Shear Creep Characteristics of Red Sandstone Discontinuities Considering Different Morphologies
-
摘要:
工程岩体开挖会遇到各种复杂应力条件,岩体在荷载作用下随时间会产生流变现象,这种“累进性破坏”导致工程岩体常出现滑坡、塌方、大变形和支护困难等问题.为解释天然岩体结构面的流变现象,以天然红砂岩结构面为研究对象,基于结构面三维形貌扫描试验、结构面分级加载剪切蠕变试验,对天然岩体结构面的剪切蠕变特性进行系统研究.研究发现,岩体结构面蠕变变形量与蠕变应力和结构面三维形貌特征指标正相关;岩体结构面蠕变曲线可分为3个阶段,即过渡蠕变、稳态蠕变和加速蠕变阶段,当法向应力一定时,结构面三维形貌特征指标越大,发生的蠕变破坏越剧烈;基于结构面剪切蠕变曲线与剪切蠕变速率曲线特征,建立了参数物理意义明确的岩体结构面剪切蠕变经验模型.
Abstract:Engineering rock excavation will encounter a variety of complex stress conditions, and the rock will produce rheological phenomena over time under a loading effect. The "progressive damage" leads to landslides, collapses, large deformations and support difficulties in the engineering rock. In order to explain the rheological phenomena of natural rock discontinuities, the shear creep characteristics of the discontinuities of red sandstone are systematically studied based on the three-dimensional morphological scanning test and the graded loading shear creep test. It is found that the amount of creep deformation of the discontinuities is positively correlated with the creep stress and the three-dimensional morphological parameters of the discontinuities. The creep curve of the discontinuities can be divided into three stages, i. e. transition creep, steady-state creep and accelerated creep stage. When the normal stress is certain, the larger the three-dimensional morphological parameters of the discontinuities, the more intense the creep damage occurs. Based on the characteristics of shear creep curve and shear creep rate curve of the discontinuities, an empirical model of shear creep of the discontinuities is established with clear physical meaning of parameters.
-
表 1 剪切蠕变试验岩体结构面三维形貌特征指标
Table 1. Three-dimensional morphological characteristics of rock mass discontinuities in shear creep test
试件编号 上结构面 下结构面 平均值 Z2+ Z2w+ Z2+r Z2+ Z2+w Z2+r C-1 0.215 0.114 0.25 0.174 0.109 0.256 0.186 C-2 0.247 0.126 0.273 0.187 0.129 0.261 0.204 C-3 0.235 0.177 0.261 0.205 0.172 0.298 0.225 C-4 0.271 0.191 0.272 0.279 0.185 0.305 0.251 表 2 分级加载蠕变试验应力
Table 2. Stress of creep test under graded loading
试样
编号法向应力(MPa) 水平剪切应力(MPa) 破坏应力(MPa) C-1 10.4 3.0、5.0、7.0、8.0、9.0、10.0 10.0 C-2 10.0 C-3 - C-4 10.0 表 3 岩体结构面各级蠕变变形量(mm)
Table 3. Creep deformation of rock mass discontinuities at all levels
蠕变
应力3.0 MPa 5.0 MPa 7.0 MPa 8.0 MPa 9.0 MPa 10.0 MPa C-1 0.014 0.028 0.047 0.064 0.159 - C-2 0.017 0.018 0.029 0.028 0.04 - C-3 0.012 0.017 0.02 0.018 0.022 0.033 C-4 0.027 0.036 0.041 0.036 0.057 - 表 4 C⁃4结构面敏感性分析参数选取
Table 4. Parameters for sensitivity analysis of C⁃4
τ=3.0 MPa a b 基准参数 3.64 759 拟合参数对蠕变曲线的影响 10 759 20 759 30 759 3.64 500 3.64 600 3.64 700 拟合参数对蠕变速率曲线的影响 10 759 20 759 30 759 3.64 7 3.64 70 3.64 700 -
[1] Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three⁃Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361(in Chinese with English abstract). [2] Curran, J. H., Crawford, A. M., 1980. A Comparative Study of Creep in Rock and Its Discontinuities. The 21st US Symposium on Rock Mechanics, Rolla, Missouri, 7(2): 596-603. [3] Ding, X. L., Liu, J., Bai, S. W., et al., 2006. Study on Numerical Simulation of Structure Effects of Rock Mass Creep. Chinese Journal of Rock Mechanics and Engineering, 25(Suppl. 2): 3642-3649(in Chinese with English abstract). [4] Fujii, Y., Kiyama, T., 1999. Circumferential Strain Behaviour during Creep Tests of Brittle Rocks. International Journal of Rock Mechanics & Mining Sciences, 36(6): 323-337. https://doi.org/10.1016/s0148⁃9062(99)00024⁃8 [5] Griggs, D. T., 1936. The Factor of Fatigue in Rock Exfoliation. Journal of Geology, 44(7): 783-796. https://doi.org/10.2307/30056269 [6] Huang, M., Hong, C. J., Du, S. G., et al., 2020. Study on Morphological Classification Method and Two⁃Order Roughness of Rock Joints. