/10.1029/2011TC003085
      [22] Coleman, R. G., 1971. Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges. Journal of Geophysical Research, 76(5): 1212-1222. https://doi.org/10.1029/JB076i005p01212
      [23] Coleman, R. G., 1981. Tectonic Setting for Ophiolite Obduction in Oman. Journal of Geophysical Research: Solid Earth, 86(B4): 2497-2508. https://doi.org/10.1029/JB086iB04p02497
      [24] de Jong, K., Wang, B., Faure, M., et al., 2009. New 40Ar/39Ar Age Constraints on the Late Palaeozoic Tectonic Evolution of the Western Tianshan (Xinjiang, Northwestern China), with Emphasis on Permian Fluid Ingress. International Journal of Earth Sciences, 98(6): 1239-1258. https://doi.org/10.1007/s00531-008-0338-8
      [25] Decarlis, A., Gillard, M., Tribuzio, R., et al., 2018. Breaking up Continents at Magma-Poor Rifted Margins: A Seismic V. Outcrop Perspective. Journal of the Geological Society, 175(6): 875-882. https://doi.org/10.1144/jgs2018-041
      [26] Dewey, J. F., 1976. Ophiolite Obduction. Tectonophysics, 31(1-2): 93-120. https://doi.org/10.1016/0040-1951(76)90169-4
      [27] Dewey, J. F., Casey, J. F., 2013. The Sole of an Ophiolite: The Ordovician Bay of Islands Complex, Newfoundland. Journal of the Geological Society, 170(5): 715-722. https://doi.org/10.1144/jgs2013-017
      [28] Dick, H. J. B., Lissenberg, C. J., Warren, J. M., 2010. Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23°15'N to 23°45'N. Journal of Petrology, 51(1-2): 425-467. https://doi.org/10.1093/petrology/egp088
      [29] Dilek, Y., 2003. Ophiolite Concept and Its Evolution. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Boulder.
      [30] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411. https://doi.org/10.1130/b30446.1
      [31] Eagles, G., Pérez-Díaz, L., Scarselli, N., 2015. Getting over Continent Ocean Boundaries. Earth-Science Reviews, 151: 244-265. https://doi.org/10.1016/j.earscirev.2015.10.009
      [32] Epin, M. E., Manatschal, G., Amann, M., 2017. Defining Diagnostic Criteria to Describe the Role of Rift Inheritance in Collisional Orogens: The Case of the Err-Platta Nappes (Switzerland). Swiss Journal of Geosciences, 110(2): 419-438. https://doi.org/10.1007/s00015-017-0271-6
      [33] Escartín, J., Canales, J. P., 2011. Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems. Eos, Transactions American Geophysical Union, 92(4): 31. https://doi.org/10.1029/2011EO040003
      [34] Escartín, J., Mével, C., Petersen, S., et al., 2017. Tectonic Structure, Evolution, and the Nature of Oceanic Core Complexes and Their Detachment Fault Zones (13°20'N and 13°30'N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18(4): 1451-1482. https://doi.org/10.1002/2016gc006775
      [35] Escartín, J., Smith, D. K., Cann, J., et al., 2008. Central Role of Detachment Faults in Accretion of Slow-Spreading Oceanic Lithosphere. Nature, 455(7214): 790-794. https://doi.org/10.1038/nature07333
      [36] Fox, P. J., Schreiber, E., Peterson, J. J., 1973. The Geology of the Oceanic Crust: Compressional Wave Velocities of Oceanic Rocks. Journal of Geophysical Research, 78(23): 5155-5172. https://doi.org/10.1029/JB078i023p05155
      [37] Furnes, H., Safonova, I., 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and Petrological Characterization and Tectonic Settings. Geoscience Frontiers, 10(4): 1255-1284. https://doi.org/10.1016/j.gsf.2018.12.007
      [38] Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1-2): 1-22. https://doi.org/10.1016/S0024-4937(02)00153-6
      [39] Gao, J., Jiang, T., Wang, X. S., et al., 2022. The Junggar, Tianshan and Beishan Ophiolites: Constraint on the Evolution of Oceanic and Continental Framework along the Southwestern Margin of the Central-Asian Orogenic Belt. Chinese Journal of Geology, 57(1): 1-42 (in Chinese with English abstract).
