• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑表面形貌特征的岩体结构面蠕变特性

    罗泽军 张清照 石振明 潘青 俞松波

    罗泽军, 张清照, 石振明, 潘青, 俞松波, 2022. 考虑表面形貌特征的岩体结构面蠕变特性. 地球科学, 47(12): 4484-4497. doi: 10.3799/dqkx.2022.315
    引用本文: 罗泽军, 张清照, 石振明, 潘青, 俞松波, 2022. 考虑表面形貌特征的岩体结构面蠕变特性. 地球科学, 47(12): 4484-4497. doi: 10.3799/dqkx.2022.315
    Luo Zejun, Zhang Qingzhao, Shi Zhenming, Pan Qing, Yu Songbo, 2022. Shear Creep Characteristics of Red Sandstone Discontinuities Considering Different Morphologies. Earth Science, 47(12): 4484-4497. doi: 10.3799/dqkx.2022.315
    Citation: Luo Zejun, Zhang Qingzhao, Shi Zhenming, Pan Qing, Yu Songbo, 2022. Shear Creep Characteristics of Red Sandstone Discontinuities Considering Different Morphologies. Earth Science, 47(12): 4484-4497. doi: 10.3799/dqkx.2022.315

    考虑表面形貌特征的岩体结构面蠕变特性

    doi: 10.3799/dqkx.2022.315
    基金项目: 

    国家重点研发计划项目 2019YFC1509702

    国家自然科学基金面上项目 41977227

    详细信息
      作者简介:

      罗泽军(1995-),男,博士生,主要研究方向为地质工程.ORCID:0000-0003-3175-4879.E-mail:2010327@tongji.edu.cn

      通讯作者:

      张清照,副教授,从事地质工程方向研究.E-mail: zqz0726@163.com

    • 中图分类号: P642

    Shear Creep Characteristics of Red Sandstone Discontinuities Considering Different Morphologies

    • 摘要:

      工程岩体开挖会遇到各种复杂应力条件,岩体在荷载作用下随时间会产生流变现象,这种“累进性破坏”导致工程岩体常出现滑坡、塌方、大变形和支护困难等问题.为解释天然岩体结构面的流变现象,以天然红砂岩结构面为研究对象,基于结构面三维形貌扫描试验、结构面分级加载剪切蠕变试验,对天然岩体结构面的剪切蠕变特性进行系统研究.研究发现,岩体结构面蠕变变形量与蠕变应力和结构面三维形貌特征指标正相关;岩体结构面蠕变曲线可分为3个阶段,即过渡蠕变、稳态蠕变和加速蠕变阶段,当法向应力一定时,结构面三维形貌特征指标越大,发生的蠕变破坏越剧烈;基于结构面剪切蠕变曲线与剪切蠕变速率曲线特征,建立了参数物理意义明确的岩体结构面剪切蠕变经验模型.

       

    • 图  1  CSS⁃1950岩石双轴流变试验机

      Fig.  1.  CSS⁃1950 rock biaxial rheological testing machine

      图  2  剪切蠕变试验岩体结构面三维形貌示意图(单位:mm)

      Fig.  2.  Three⁃dimensional morphologies of rock mass discontinuities tested by shear creep

      图  3  分级加载剪切蠕变试验应力与时间关系

      Fig.  3.  Relationship between stress and time in shear creep test under graded loading

      图  4  不同三维形貌岩体结构面蠕变全过程曲线

      Fig.  4.  Whole⁃process creep curves of rock mass discontinuities with different 3D morphologies

      图  5  结构面试件蠕变前后照片

      Fig.  5.  Photos before and after creep of rock mass discontinuities

      图  6  剪切应力-剪切位移曲线

      Fig.  6.  Shear stress⁃shear displacement curve

      图  7  C⁃2破坏阶段剪切蠕变曲线与蠕变速率关系曲线

      Fig.  7.  Relationship between shear creep curve and creep rate at C⁃2 failure stage