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1153-1164(in Chinese with English abstract). [7] Li, R. J., Ji, F., Feng, W. K., et al., 2019. Shear Creep Characteristics and Constitutive Model of Hidden Non⁃Persistent Joints. Chinese Journal of Geotechnical Engineering, 41(12): 2253-2261(in Chinese with English abstract). [8] Liu, Q. S., Xu, X. C., Yamaguchi, T., et al., 2001. Testing Study on Mechanical Properties of the Three Gorges Granite Concerning Temperature and Time. Chinese Journal of Rock Mechanics and Engineering, 20(5): 715-719(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2001.05.023 [9] Liu, X. X., Li, S. N., Zhou, Y. M., et al., 2020. Study on Creep Behavior and Long⁃Term Strength of Argillaceous Siltstone under High Stresses. Chinese Journal of Rock Mechanics and Engineering, 39(1): 138-146(in Chinese with English abstract). [10] Maranini, E., Brignoli, M., 1999. Creep Behaviour of a Weak Rock: Experimental Characterization. International Journal of Rock Mechanics & Mining Sciences, 36(1): 127-138. https://doi.org/10.1016/s0148⁃9062(98)00171⁃5 [11] Shen, M. R., Chen, H. J., 2011. Testing Study of Long⁃Term Strength Characteristics of Red Sandstone. Rock and Soil Mechanics, 32(11): 3301-3305(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.11.017 [12] Sun, J., 2007. Rock Rheological Mechanics and Its Advance in Engineering Applications. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1081-1106(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.06.001 [13] Tian, G. H., Shen, M. R., Zhai, F. G., et al., 2017. Shear Rheological Characteristics of Serrate Structure Surfaces. Geotechnical Investigation & Surveying, (10): 13-18, 33(in Chinese with English abstract). [14] Wang, Z., Shen, M. R., Ding, W. Q., et al., 2018a. Time⁃Dependent Behavior of Rough Discontinuities under Shearing Conditions. Journal of Geophysics and Engineering, 15(1): 51-61. https://doi.org/10.1088/1742⁃2140/aa83e9 [15] Wang, Z., Shen, M. R., Gu, L. L., et al., 2018b. Creep Behavior and Long⁃Term Strength Characteristics of Greenschist under Different Confining Pressures. Geotechnical Testing Journal, 41(1): 20170143. https://doi.org/10.1520/gtj20170143. [16] Xia, D., Ge, Y. F., Tang, H. M., et al., 2020. Segmentation of Region of Interest and Identification of Rock Discontinuities in Digital Borehole Images. Earth Science, 45(11): 4207-4217(in Chinese with English abstract). [17] Zhang, F. R., Jiang, A. N., Yang, X. R., 2020. Effect of Pore Water Pressure on Shear Creep Characteristics of Serrate Structural Plane. Rock and Soil Mechanics, 41(9): 2901-2912(in Chinese with English abstract). [18] Zhang, Q. Z., Luo, Z. J., Pan, Q., et al., 2022. An Evaluation Method for Three⁃Dimensional Morphologies of Discontinuities Considering the Shear Direction. Journal of Engineering Geology, 32(1): 85-99. https://doi.org/10.9720/kseg.2022.1.085 [19] Zhang, Q. Z., Shen, M. R., Jang, B. A., et al., 2016. Creep Behavior of Rocks with Rough Surfaces. Journal of Materials in Civil Engineering, 28(9): 04016063. https://doi.org/10.1061/(asce)mt.1943⁃5533.0001557 [20] Zhao, K., 2020. Study on Morphological Characteristics and Shear Mechanics Characteristics of Coal Structural Plane (Dissertation). General Research Institute of Coal Science, Beijing(in Chinese). [21] Zhou, H. W., Xie, H. P., Zuo, J. P., 2005. Developments in Researches on Mechanical Behaviors of Rocks under the Condition of High Ground Pressure in the Depths. Advances in Mechanics, 35(1): 91-99(in Chinese with English abstract). [22] 陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282 [23] 丁秀丽, 刘建, 白世伟, 等, 2006. 岩体蠕变结构效应的数值模拟研究. 岩石力学与工程学报, 25(增刊2): 3642-3649. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2047.htm [24] 黄曼, 洪陈杰, 杜时贵, 等, 2020. 岩石结构面形貌分级方法及两级粗糙特性研究. 岩石力学与工程学报, 39(6): 1153-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm [25] 李任杰, 吉锋, 冯文凯, 等, 2019. 隐伏非贯通结构面剪切蠕变特性及本构模型研究. 岩土工程学报, 41(12): 2253-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm [26] 刘泉声, 许锡昌, 山口勉, 等, 2001. 三峡花岗岩与温度及时间相关的力学性质试验研究. 岩石力学与工程学报, 20(5): 715-719. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200105030.htm [27] 刘新喜, 李盛南, 周炎明, 等, 2020. 高应力泥质粉砂岩蠕变特性及长期强度研究. 岩石力学与工程学报, 39(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm [28] 沈明荣, 谌洪菊, 2011. 红砂岩长期强度特性的试验研究. 岩土力学, 32(11): 3301-3305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111020.htm [29] 孙钧, 2007. 岩石流变力学及其工程应用研究的若干进展. 岩石力学与工程学报, 26(6): 1081-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm [30] 田光辉, 沈明荣, 翟飞格, 等, 2017. 锯齿形结构面剪切流变特性分析. 工程勘察, (10): 13-18, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201710003.htm [31] 夏丁, 葛云峰, 唐辉明, 等, 2020. 数字钻孔图像兴趣区域分割与岩体结构面特征识别. 地球科学, 45(11): 4207-4217. doi: 10.3799/dqkx.2020.003 [32] 张峰瑞, 姜谙男, 杨秀荣, 2020. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响. 岩土力学, 41(9): 2901-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009007.htm [33] 赵科, 2020. 煤体层理结构面三维形貌特征及剪切力学特性研究(博士学位论文). 北京: 煤炭科学研究总院. [34] 周宏伟, 谢和平, 左建平, 2005. 深部高地应力下岩石力学行为研究进展. 力学进展, 35(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501009.htm