      [40] Gao, J., Qian, Q., Long, L. L., et al., 2009. Accretionary Orogenic Process of Western Tianshan, China. Geological Bulletin of China, 28(12): 1804-1816 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.12.013
      [41] Geoffroy, L., 2005. Volcanic Passive Margins. Comptes Rendus Geoscience, 337(16): 1395-1408. https://doi.org/10.1016/j.crte.2005.10.006
      [42] Gillard, M., Manatschal, G., Autin, J., 2016. How can Asymmetric Detachment Faults Generate Symmetric Ocean Continent Transitions? Terra Nova, 28(1): 27-34. https://doi.org/10.1111/ter.12183
      [43] Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Springer, Berlin.
      [44] Guilmette, C., Hébert, R., Wang, C. S., et al., 2009. Geochemistry and Geochronology of the Metamorphic Sole Underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet. Lithos, 112(1-2): 149-162. https://doi.org/10.1016/j.lithos.2009.05.027
      [45] Hansen, L. N., Cheadle, M. J., John, B. E., et al., 2013. Mylonitic Deformation at the Kane Oceanic Core Complex: Implications for the Rheological Behavior of Oceanic Detachment Faults. Geochemistry, Geophysics, Geosystems, 14(8): 3085-3108. https://doi.org/10.1002/ggge.20184
      [46] Hawkins, J. W., 2003. Geology of Supra-Subduction Zones-Implications for the Origin of Ophiolites. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Boulder.
      [47] He, G. Q., Li, M. S., 2001. Significance of Paleostructure and Paleogeography of Ordovician-Silurian Rock Associations in Northern Xinjiang, China. Acta Scicentiarum Naturalum Universitis Pekinesis, 37(1): 99-110 (in Chinese with English abstract).
      [48] Ildefonse, B., Blackman, D. K., John, B. E., et al., 2007. Oceanic Core Complexes and Crustal Accretion at Slow-Spreading Ridges. Geology, 35(7): 623. https://doi.org/10.1130/g23531a.1
      [49] Ishikawa, T., Nagaishi, K., Umino, S., 2002. Boninitic Volcanism in the Oman Ophiolite: Implications for Thermal Condition during Transition from Spreading Ridge to Arc. Geology, 30: 899-902. https://doi.org/10.1130/0091-7613%282002%29030%3C0899%3ABVITOO%3E2.0.CO%3B2
      [50] Ishizuka, O., Tani, K., Reagan, M. K., et al., 2011. The Timescales of Subduction Initiation and Subsequent Evolution of an Oceanic Island Arc. Earth and Planetary Science Letters, 306(3-4): 229-240. https://doi.org/10.1016/j.epsl.2011.04.006
      [51] Keenan, T. E., Encarnación, J., Buchwaldt, R., et al., 2016. Rapid Conversion of an Oceanic Spreading Center to a Subduction Zone Inferred from High-Precision Geochronology. Proceedings of the National Academy of Sciences of the United States of America, 113(47): E7359-E7366. https://doi.org/10.1073/pnas.1609999113
      [52] Kwon, S. T., Tilton, G. R., Coleman, R. G., et al., 1989. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 719-727. https://doi.org/10.1029/TC008i004p00719
      [53] Li, J. L., Gao, J., Wang, X. S., 2017. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science in China (Series D), 47(1): 23-39 (in Chinese).
      [54] Li, J. Y., 1991. Early Paleozoic Evolution of Lithosphere Plate, East Junggar, Xinjiang. Bulletin of Chinese Academy of Geological Sciences, 12(2): 1-12 (in Chinese with English abstract).
      [55] Li, J. Y., 1996. Spatial and Temporal Distribution of Ophiolite in China. In: Zhang, Q., ed., Proceedings of the Symposium on Ophiolite and Geodynamics. Geological Publishing House, Beijing (in Chinese).
      [56] Li, J. Y., Zhang, J., Yang, T. N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract).
      [57] Li, S. Z., Suo, Y. H., Liu, B., et al., 2018. Microplate Tectonics Theory: Insights from Microblocks in the Global Oceans and Continental Margins. Earth Science Frontiers, 25(5): 324-356 (in Chinese with English abstract).