      图  8  C⁃4、C⁃1破坏阶段剪切蠕变曲线与蠕变速率关系曲线

      Fig.  8.  Relationships between shear creep curve and creep rate at C⁃4, C⁃1 failure stage

      图  9  过渡蠕变与稳态蠕变的分界点确定方法

      Fig.  9.  Determination method of boundary point between transition creep stage and steady creep stage

      图  10  不同三维形貌节理岩体结构面剪切蠕变分级曲线

      Fig.  10.  Shear creep grading curves of jointed rock masses with different three⁃dimensional morphologies

      图  11  不同三维形貌结构面蠕变速率-时间曲线

      Fig.  11.  Creep rate ⁃ time curves of jointed rock masses with different three⁃dimensional morphologies

      图  12  不同三维形貌结构面稳态蠕变阶段蠕变速率曲线

      Fig.  12.  Creep rate curves of discontinuities with different three⁃dimensional morphologies in steady creep stage

      图  13  蠕变速率随时间的变化规律

      Fig.  13.  Variation of creep rate with time

      图  14  经验模型拟合效果($ \overline{{R}^{2}}=0.996 $)

      Fig.  14.  Fitting effect of empirical model ($ \overline{{R}^{2}}=0.996 $)

      图  15  经验模型对蠕变速率曲线的拟合效果

      Fig.  15.  Fitting effect of empirical model on creep rate curve

      图  16  拟合参数对蠕变曲线的影响

      Fig.  16.  Influence of fitting parameters on creep curve

      图  17  拟合参数对蠕变速率曲线的影响

      Fig.  17.  Influence of fitting parameters on creep rate curve

      图  18  参数$ a $、参数$ b $与蠕变应力$ \tau $之间的关系

      Fig.  18.  Relation between parameter a, parameter b and creep stress τ

      表  1  剪切蠕变试验岩体结构面三维形貌特征指标

      Table  1.   Three-dimensional morphological characteristics of rock mass discontinuities in shear creep test

      试件编号 上结构面 下结构面 平均值
      Z2+ Z2w+ Z2+r Z2+ Z2+w Z2+r
      C-1 0.215 0.114 0.25 0.174 0.109 0.256 0.186
      C-2 0.247 0.126 0.273 0.187 0.129 0.261 0.204
      C-3 0.235 0.177 0.261 0.205 0.172 0.298 0.225
      C-4 0.271 0.191 0.272 0.279 0.185 0.305 0.251
      下载: 导出CSV

      表  2  分级加载蠕变试验应力

      Table  2.   Stress of creep test under graded loading

      试样
      编号
      法向应力(MPa) 水平剪切应力(MPa) 破坏应力(MPa)
      C-1 10.4 3.0、5.0、7.0、8.0、9.0、10.0 10.0
      C-2 10.0
      C-3 -
      C-4 10.0
      下载: 导出CSV

      表  3  岩体结构面各级蠕变变形量(mm)

      Table  3.   Creep deformation of rock mass discontinuities at all levels

      蠕变
      应力
      3.0 MPa 5.0 MPa 7.0 MPa 8.0 MPa 9.0 MPa 10.0 MPa
      C-1 0.014 0.028 0.047 0.064 0.159 -
      C-2 0.017 0.018 0.029 0.028 0.04 -
      C-3 0.012 0.017 0.02 0.018 0.022 0.033
      C-4 0.027 0.036 0.041 0.036 0.057 -
      下载: 导出CSV