      [58] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      [59] Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808
      [60] Luo, J., Xiao, W. J., Wakabayashi, J., et al., 2017. The Zhaheba Ophiolite Complex in Eastern Junggar (NW China): Long Lived Supra-Subduction Zone Ocean Crust Formation and Its Implications for the Tectonic Evolution in Southern Altaids. Gondwana Research, 43: 17-40. https://doi.org/10.1016/j.gr.2015.04.004
      [61] Ma, R. S., Wang, C. Y., Ye, S. F., 1993. Tectonic Framework and Crustal Evolution of East Tianshan. Nanjing University Press, Nanjing (in Chinese).
      [62] MacLeod, C. J., Searle, R. C., Murton, B. J., et al., 2009. Life Cycle of Oceanic Core Complexes. Earth and Planetary Science Letters, 287(3-4): 333-344. https://doi.org/10.1016/j.epsl.2009.08.016
      [63] Maffione, M., Morris, A., Anderson, M. W., 2013. Recognizing Detachment-Mode Seafloor Spreading in the Deep Geological Past. Scientific Reports, 3: 2336. https://doi.org/10.1038/srep02336
      [64] Manatschal, G., 2004. New Models for Evolution of Magma-Poor Rifted Margins Based on a Review of Data and Concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3): 432-466. https://doi.org/10.1007/s00531-004-0394-7
      [65] Manatschal, G., Müntener, O., 2009. A Type Sequence across an Ancient Magma-Poor Ocean-Continent Transition: The Example of the Western Alpine Tethys Ophiolites. Tectonophysics, 473(1-2): 4-19. https://doi.org/10.1016/j.tecto.2008.07.021
      [66] Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: A Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483-506. https://doi.org/10.1017/s0016756811000811
      [67] Marques, F. O., Cabral, F. R., Gerya, T. V., et al., 2014. Subduction Initiates at Straight Passive Margins. Geology, 42(4): 331-334. https://doi.org/10.1130/g35246.1
      [68] Marroni, M., Molli, G., Montanini, A., et al., 1998. The Association of Continental Crust Rocks with Ophiolites in the Northern Apennines (Italy): Implications for the Continent-Ocean Transition in the Western Tethys. Tectonophysics, 292(1-2): 43-66. https://doi.org/10.1016/S0040-1951(98)00060-2
      [69] Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005
      [70] Miyashiro, A., 1973. The Troodos Ophiolitic Complex was Probably Formed in an Island Arc. Earth and Planetary Science Letters, 19(2): 218-224. https://doi.org/10.1016/0012-821X(73)90118-0
      [71] Moores, E. M., 2003. A Personal History of the Ophiolite Concept. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Boulder.
      [72] Moores, E. M., Kellogg, L. H., Dilek, Y., 2000. Tethyan Ophiolites, Mantle Convection, and Tectonic "Historical Contingency": A Resolution of the "Ophiolite Conundrum". In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Boulder.
      [73] Moores, E. M., Vine, F. J., 1971. The Troodos Massif Cyprus as Oceanic Crust: Evaluation and Implication. Philosophical Transactions Royal Society of London, 268: 443-466.
      [74] Nicolas, A., Boudier, F., 2003. Where Ophiolites Come from and What They Tell Us. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Boulder.
      [75] Olive, J. A., Behn, M. D., Tucholke, B. E., 2010. The Structure of Oceanic Core Complexes Controlled by the Depth Distribution of Magma Emplacement. Nature Geoscience, 3(7): 491-495. https://doi.org/10.1038/ngeo888
      [76] Osozawa, S., Shinjo, R., Lo, C. H., et al., 2012. Geochemistry and Geochronology of the Troodos Ophiolite: an SSZ Ophiolite Generated by Subduction Initiation and an Extended Episode of Ridge Subduction? Lithosphere, 4(6): 497-510. https://doi.org/10.1130/l205.1
      [77] Pearce, J. A., 2003. Supra-Subduction Zone Ophiolites: The Search for Modern Analogues. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America, Boulder.
      [78] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      [79] Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
      [80] Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., et al., 2007. Tectonosedimentary Evolution of the Deep Iberia-Newfoundland Margins: Evidence for a Complex Breakup History. Tectonics, 26(2): TC2011. https://doi.org/10.1029/2006TC001970
      [81] Peron-Pinvidic, G., Manatschal, G., Osmundsen, P. T., 2013. Structural Comparison of Archetypal Atlantic Rifted Margins: A Review of Observations and Concepts. Marine and Petroleum Geology, 43: 21-47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
      [82] Platt, J. P., 1993. Exhumation of High-Pressure Rocks: A Review of Concepts and Processes. Terra Nova, 5(2): 119-133. https://doi.org/10.1111/j.1365-3121.1993.tb00237.x
      [83] Plunder, A., Agard, P., Chopin, C., et al., 2016. Metamorphic Sole Formation, Emplacement and Blueschist Facies Overprint: Early Subduction Dynamics Witnessed by Western Turkey Ophiolites. Terra Nova, 28(5): 329-339. https://doi.org/10.1111/ter.12225
      [84] Qing, J. R., Liao, J., Li, L., et al., 2021. Dynamic Evolution of Induced Subduction through the Inversion of Spreading Ridges. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020965. https://doi.org/10.1029/2020JB020965
      [85] Reagan, M. K., Heaton, D. E., Schmitz, M. D., et al., 2019. Forearc Ages Reveal Extensive Short-Lived and Rapid Seafloor Spreading Following Subduction Initiation. Earth and Planetary Science Letters, 506: 520-529. https://doi.org/10.1016/j.epsl.2018.11.020
      [86] Reston, T. J., McDermott, K. G., 2011. Successive Detachment Faults and Mantle Unroofing at Magma-Poor Rifted Margins. Geology, 39(11): 1071-1074. https://doi.org/10.1130/g32428.1
      [87] Reston, T. J., Weinrebe, W., Grevemeyer, I., et al., 2002. A Rifted Inside Corner Massif on the Mid-Atlantic Ridge at 5°S. Earth and Planetary Science Letters, 200(3-4): 255-269. https://doi.org/10.1016/S0012-821X(02)00636-2
      [88] Robertson, A. H. F., 2007. Overview of Tectonic Settings Related to the Rifting and Opening of Mesozoic Ocean Basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean Regions. Geological Society, London, Special Publications, 282(1): 325-388. https://doi.org/10.1144/sp282.15
      [89] Sauter, D., Cannat, M., Rouméjon, S., et al., 2013. Continuous Exhumation of Mantle-Derived Rocks at the Southwest Indian Ridge for 11 Million Years. Nature Geoscience, 6(4): 314-320. https://doi.org/10.1038/ngeo1771
      [90] Schoolmeesters, N., Cheadle, M. J., John, B. E., et al., 2012. The Cooling History and the Depth of Detachment Faulting at the Atlantis Massif Oceanic Core Complex. Geochemistry, Geophysics, Geosystems, 13(10): Q0AG12. https://doi.org/10.1029/2012GC004314
      [91] Şengör, A. M. C., Natal'in, B. A., 2004. Phanerozoic Analogues of Archaean Oceanic Basement Fragments: Altaid Ophiolites and Ophirags. Developments in Precambrian Geology, 13: 675-726. https://doi.org/10.1016/S0166-2635(04)13021-1
      [92] Shang, Q. H., 2004. Occurrences of Permian Ra-Diolarians in Central and East-Ern Nei Mongol (Inner Mon-Golia) and Their Geological Sig-Nificance to the Northern China Orogen. Chinese Science Bulletin, 49(24): 2613. https://doi.org/10.1360/04wd0069
      [93] Shervais, J. W., 2001. Birth, Death, and Resurrection: The Life Cycle of Suprasubduction Zone Ophiolites. Geochemistry, Geophysics, Geosystems, 2(1): 2000GC000080. https://doi.org/10.1029/2000GC000080
      [94] Smith, D. K., Cann, J. R., Escartín, J., 2006. Widespread Active Detachment Faulting and Core Complex Formation near 13 Degrees N on the Mid-Atlantic Ridge. Nature, 442(7101): 440-443. https://doi.org/10.1038/nature04950
      [95] Soret, M., Agard, P., Dubacq, B., et al., 2017. Petrological Evidence for Stepwise Accretion of Metamorphic Soles during Subduction Infancy (Semail Ophiolite, Oman and UAE). Journal of Metamorphic Geology, 35(9): 1051-1080. https://doi.org/10.1111/jmg.12267
      [96] Stagg, H. M. J., Colwel, J. B., Direen, N. G., et al., 2004. Geology of the Continental Margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a Regional Data Set. Marine Geophysical Researches, 25(3-4): 183-219. https://doi.org/10.1007/s11001-005-1316-1
      [97] Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/j.epsl.2004.08.007
      [98] Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)1041621:szieft>2.3.co;2 doi: 10.1130/0016-7606(1992)1041621:szieft>2.3.co;2
      [99] Stern, R. J., Reagan, M., Ishizuka, O., et al., 2012. To Understand Subduction Initiation, Study Forearc Crust: To Understand Forearc Crust, Study Ophiolites. Lithosphere, 4(6): 469-483. https://doi.org/10.1130/l183.1
      [100] Tang, K. D., Shao, J. A., 1996. Some Characteristics of Ophiolites and Ancient Ocean Evolution in Paleoasia Oceanic Area. In: Zhang, Q., ed., Ophiolites and Geodynamics. Geological Publishing House, Beijing (in Chinese with English abstract).