      表  4  C⁃4结构面敏感性分析参数选取

      Table  4.   Parameters for sensitivity analysis of C⁃4

      τ=3.0 MPa a b
      基准参数 3.64 759
      拟合参数对蠕变曲线的影响 10 759
      20 759
      30 759
      3.64 500
      3.64 600
      3.64 700
      拟合参数对蠕变速率曲线的影响 10 759
      20 759
      30 759
      3.64 7
      3.64 70
      3.64 700
      下载: 导出CSV
    • [1] Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three⁃Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361(in Chinese with English abstract).
      [2] Curran, J. H., Crawford, A. M., 1980. A Comparative Study of Creep in Rock and Its Discontinuities. The 21st US Symposium on Rock Mechanics, Rolla, Missouri, 7(2): 596-603.
      [3] Ding, X. L., Liu, J., Bai, S. W., et al., 2006. Study on Numerical Simulation of Structure Effects of Rock Mass Creep. Chinese Journal of Rock Mechanics and Engineering, 25(Suppl. 2): 3642-3649(in Chinese with English abstract).
      [4] Fujii, Y., Kiyama, T., 1999. Circumferential Strain Behaviour during Creep Tests of Brittle Rocks. International Journal of Rock Mechanics & Mining Sciences, 36(6): 323-337. https://doi.org/10.1016/s0148⁃9062(99)00024⁃8
      [5] Griggs, D. T., 1936. The Factor of Fatigue in Rock Exfoliation. Journal of Geology, 44(7): 783-796. https://doi.org/10.2307/30056269
      [6] Huang, M., Hong, C. J., Du, S. G., et al., 2020. Study on Morphological Classification Method and Two⁃Order Roughness of Rock Joints. Chinese Journal of Rock Mechanics and Engineering, 33(6): 1153-1164(in Chinese with English abstract).
      [7] Li, R. J., Ji, F., Feng, W. K., et al., 2019. Shear Creep Characteristics and Constitutive Model of Hidden Non⁃Persistent Joints. Chinese Journal of Geotechnical Engineering, 41(12): 2253-2261(in Chinese with English abstract).
      [8] Liu, Q. S., Xu, X. C., Yamaguchi, T., et al., 2001. Testing Study on Mechanical Properties of the Three Gorges Granite Concerning Temperature and Time. Chinese Journal of Rock Mechanics and Engineering, 20(5): 715-719(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2001.05.023
      [9] Liu, X. X., Li, S. N., Zhou, Y. M., et al., 2020. Study on Creep Behavior and Long⁃Term Strength of Argillaceous Siltstone under High Stresses. Chinese Journal of Rock Mechanics and Engineering, 39(1): 138-146(in Chinese with English abstract).
      [10] Maranini, E., Brignoli, M., 1999. Creep Behaviour of a Weak Rock: Experimental Characterization. International Journal of Rock Mechanics & Mining Sciences, 36(1): 127-138. https://doi.org/10.1016/s0148⁃9062(98)00171⁃5
      [11] Shen, M. R., Chen, H. J., 2011. Testing Study of Long⁃Term Strength Characteristics of Red Sandstone. Rock and Soil Mechanics, 32(11): 3301-3305(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.11.017
      [12] Sun, J., 2007. Rock Rheological Mechanics and Its Advance in Engineering Applications. Chinese Journal of Rock Mechanics and Engineering, 26(6): 1081-1106(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.06.001
      [13] Tian, G. H., Shen, M. R., Zhai, F. G., et al., 2017. Shear Rheological Characteristics of Serrate Structure Surfaces. Geotechnical Investigation & Surveying, (10): 13-18, 33(in Chinese with English abstract).
      [14] Wang, Z., Shen, M. R., Ding, W. Q., et al., 2018a. Time⁃Dependent Behavior of Rough Discontinuities under Shearing Conditions. Journal of Geophysics and Engineering, 15(1): 51-61. https://doi.org/10.1088/1742⁃2140/aa83e9