      [101] Tribuzio, R., Renna, M. R., Dallai, L., et al., 2014. The Magmatic-Hydrothermal Transition in the Lower Oceanic Crust: Clues from the Ligurian Ophiolites, Italy. Geochimica et Cosmochimica Acta, 130: 188-211. https://doi.org/10.1016/j.gca.2014.01.010
      [102] Tucholke, B. E., Behn, M. D., Buck, W. R., et al., 2008. Role of Melt Supply in Oceanic Detachment Faulting and Formation of Megamullions. Geology, 36(6): 455-458. https://doi.org/10.1130/g24639a.1
      [103] Tucholke, B. E., Lin, J., Kleinrock, M. C., 1998. Megamullions and Mullion Structure Defining Oceanic Metamorphic Core Complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 103(B5): 9857-9866. https://doi.org/10.1029/98JB00167
      [104] Tucholke, B. E., Sawyer, D. S., Sibuet, J. C., 2007. Breakup of the Newfoundland-Iberia Rift. In: Karner, G. D., Manatschal, G., Pinheiro, L. M., eds., Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Geological Society of America, Boulder.
      [105] Ulvrova, M. M., Coltice, N., Williams, S., et al., 2019. Where Does Subduction Initiate and Cease? A Global Scale Perspective. Earth and Planetary Science Letters, 528: 115836. https://doi.org/10.1016/j.epsl.2019.115836
      [106] Wakabayashi, J., Dilek, Y., 2003. What Constitutes 'Emplacement' of an Ophiolite? : Mechanisms and Relationship to Subduction Initiation and Formation of Metamorphic Soles. Geological Society, London, Special Publications, 218(1): 427-447. https://doi.org/10.1144/gsl.sp.2003.218.01.22
      [107] Wang, J. R., Song, C. H., Gao, J. P., et al., 1995. The Original Mechanism of the Engger us Ophiolitic Melange, North Alaxa. Journal of Lanzhou University (Natural Sciences), 31(2): 140-147 (in Chinese with English abstract). doi: 10.3321/j.issn:0455-2059.1995.02.025
      [108] Whattam, S. A., Cho, M., Smith, I. E. M., 2011. Magmatic Peridotites and Pyroxenites, Andong Ultramafic Complex, Korea: Geochemical Evidence for Supra-Subduction Zone Formation and Extensive Melt-Rock Interaction. Lithos, 127(3-4): 599-618. https://doi.org/10.1016/j.lithos.2011.06.013
      [109] Whitmarsh, R. B., Dean, S. M., Minshull, T. A., et al., 2000. Tectonic Implications of Exposure of Lower Continental Crust Beneath the Iberia Abyssal Plain, Northeast Atlantic Ocean: Geophysical Evidence. Tectonics, 19(5): 919-942. https://doi.org/10.1029/2000TC900016
      [110] Williams, H., Smyth, W. R., 1973. Metamorphic Aureoles Beneath Ophiolite Suites and Alpine Peridotites; Tectonic Implications with West Newfoundland Examples. American Journal of Science, 273(7): 594-621. https://doi.org/10.2475/ajs.273.7.594
      [111] Wu, F. Y., Liu, C. Z., Zhang, L. L., et al., 2014. Yarlung Zangbo Ophiolite: A Critical Updated View. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract).
      [112] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12
      [113] Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3
      [114] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      [115] Xiao, X. C., 1995. Discussion on the Classification of Ophiolites by Spreading Rate. Acta Petrologica Sinica, 11(S1): 10-23 (in Chinese with English abstract).
      [116] Xiao, X. C., Tang, Y. Q., Feng, Y. M., et al., 1992. Tectonics of Northern Xinjiang and Its Adjacent Areas. Geological Publishing House, Beijing (in Chinese).
      [117] Xu, X., He, G. Q., Li, H. Q., et al., 2006. Basic Characteristics of the Karamay Ophiolitic Mélange, Xinjiang, and Its Zircon SHRIMP Dating. Geology in China, 33(3): 470-475 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.003
      [118] Xu, X. Y., Li, X. M., Ma, Z. P., et al., 2006. LA-ICPMS Zircon U-Pb Dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168-1176 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.08.010
      [119] Yang, G. X., 2016. Genesis of Oceanic Island Basalt in Ophiolitic Mélange from Core Area of Central Asian Orogenic Belt. Chinese Science Bulletin, 61: 3684-3697. https://doi.org/10.1360/N972016-00645
      [120] Yang, H. Q., Li, Y., Zhao, G. B., et al., 2010. Character and Structural Attribute of the Beishan Ophiolite. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract).
      [121] Zhang, C., Huang, X., 1992. The Ages and Tectonic Settings of Ophiolites in West Junggar, Xinjiang. Geological Review, 38(6): 509-524 (in Chinese with English abstract).
      [122] Zhang, J. E., Xiao, W. J., Han, C. M., et al., 2011. A Devonian to Carboniferous Intra-Oceanic Subduction System in Western Junggar, NW China. Lithos, 125(1-2): 592-606. https://doi.org/10.1016/j.lithos.2011.03.013
      [123] Zhang, J. E., Chen, Y. C., Xiao, W. J., et al., 2018. Buoyant Units on Oceanic Crust and Their Contributions to Components of Ophiolitic Mélanges in Orogenic Belts. Acta Petrologica Sinica, 34(7): 1977-1990 (in Chinese with English abstract).
      [124] Zhang, J. R., Wei, C. J., Chu, H., 2015. Blueschist Metamorphism and Its Tectonic Implication of Late Paleozoic-Early Mesozoic Metabasites in the Mélange Zones, Central Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 352-364. https://doi.org/10.1016/j.jseaes.2014.07.032
      [125] Zhang, L. F., 1997. 40Ar/39Ar Isochron Ages of Blueschists from Tangbaler, West Junggar, Xinjiang, and Their Tectonic Implications. Chinese Science Bulletin, 42(20): 2178-2181 (in Chinese).
      [126] Zhang, L. F., Ai, Y. L., Li, X. P., et al., 2007. Triassic Collision of Western Tianshan Orogenic Belt, China: Evidence from SHRIMP U-Pb Dating of Zircon from HP/UHP Eclogitic Rocks. Lithos, 96(1-2): 266-280. https://doi.org/10.1016/j.lithos.2006.09.012
      [127] Zhang, Q., Ren, J. S., Zhao, L., et al., 2022. Review of Ophiolites in China: Discuss on a New Method for the Study of Ophiolites. Geological Review, 68(3): 1061-1078 (in Chinese with English abstract).
      [128] Zhang, Q., Qian, Q., Wang, Y., 2000. Rock Assemblages of Ophiolites and Magmatism Beneath Oceanic Ridges. Acta Petrrologica et Mineralogica, 19(1): 1-7 (in Chinese with English abstract).
      [129] Zhang, Q., Zhou, G. Q., Wang, Y., 2003. The Distribution of Time and Space of Chinese Ophiolites, and Their Tectonic Settings. Acta Petrologica Sinica, 19(1): 1-8 (in Chinese with English abstract).
      [130] Zhou, J. B., Wilde, S. A., 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. https://doi.org/10.1016/j.gr.2012.05.012
      [131] Zhou, X., Wada, I., 2021. Differentiating Induced Versus Spontaneous Subduction Initiation Using Thermomechanical Models and Metamorphic Soles. Nature Communications, 12: 4632. https://doi.org/10.1038/s41467-021-24896-x
      [132] Zuo, G. C., Liu, Y. K., Liu, C. Y., 2003. Framework and Evolution of the Tectonic Structure in Beishan Area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract).
      [133] Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1990. Early Paleozoic Plate Tectonics in Beishan Area. Chinese Journal of Geology, 25(4): 305-314 (in Chinese with English abstract).
      [134] Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3-4): 385-392. https://doi.org/10.1016/0040-1951(91)90466-6
      [135] 敖松坚, 肖文交, 杨磊, 等, 2017. 造山带中古洋壳核杂岩的识别与地质意义. 中国科学(D辑), 47(1): 1-22.