      [15] Wang, Z., Shen, M. R., Gu, L. L., et al., 2018b. Creep Behavior and Long⁃Term Strength Characteristics of Greenschist under Different Confining Pressures. Geotechnical Testing Journal, 41(1): 20170143. https://doi.org/10.1520/gtj20170143.
      [16] Xia, D., Ge, Y. F., Tang, H. M., et al., 2020. Segmentation of Region of Interest and Identification of Rock Discontinuities in Digital Borehole Images. Earth Science, 45(11): 4207-4217(in Chinese with English abstract).
      [17] Zhang, F. R., Jiang, A. N., Yang, X. R., 2020. Effect of Pore Water Pressure on Shear Creep Characteristics of Serrate Structural Plane. Rock and Soil Mechanics, 41(9): 2901-2912(in Chinese with English abstract).
      [18] Zhang, Q. Z., Luo, Z. J., Pan, Q., et al., 2022. An Evaluation Method for Three⁃Dimensional Morphologies of Discontinuities Considering the Shear Direction. Journal of Engineering Geology, 32(1): 85-99. https://doi.org/10.9720/kseg.2022.1.085
      [19] Zhang, Q. Z., Shen, M. R., Jang, B. A., et al., 2016. Creep Behavior of Rocks with Rough Surfaces. Journal of Materials in Civil Engineering, 28(9): 04016063. https://doi.org/10.1061/(asce)mt.1943⁃5533.0001557
      [20] Zhao, K., 2020. Study on Morphological Characteristics and Shear Mechanics Characteristics of Coal Structural Plane (Dissertation). General Research Institute of Coal Science, Beijing(in Chinese).
      [21] Zhou, H. W., Xie, H. P., Zuo, J. P., 2005. Developments in Researches on Mechanical Behaviors of Rocks under the Condition of High Ground Pressure in the Depths. Advances in Mechanics, 35(1): 91-99(in Chinese with English abstract).
      [22] 陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282
      [23] 丁秀丽, 刘建, 白世伟, 等, 2006. 岩体蠕变结构效应的数值模拟研究. 岩石力学与工程学报, 25(增刊2): 3642-3649. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2047.htm
      [24] 黄曼, 洪陈杰, 杜时贵, 等, 2020. 岩石结构面形貌分级方法及两级粗糙特性研究. 岩石力学与工程学报, 39(6): 1153-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006007.htm
      [25] 李任杰, 吉锋, 冯文凯, 等, 2019. 隐伏非贯通结构面剪切蠕变特性及本构模型研究. 岩土工程学报, 41(12): 2253-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm
      [26] 刘泉声, 许锡昌, 山口勉, 等, 2001. 三峡花岗岩与温度及时间相关的力学性质试验研究. 岩石力学与工程学报, 20(5): 715-719. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200105030.htm
      [27] 刘新喜, 李盛南, 周炎明, 等, 2020. 高应力泥质粉砂岩蠕变特性及长期强度研究. 岩石力学与工程学报, 39(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm
      [28] 沈明荣, 谌洪菊, 2011. 红砂岩长期强度特性的试验研究. 岩土力学, 32(11): 3301-3305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111020.htm
      [29] 孙钧, 2007. 岩石流变力学及其工程应用研究的若干进展. 岩石力学与工程学报, 26(6): 1081-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706001.htm
      [30] 田光辉, 沈明荣, 翟飞格, 等, 2017. 锯齿形结构面剪切流变特性分析. 工程勘察, (10): 13-18, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201710003.htm
      [31] 夏丁, 葛云峰, 唐辉明, 等, 2020. 数字钻孔图像兴趣区域分割与岩体结构面特征识别. 地球科学, 45(11): 4207-4217. doi: 10.3799/dqkx.2020.003
      [32] 张峰瑞, 姜谙男, 杨秀荣, 2020. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响. 岩土力学, 41(9): 2901-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009007.htm
      [33] 赵科, 2020. 煤体层理结构面三维形貌特征及剪切力学特性研究(博士学位论文). 北京: 煤炭科学研究总院.
      [34] 周宏伟, 谢和平, 左建平, 2005. 深部高地应力下岩石力学行为研究进展. 力学进展, 35(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200501009.htm
    • 加载中
    图(18) / 表(4)
    计量
    • 文章访问数:  88
    • HTML全文浏览量:  31
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-25
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回