      [136] 曹从周, 1987. 中国东北部的板块构造格局, 中国地质科学院沈阳地质矿产研究所所刊, (16): 60-67. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198700021011.htm
      [137] 高俊, 江拓, 王信水, 等, 2022. 准噶尔-天山-北山蛇绿岩: 对中亚造山带西南缘洋陆格局演化的制约. 地质科学, 57(1): 1-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201001.htm
      [138] 高俊, 钱青, 龙灵利, 等, 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804-1816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912014.htm
      [139] 何国琦, 李茂松, 2001. 中国新疆北部奥陶: 志留系岩石组合的古构造、古地理意义. 北京大学学报(自然科学版), 37(1): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200101017.htm
      [140] 李继磊, 高俊, 王信水, 2017. 西南天山洋壳高压-超高压变质岩石的俯冲隧道折返机制. 中国科学(D辑), 47(1): 23-39.
      [141] 李锦轶, 1991. 试论新疆东准噶尔早古生代岩石圈板块构造演化. 中国地质科学院院报, 12(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199102000.htm
      [142] 李锦轶, 1996. 中国蛇绿岩的时空分布. 见: 张旗主编, 蛇绿岩与地球动力学研讨会论文集. 北京: 地质出版社.
      [143] 李锦轶, 张进, 杨天南, 等, 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
      [144] 李三忠, 索艳慧, 刘博, 等, 2018. 微板块构造理论: 全球洋内与陆缘微地块研究的启示. 地学前缘, 25(5): 324-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805028.htm
      [145] 马瑞士, 王赐银, 叶尚夫, 1993. 东天山构造格架及地壳演化. 南京: 南京大学出版社.
      [146] 唐克东, 邵济安, 1996. 古亚洲洋区蛇绿岩的某些特征与古洋演化. 见: 张旗主编, 蛇绿岩与地球动力学研究. 北京: 地质出版社.
      [147] 王金荣, 宋春晖, 高军平, 等, 1995. 阿拉善北部恩格尔乌苏蛇绿混杂岩的形成机制. 兰州大学学报(自然科学版), 31(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK502.024.htm
      [148] 吴福元, 刘传周, 张亮亮, 等, 2014. 雅鲁藏布蛇绿岩: 事实与臆想. 岩石学报, 30(2): 293-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htm
      [149] 肖序常, 1995. 从扩张速率试论蛇绿岩的类型划分. 岩石学报, 11(S1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.001.htm
      [150] 肖序常, 汤耀庆, 冯益民, 等, 1992. 新疆北部及其邻区大地构造, 北京: 地质出版社.
      [151] 徐新, 何国琦, 李华芹, 等, 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470-475. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603002.htm
      [152] 徐学义, 李向民, 马中平, 等, 2006. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据. 地质学报, 80(8): 1168-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200608020.htm
      [153] 杨合群, 李英, 赵国斌, 等, 2010. 北山蛇绿岩特征及构造属性. 西北地质, 43(1): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201001003.htm
      [154] 张弛, 黄萱, 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨. 地质论评, 38(6): 509-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199206008.htm
      [155] 张继恩, 陈艺超, 肖文交, 等, 2018. 洋底凸起地质体及其对造山带中蛇绿岩组分的贡献. 岩石学报, 34(7): 1977-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807011.htm
      [156] 张立飞, 1997. 新疆西准噶尔唐巴勒蓝片岩40Ar/39Ar年龄及其地质意义. 科学通报, 42(20): 2178-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199720013.htm
      [157] 张旗, 任纪舜, 赵磊, 等, 2022. 中国蛇绿岩清理: 兼论蛇绿岩研究的新思路. 地质论评, 68(3): 1061-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202203021.htm
      [158] 张旗, 钱青, 王焰, 2000. 蛇绿岩岩石组合及洋脊下岩浆作用. 岩石矿物学杂志, 19(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200001000.htm
      [159] 张旗, 周国庆, 王焰, 2003. 中国蛇绿岩的分布、时代及其形成环境. 岩石学报, 19(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301000.htm
      [160] 左国朝, 刘义科, 刘春燕, 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质学报, 12(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm
      [161] 左国朝, 张淑玲, 何国琦, 等, 1990. 北山地区早古生代板块构造特征. 地质科学, 25(4): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199004000.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  517
    • HTML全文浏览量:  193
    • PDF下载量:  187
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-01
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回